JPS62202026A - Production of high rupture toughness chain - Google Patents

Production of high rupture toughness chain

Info

Publication number
JPS62202026A
JPS62202026A JP4287686A JP4287686A JPS62202026A JP S62202026 A JPS62202026 A JP S62202026A JP 4287686 A JP4287686 A JP 4287686A JP 4287686 A JP4287686 A JP 4287686A JP S62202026 A JPS62202026 A JP S62202026A
Authority
JP
Japan
Prior art keywords
chain
heating
quenching
hardening
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4287686A
Other languages
Japanese (ja)
Inventor
Masaki Sakamoto
坂本 雅紀
Fukukazu Nakazato
中里 福和
Noboru Yamada
昇 山田
Kazuhiko Nishida
和彦 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4287686A priority Critical patent/JPS62202026A/en
Publication of JPS62202026A publication Critical patent/JPS62202026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a chain having excellent rupture toughness at a low temp. in a flash butt weld zone by subjecting a steel bar consisting of a low alloy steel to two times of hardening and tempering treatments in a heat treatment after chain making and further limiting the heating temp. in the respective heat treatments to a specific range. CONSTITUTION:The steel bar consisting of the low alloy steel is cut to a prescribed length and is formed to a toric shape; thereafter, the end face is subjected to flash butt welding and studs are press-fitted thereto to form the chain. The chain is further subjected to the heat treatment, by which the large- diameter chain is produced. The chain is subjected to the tempering treatment at 500-700 deg.C after two times of hardening including primary hardening by which the chain is cooled after heating to 900-1,050 deg.C and secondary hardening by which the chain is quickly cooled after heating to 850-950 deg.C as the heat treatment after the chain making. The high rupture toughness chain useful under sever conditions such as anchoring of an ocean structure, for example, rig for petroleum drilling is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、フラッシュバット溶接部の破壊靭性にすぐ
れるチェーンの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a chain with excellent fracture toughness at a flash butt weld.

(従来の技術) 近年、エネルギー事情の変化にともなって、新たなエネ
ルギー資源を開発しようとの動きが世界の各地で活発化
してきている。このような状況下にあって、陸上での開
発資源が涸渇するにつれ海底油田にまで注目が集まるよ
うになって、石油掘削のリグを用いた開発が、大陸だな
付近を中心として南方から北海に至るまでの広範囲な地
域で行われるようになってきた。
(Prior Art) In recent years, as the energy situation has changed, efforts to develop new energy resources have become active in various parts of the world. Under these circumstances, as onshore development resources have been depleted, attention has been focused on offshore oil fields, and development using oil drilling rigs has begun from the south to the North Sea, mainly near the continental region. It has come to be practiced in a wide range of areas.

そして、上記のような海底油田掘削用リグに代表される
海上構造物の増加にともない、これを係留するのに用い
る大径チェーンの需要も増大の一途をたどってきており
、更に最近になって、条件の劣悪な極寒冷地での石油掘
削頻度が益々高くなってきている。
As the number of offshore structures, such as the above-mentioned offshore oil drilling rigs, increases, the demand for large-diameter chains used to moor them continues to increase. The frequency of oil drilling in extremely cold regions with poor conditions is increasing.

一方、チェーンの破断はリグの倒壊等の重大事故に直結
するため、安全性確保が重要課題であり、この観点から
チェーンの高破壊靭性化が指向されてきており、特に極
寒冷地での使用に耐え得る低温での破壊靭性にすぐれる
チェーンが嘱望されている。
On the other hand, chain breakage is directly linked to serious accidents such as rig collapse, so ensuring safety is an important issue, and from this perspective, efforts are being made to improve the fracture toughness of chains, especially when used in extremely cold regions. There is a need for a chain with excellent fracture toughness at low temperatures that can withstand high temperatures.

ところで、大径チェーンは、熱間圧延棒鋼を所定長さに
切断して、円環状に成形後、端面をフラッシュバット溶
接し、その後、スタッドを圧入して製鎖される。さらに
、その後、熱処理を施すことによって製造される。
Incidentally, a large diameter chain is produced by cutting a hot-rolled steel bar to a predetermined length, forming it into an annular shape, flash-butt welding the end faces, and then press-fitting a stud. Furthermore, it is manufactured by subsequently performing heat treatment.

したがって、チェーンにおいては、フラッシュハント溶
接部が破壊靭性の最も劣る部位となっており、この溶接
部の破壊靭性向上が、高靭性チェーンを製造するうえで
のポイントである。
Therefore, in a chain, the flash hunt weld is the part with the lowest fracture toughness, and improving the fracture toughness of this weld is the key to manufacturing a high-toughness chain.

(発明が解決しようとする問題点) よって、この発明の目的とするところは、フラッシュバ
ット溶接部の低温での破壊靭性にすぐれるチェーンの製
造方法を提供することである。
(Problems to be Solved by the Invention) Therefore, an object of the present invention is to provide a method for manufacturing a chain that has excellent fracture toughness at low temperatures in flash butt welds.

具体的には、この発明の目的とするところは、引張強度
70 kgf/mm”以上で、かつ、−30℃でのフラ
ッシュバット溶接部の破壊靭性CODが0.12m+w
以上あるいは引張試験90 kgf/lsm”以上でか
つ、−20℃でのフランシュハツト溶接部の破壊靭性C
ODが0.12m以上である高強度、高破壊靭性チェー
ンの製造方法を提供することである。
Specifically, the purpose of this invention is to have a tensile strength of 70 kgf/mm" or more and a fracture toughness COD of the flash butt welded part at -30°C of 0.12 m+w.
Fracture toughness C of Franschhat welds at -20℃ or above or tensile test 90 kgf/lsm'' or above
It is an object of the present invention to provide a method for manufacturing a chain with high strength and high fracture toughness having an OD of 0.12 m or more.

(問題点を解決するための手段) ここに、本発明者等は、高強度で、かつ、フラッシュハ
ツト部の低温での、破壊靭性にすぐれるチェーンの製造
方法を実現するために、種々研究を続けたところ、製鎖
後の熱処理において、二回焼入と焼戻処理を施すこと、
更に各熱処理での加熱温度を所定の範囲に限定すること
により、フラノシュバフHe接部の破壊靭性が顕著に改
善されるという知見を得た。
(Means for Solving the Problems) The present inventors have conducted various researches in order to realize a method of manufacturing a chain with high strength and excellent fracture toughness at low temperatures in the flash hat part. Continuing with this process, we found that in the heat treatment after chain making, we performed two quenching and tempering treatments.
Furthermore, it has been found that by limiting the heating temperature in each heat treatment to a predetermined range, the fracture toughness of the Furanoche buff He joint can be significantly improved.

この発明は、上記知見に基づいてなされたものであり、
その要旨とするところは、低合金鋼からなる棒鋼を製鎖
後、 一次焼入=900〜1050℃に加熱後冷却二次焼入:
850〜950℃に加熱後急冷の二回焼入の後に、55
0〜700℃にて、焼戻処理を施すことを特徴とするフ
ラッシュバット溶接部の破壊靭性にすぐれるチェーンの
製造方法である。
This invention was made based on the above findings,
The gist of this is that after chain-making a steel bar made of low alloy steel, primary quenching = heating to 900-1050°C followed by cooling and secondary quenching:
After heating to 850-950℃ and quenching twice, 55℃
This is a method for manufacturing a chain with excellent fracture toughness at a flash butt weld, which is characterized by performing a tempering treatment at 0 to 700°C.

次に、この発明において熱処理条件を前記のように限定
した理由を説明する。なお、棒鋼への熱間圧延、棒鋼切
断、そして曲げ加工、さらにはフランシュバット溶接な
どによるチェーンの製造工程は、すでに当業者にあって
よく知られており、またこの発明にあっても慣用のもの
であってよく、したがって、特に制限はされないもので
あって、説明を略す。
Next, the reason why the heat treatment conditions are limited as described above in this invention will be explained. Incidentally, the chain manufacturing process by hot rolling steel bars, cutting steel bars, bending, Franchebat welding, etc. is already well known to those skilled in the art, and this invention also uses conventional chain manufacturing processes. Therefore, there are no particular limitations, and the explanation will be omitted.

従来、チェーンの熱処理法は、焼ならし処理あるいは一
回焼入、焼戻処理が採用されてきた。特に、高強度チェ
ーンにおいては、−回焼入、焼戻処理を採用し靭性を改
善する試みがなされてきた。
Conventionally, the heat treatment method for chains has been normalizing treatment or one-time quenching and tempering treatment. In particular, attempts have been made to improve the toughness of high-strength chains by employing double quenching and tempering treatments.

しかし、−回焼入、焼戻処理ではフラッシュバット溶接
部に生成している粗大炭化物が通常の焼入加熱温度では
十分に固溶せず、溶接部の焼入性が低下し、焼入後のミ
クロ組織が粗大なベイナイト組織となり、また、硬度も
生地部に比べて顕著に低下する。したがって、十分な破
壊靭性改善効果が望めない。
However, in double quenching and tempering treatments, coarse carbides generated in flash butt welds do not dissolve sufficiently at the normal quenching heating temperature, resulting in decreased hardenability of the weld and after quenching. The microstructure becomes a coarse bainite structure, and the hardness is also significantly lower than that of the fabric part. Therefore, a sufficient effect of improving fracture toughness cannot be expected.

また、−回焼入、焼戻法において溶接部の粗大炭化物を
固溶させるために、焼入加熱温度を高くすると結晶粒の
粗大化を招き、これが原因となって破壊靭性が劣化する
Furthermore, in order to dissolve coarse carbides in the weld zone in the double quenching and tempering method, increasing the quenching heating temperature causes coarsening of crystal grains, which causes deterioration of fracture toughness.

これに対して、この発明では粗大炭化物を固溶させるた
めに一次焼入(高温加熱)とこれに続く、細粒マルテン
サイト&lI織を生成させるための二次焼入の二回焼入
を採用することにより、フラッシュハント溶接部のミク
ロ組織の微細均一化および硬度分布の均一化を図り、破
壊靭性の顕著な改善を実現している。
In contrast, this invention employs two quenching processes: primary quenching (high temperature heating) to dissolve coarse carbides, followed by secondary quenching to generate fine-grained martensite and lI weave. By doing so, the microstructure and hardness distribution of the flash hunt welded area are made more uniform, and the fracture toughness is significantly improved.

まず、−次焼入においては900〜1050℃に加熱後
冷却する。−次焼入ではフラッシュバット溶接部に生成
している粗大炭化物を充分に固溶させ、溶接部の焼入性
を回復させるのが主目的である。
First, in the secondary quenching, it is heated to 900 to 1050°C and then cooled. -The main purpose of the secondary quenching is to fully dissolve the coarse carbides that have formed in the flash butt weld, thereby restoring the hardenability of the weld.

900℃未満の加熱では、粗大炭化物の固溶が不充分で
ある。また、1050℃を越えて加熱しても固溶効果の
改善は望めず、逆に、結晶粒の粗大化を招きバーニング
等の欠陥の発生原因となり、更には、熱処理炉の寿命低
下を招くので、1050℃以下と定めた。加熱後の冷却
は、−次焼入の目的より、放冷でも、急冷でもよいが冷
却時の粗大炭化物の生成防止あるいはミクロ組織を低温
変態組織とすることにより、二次焼入での加熱時のオー
ステナイト変態の迅速化等の理由により急冷が好ましい
Heating at less than 900° C. does not sufficiently dissolve coarse carbides. Furthermore, even if heated above 1050°C, no improvement in the solid solution effect can be expected; on the contrary, it will cause coarsening of crystal grains and cause defects such as burning, and furthermore, it will shorten the life of the heat treatment furnace. , 1050°C or less. Cooling after heating may be done by standing or quenching depending on the purpose of secondary quenching, but it is possible to prevent the formation of coarse carbides during cooling or to change the microstructure to a low-temperature transformed structure. Rapid cooling is preferred for reasons such as speeding up the austenite transformation.

二次焼入においては、850〜950℃に加熱後急冷す
る。二次焼入では、オーステナイト域に加熱後、急冷す
ることによりミクロ組織をマルテンサイト化することが
目的である。
In the secondary quenching, the material is heated to 850 to 950°C and then rapidly cooled. The purpose of secondary quenching is to change the microstructure to martensite by heating to an austenite region and then rapidly cooling.

850℃未満の加熱では、オーステナイト相への変態が
不充分であり、急冷後のミクロ組織が不均一となり靭性
劣化の原因となる。また、950℃を越えて加熱すると
、結晶粒が粗大化し、靭性劣化の原因となる。加熱後の
冷却はミクロ組織をマルテンサイト1JI織とするため
に、水冷あるいは油冷などの急冷が必要である。
Heating below 850° C. will result in insufficient transformation to the austenite phase, and the microstructure after quenching will become non-uniform, causing deterioration in toughness. Furthermore, heating above 950° C. causes coarse grains and causes deterioration of toughness. For cooling after heating, rapid cooling such as water cooling or oil cooling is required in order to make the microstructure into a martensitic 1JI weave.

上記二回焼入の後、550〜700℃にて焼戻処理を施
す。焼戻処理の目的は、二次焼入によって得られたマル
テンサイト組織を靭性にすぐれる焼戻マルテンサイト組
織に変化させるとともに、所望の強度に調整することで
ある。550℃未満の焼戻では焼戻脆性の恐れがあり靭
性劣化の原因となる。
After the above-mentioned double quenching, a tempering treatment is performed at 550 to 700°C. The purpose of the tempering treatment is to change the martensitic structure obtained by the secondary quenching into a tempered martensitic structure with excellent toughness, and to adjust the strength to a desired level. Tempering at a temperature lower than 550°C may cause temper brittleness and cause deterioration of toughness.

また、700℃を越える焼戻では、オーステナイト相へ
の変態が起こり、靭性劣化の原因となるつしたがって、
焼戻温度は550〜700℃の箱面と定め、この範囲内
で所望の強度に応じて温度を調整する。
Furthermore, when tempering exceeds 700°C, transformation to an austenite phase occurs, which causes toughness deterioration.
The tempering temperature is set at a box surface of 550 to 700°C, and the temperature is adjusted within this range according to the desired strength.

なお、この発明における低合金鋼とは、素材径60〜1
60sunの大径チェーンに対して、十分な焼入性を有
していることが必要であり、具体的には下記の化学組成
を存している、:、とが好ま(−い。
In addition, the low alloy steel in this invention is a material with a diameter of 60 to 1
It is necessary to have sufficient hardenability for a large diameter chain of 60 sun, and specifically, it is preferable to have the following chemical composition.

C:0.10〜0.30%、  Si:0.05〜0.
50%、Mn:0.50〜2.50%、Sol、AQ+
0.010〜0.060%、N :0.003〜0.0
20%を含み、さらに、Cr:0.5〜3.0%、Mo
:0.05〜0.70%、Ni:0.5〜3.0%、C
u:0.10〜0.50%、V:O,O,:+〜0.2
0%、Nb:O,01〜0.10%、Ti:0.005
〜0.05%、Ca:0.010%以下、REM:0.
10%以下を1種または2種以上含有し、 残部Feおよび不可避不純物。
C: 0.10-0.30%, Si: 0.05-0.
50%, Mn: 0.50-2.50%, Sol, AQ+
0.010-0.060%, N: 0.003-0.0
20%, and further contains Cr: 0.5-3.0%, Mo
:0.05-0.70%, Ni:0.5-3.0%, C
u: 0.10 to 0.50%, V: O, O,: + to 0.2
0%, Nb:O, 01-0.10%, Ti: 0.005
~0.05%, Ca: 0.010% or less, REM: 0.
Contains 10% or less of one or more types, with the remainder being Fe and unavoidable impurities.

次いで、この発明を実施例により比較例と対比しながら
さらに具体的に説明する。
Next, the present invention will be explained in more detail through Examples and in comparison with Comparative Examples.

実施例 まず、3 トン電気炉を用いて、第1表に示される如き
成分組成の鋼を溶製した後、熱間圧延にて直径85mm
の丸棒鋼を得た。A綱は、引張強度70 kgf/mm
”級、Btailハ、引張強度90kgf/IIIT@
z級ノモノである。またC鋼は、JIS G3105に
規定されるSR1ニア0相当鋼である。次に、これを切
断後、熱間曲げ加工によってチェーンに成形し、フラッ
シュバット溶接を施して整理した。そして、溶接部のパ
リ取りを行ってからスタンドを装入した0次いで、第2
表に示される如き熱処理を施してスタッド付きチェーン
を製造した。
Example First, steel having the composition shown in Table 1 was melted using a 3-ton electric furnace, and then hot-rolled to a diameter of 85 mm.
A round steel bar was obtained. A rope has a tensile strength of 70 kgf/mm
” class, Btail, tensile strength 90kgf/IIIT@
It is a Z-class thing. Further, C steel is a steel equivalent to SR1 near 0 specified in JIS G3105. Next, this was cut, formed into a chain by hot bending, and then flash butt welded and organized. Then, after deburring the welded part, the stand was inserted into the 0th and 2nd parts.
A studded chain was manufactured by applying heat treatment as shown in the table.

このようにして製造された各チェーンから次に示す試験
片、 引張試験片:直径(D)が14mmで、標点距離がが5
Dのものを母材部から COO試験片: B55762に準拠した25” X5
0″のものをフラッシュバット溶接部 から それぞれ採取して試験に供した。
The following test pieces were obtained from each chain manufactured in this way: Tensile test pieces: Diameter (D) was 14 mm and gauge length was 5.
COO test piece from the base metal part of D: 25” x 5 according to B55762
0'' was taken from the flash butt weld and used for testing.

COD試験は、A綱およびC鋼は一30℃、B鋼は一2
0℃にて実施した。得られた結果を第3表にまとめて示
す。
The COD test was carried out at -30°C for A and C steels, and -22°C for B steels.
It was carried out at 0°C. The results obtained are summarized in Table 3.

まず、引張強度95 kgf/++m”に調整したB鋼
についてみると、通常の一回焼入、焼戻の場合(B1)
では、COO値が0.06mmと低いのに対し、この発
明にかかる方法(83〜B5.87〜B8)ではCOO
値が0.15〜0.19mmと顕著に改善されており、
その効果が確認された。
First, if we look at steel B which has been adjusted to a tensile strength of 95 kgf/++m, we will see that in the case of normal single quenching and tempering (B1)
, the COO value is as low as 0.06 mm, whereas the method according to this invention (83-B5.87-B8) has a COO value as low as 0.06 mm.
The value has been significantly improved to 0.15-0.19mm,
The effect was confirmed.

なお、第1図および第2図に、B鋼について、それぞれ
COO値に及ぼす一次焼入加熱温度および二次焼入加熱
温度の影響を示す。−次焼入加熱温度が900℃未満お
よび二次焼入加熱温度が950℃を越える場合にはCO
O値が低下している。A鋼についても同様の傾向が見ら
れた。
Note that FIGS. 1 and 2 show the influence of the primary quenching heating temperature and the secondary quenching heating temperature on the COO value, respectively, for Steel B. - When the secondary quenching heating temperature is less than 900℃ and the secondary quenching heating temperature exceeds 950℃, CO
O value is decreasing. A similar tendency was observed for A steel.

次に、引張強度75 kgf/ll1m”に調整したA
鋼についても、同様に、通常の一回焼入、焼戻(A1)
では、”COO値が0.07mmと低いのに対しこの発
明にかかる方法(A2)ではCOO値が0.18n+w
と顕著に改善されており、その効果が確認された。
Next, A was adjusted to have a tensile strength of 75 kgf/1m
Similarly, for steel, normal one-time quenching and tempering (A1)
``The COO value is as low as 0.07 mm, whereas in the method (A2) according to this invention, the COO value is 0.18n+w.''
This was a significant improvement, and its effectiveness was confirmed.

なお、C鋼については、焼入性が充分ではなく通常の一
回焼入、焼戻(CI)でのCOO値は0.04mmと低
い。
Note that C steel does not have sufficient hardenability, and the COO value after normal single quenching and tempering (CI) is as low as 0.04 mm.

第1表 第2表 *:本発明の範囲より外れていることを示す。Table 1 Table 2 *: Indicates that it is outside the scope of the present invention.

第3表 (発明の効果) 上述のように、本発明によれば高強度と低温下において
も発揮されるすぐれたフラッシュバット溶接部の破壊靭
性とを兼ね備えた極めて安全性の高い大径チェーンの製
造が可能となり苛酷な条件下での資源開発等に極めてを
用な役割を果たすことが期待できるなど、工業上有用な
効果がもたらされるのである。
Table 3 (Effects of the Invention) As described above, the present invention provides an extremely safe large-diameter chain that has both high strength and excellent fracture toughness of flash butt welds that are exhibited even at low temperatures. It can be manufactured and is expected to play an extremely useful role in resource development under harsh conditions, resulting in industrially useful effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、B鋼について、それぞれCOO
値に及ぼす一次焼入加熱温度および二次焼入加熱温度の
影響を示すグラフである。
Figures 1 and 2 are COO for steel B, respectively.
It is a graph showing the influence of primary quenching heating temperature and secondary quenching heating temperature on the value.

Claims (1)

【特許請求の範囲】 低合金鋼からなる棒鋼を製鎖後、 一次焼入:900〜1050℃に加熱後冷却二次焼入:
850〜950℃に加熱後急冷 の二回焼入の後に、550〜700℃にて、焼戻処理を
施すことを特徴とする高破壊靭性チェーンの製造方法。
[Claims] After chain-making a steel bar made of low-alloy steel, primary quenching: heating to 900-1050°C followed by cooling and secondary quenching:
A method for producing a chain with high fracture toughness, which comprises quenching twice by heating to 850 to 950°C and then rapidly cooling, followed by tempering at 550 to 700°C.
JP4287686A 1986-02-28 1986-02-28 Production of high rupture toughness chain Pending JPS62202026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4287686A JPS62202026A (en) 1986-02-28 1986-02-28 Production of high rupture toughness chain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4287686A JPS62202026A (en) 1986-02-28 1986-02-28 Production of high rupture toughness chain

Publications (1)

Publication Number Publication Date
JPS62202026A true JPS62202026A (en) 1987-09-05

Family

ID=12648243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4287686A Pending JPS62202026A (en) 1986-02-28 1986-02-28 Production of high rupture toughness chain

Country Status (1)

Country Link
JP (1) JPS62202026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072836A1 (en) 2005-12-20 2007-06-28 Kito Corporation Link chain excellent in low-temperature toughness and method for heat treatment thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072836A1 (en) 2005-12-20 2007-06-28 Kito Corporation Link chain excellent in low-temperature toughness and method for heat treatment thereof
EP1964935A1 (en) * 2005-12-20 2008-09-03 Kito Corporation Link chain excellent in low-temperature toughness and method for heat treatment thereof
EP1964935A4 (en) * 2005-12-20 2010-06-16 Kito Kk Link chain excellent in low-temperature toughness and method for heat treatment thereof
JP4859844B2 (en) * 2005-12-20 2012-01-25 株式会社キトー A heat treatment method for link chains with excellent low-temperature toughness

Similar Documents

Publication Publication Date Title
US11377704B2 (en) High performance material for coiled tubing applications and the method of producing the same
JP5787492B2 (en) Steel pipe manufacturing method
CN104805378B (en) A kind of high tough Ultra-low carbon medium managese steel cut deal and preparation method thereof
JPS61127815A (en) Production of high arrest steel containing ni
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JPS6267113A (en) Production of heat resisting steel having excellent creep rupture resistance characteristic
JP4392376B2 (en) Method for producing composite roll for hot rolling
JPS62202026A (en) Production of high rupture toughness chain
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JPS62202052A (en) Steel material for chain having high strength and high fracture toughness
KR100448623B1 (en) Method for manufacturing high Si added medium carbon wire rod to reduce decarburization depth of its surface
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JPH0219175B2 (en)
JPH0211654B2 (en)
JPS62202053A (en) Steel material for chain having low yield ratio
JP6006620B2 (en) Steel wire and method for manufacturing steel wire
JPH07102321A (en) Production of non-heattreated type resistance welded oil well pipe having tensile strength of 800mpa and above
JPS583777B2 (en) Manufacturing method for strong long chains
JPH0967620A (en) Production of heat treated type high tensile strength steel plate excellent in brittle crack arrest property
JPH06235024A (en) Production of high strength deformed steel wire
JPH0465884B2 (en)
JPS63203752A (en) Steel material for chain having high strength and low yield ratio
KR20110120528A (en) Fire-resistant steel for construction having low yield ratio and method for production thereof
JPS583776B2 (en) Manufacturing method for strong long chains
JPS6112820A (en) Manufacture of low-alloy nickel steel having high strength and toughness