JPS62201968A - Organic memory element - Google Patents

Organic memory element

Info

Publication number
JPS62201968A
JPS62201968A JP4408086A JP4408086A JPS62201968A JP S62201968 A JPS62201968 A JP S62201968A JP 4408086 A JP4408086 A JP 4408086A JP 4408086 A JP4408086 A JP 4408086A JP S62201968 A JPS62201968 A JP S62201968A
Authority
JP
Japan
Prior art keywords
group
formula
electrode
memory element
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4408086A
Other languages
Japanese (ja)
Inventor
Masao Morita
雅夫 森田
Takeshi Sukegawa
助川 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4408086A priority Critical patent/JPS62201968A/en
Publication of JPS62201968A publication Critical patent/JPS62201968A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Abstract

PURPOSE:To provide an org. memory element which has an excellent memory density and allows quick access, containing an electrolyte soln. and electrodes modified by a metal complex (contg. a high-molecular material) wherein a photoisomerizable org. material is used as a ligand molecule. CONSTITUTION:An electrode, an opposing electrode, a reference electrode and an electrolytic soln. are modified by using a metal complex wherein at least one photoisomerizable org. material is used as a ligand molecule (e.g., compds. of formulas I and II, wherein azpy is a group of formula III and bpy is a group of formula IV) or a high-molecular compd. (e.g., polyvinylpyridine) contg. said metal complex. A memory element is formed by using the resulting modified electrode, opposing electrode, reference electrode and electrolytic soln. When the memory element is irradiated with light, the ligand molecules of the org. materials of formulas III, IV, etc., are reversibly photoisomerized and changes in the coordination number of metals are accelerated to thereby change the redox potential of the org. metal complex. Thus, the input and output of information can be made in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 不発f3J4は、高速、高密度な有機記憶素子に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The dud f3J4 relates to high speed, high density organic memory elements.

〔従来の技術〕[Conventional technology]

従来、記憶素子はシリコン基&全レジスト技術、イオン
打込み技術、エツチング技術、蒸着技術などで加工し、
微i’z−子デノ(イスを形成することにより製造され
てきた。近年その微細化は1すます進み、最小パターン
寸法が1μm以下という素子も開発されつつある。しか
し、パターン寸法が微細化されるに従い加工方法も複雑
化し、新しい加工方法の採用、工程数の増加、ひいては
製造コストの増加金招いている。
Conventionally, memory elements are processed using silicon-based and all-resist technology, ion implantation technology, etching technology, vapor deposition technology, etc.
It has been manufactured by forming a microscopic device.In recent years, the miniaturization has progressed even further, and devices with a minimum pattern size of 1 μm or less are being developed. As the technology becomes more sophisticated, processing methods become more complex, leading to the adoption of new processing methods, an increase in the number of steps, and an increase in manufacturing costs.

更に、シリコンを基板とした素子においては、細線化に
よる抵抗の増大とその熱処理の問題、更には非線形現象
や量子効果の発現など本質的に解決不可能な問題が生じ
、その微細化、高密度化には限界があると考えられてい
る。
Furthermore, in devices using silicon as a substrate, there are essentially unsolvable problems such as an increase in resistance due to thinning of the wires, problems with heat treatment, and the occurrence of nonlinear phenomena and quantum effects. It is believed that there are limits to

この限界を打破する技術として、有機材料金機能素子と
する研究が進められている。すなわち、無機材料におい
ては、数千あるいは数万の原子が集合してはじめて電子
デバイスとしての機能が発現するのに対し、有機材料で
は、分子1つ1つが機能するいわゆる分子デバイスが期
待できるからである。
As a technology to break through this limit, research is underway into organic material gold functional elements. In other words, in inorganic materials, the function as an electronic device is expressed only when thousands or tens of thousands of atoms come together, whereas with organic materials, so-called molecular devices in which each molecule functions can be expected. be.

例えば、IBMのフリードリツヒやI・−ラーらは、固
体媒体中の有機分子の不均一の広がt)全持つ吸収体に
単色性の良いレーザー元全照射すると、吸収スペクトル
に鋭い(狭い広がりを持つ)ホールがあく、いわゆる光
化学ホールバーニング(PHB)現象を見出し、それを
分光学的に検出することにより、波長多重の超高密度記
憶素子として使用できること全報告している( A。
For example, Friedrich and I.-Ler of IBM et al. have shown that when a fully monochromatic laser beam is irradiated onto an absorber that has a nonuniform spread of organic molecules in a solid medium, the absorption spectrum exhibits a sharp (narrow broadening). We have discovered the so-called photochemical hole burning (PHB) phenomenon, in which holes are opened, and have reported that by spectroscopically detecting this phenomenon, it can be used as a wavelength multiplexing ultra-high density storage element (A.

R,グツイエレツツ(Gutuierrez ) 、J
、  フリードリツヒ(Fr1earich )、D、
  ハーラー(Haarer)及びH,ウォルフラム(
WoMrum )、IBM  ジャーナル オプ リサ
ーチ アンド デベロップメント(よりM Res、 
Dsvelop、 ) 第26巻、第198頁(198
2年)〕。しかし、PHB素子は、極低温でしか作動せ
ず昇温により情報が揮発する、曹込み、読み出しの機構
が複雑高度であるなどの大容量記憶には向かない問題点
を持っている。
R. Gutuierrez, J.
, Friedrich, D.
Haarer and H. Wolfram (
WoMrum), IBM Journal Op Research and Development (M Res,
Dsvelop, ) Volume 26, Page 198 (198
2 years)]. However, PHB elements have problems that make them unsuitable for large-capacity storage, such as they operate only at extremely low temperatures and the information evaporates when the temperature rises, and the mechanisms for soaking and reading are complex and sophisticated.

また、アメリカ海軍研究所のカーターらは、分子が外部
からの刺激に応答して可逆的にその構造金髪化すること
全利用し、スイッチ素子、あるいは記憶素子として使用
できる可能性を示1愛シた〔ニューヨーク市、マーセル
 デツカ−(Marael Dekker )  社、
1982年発行、F、 L。
In addition, Carter et al. at the U.S. Naval Research Laboratory have demonstrated the possibility of using molecules as switching devices or memory devices by exploiting the fact that molecules reversibly change their structure to blonde in response to external stimuli. [New York City, Marael Dekker Co., Ltd.]
Published in 1982, F, L.

カーター(Carter )著、モレキs−5−工Vク
トロニツク デバイセス(Mo1ecu1ar E’1
ectro−niODevices )  ) 。更に
、マりl’7−ラハ、J4期的井戸型ポテンシャルを持
つ1次元有機@体化合物における電子雲の重なりを外部
刺故により変化させ、その導電性金スイッチしよりとす
る考えを提出している(、T、H,マクレアー(Moa
lear )及び、T 、 M、  ウエールング(W
ehrung)、1981年日本応用物理学会技術講演
会阿演賛旨集(IEEE −Japan 、 Soc、
 Appl Phys、 Meeting。
Carter, Molecular E'1
electro-niODevices) ). Furthermore, we proposed the idea of changing the overlap of electron clouds in a one-dimensional organic @-body compound with a well-type potential by an external stimulus, and making the conductive gold switch stronger. (, T. H., Moa
lear) and T, M, Wellung (W
ehrung), 1981 Japanese Society of Applied Physics Technical Conference Abstracts (IEEE-Japan, Soc,
Appl Phys, Meeting.

Digest of Tech、Papars、 ) 
 82頁〕。しかし、これらの分子デバイスt−実yl
させるために必をな分子合成技術、分子配f1L技術、
分子とのインターフェイスなどについては、−切明らか
ではない0 これに対し、ハースらは、有機金属錯体が元照射により
その配位状態が変化することを利用し、これを記憶素子
として使用することを提案している〔o、ハース(Ba
as ) M、  クリエンス(Kr1ans )及び
J、()、  グオス(Vos)、ジャーナル オブ 
ジ アメリカン ケミカル ンサイエテイ(J、Am、
 Chem、 Boa、 ) 、第103巻、第131
8頁(1981年)〕。しかし、金属に配位した有機化
合物を脱離させるためには、かなりの露光量が必要であ
り、また、一度脱離した配位分子は再び配位できないた
め、固定メモリーとしてしか使用できなかった。
Digest of Tech, Papers, )
82 pages]. However, these molecular devices t-real
In order to achieve this, molecular synthesis technology, molecular arrangement f1L technology,
Regarding interfaces with molecules, etc., it is not clear. On the other hand, Haas et al. have proposed using organometallic complexes as memory elements by taking advantage of the fact that their coordination state changes when irradiated. Proposing [o, Haas (Ba
as) M, Kr1ans and J, (), Vos, Journal of
The American Chemical Society (J, Am,
Chem, Boa, ), Volume 103, No. 131
8 pages (1981)]. However, a considerable amount of light exposure is required to detach the organic compound coordinated with the metal, and once the coordination molecule is detached, it cannot be coordinated again, so it can only be used as a fixed memory. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、これらの欠点を解消するためになされたもの
であり、その目的は、有機材料の分子レベルでの可逆的
な構造変化を利用した、誉替え可能記憶素子を提供する
ことにある。
The present invention has been made to eliminate these drawbacks, and its purpose is to provide a replaceable memory element that utilizes reversible structural changes at the molecular level of organic materials.

〔問題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、本発明はV機記憶素子に関するも
のであって、光異性化する有機材料金配位分子として少
なくとも1つ持つ金M錯体あるいは、該金槁錯体を含む
高分子化合物で修飾された電極、対向!極、参照電極及
び電解質溶液金含有していることを特徴とする0すなわ
ち、ある電極に選択的に光照射(−1その表面の有機金
属錯体における配位分子の構造全変化させ、金属の配位
数を変えることにより、光照射した電極上の有機金属錯
体の酸化還元電位が照射前に比べ変化することを利用し
、記憶素子とするものである。本発明では、配位分子の
光異性化が配位構造T化奮促進するため光照射による脱
離に比べ極に〉て速く、また酸化還元電位の測定も極め
て短時間で行えるため、情報の入出力が短時間で答易に
行える。史に、光異性化が可逆反応であるた、め、逆反
比金起こさ゛せて、錯体の配位数金兄の状態に戻すこと
ができ、情報の誉替えが可能である。すなわち、本発明
では、可逆釣元異性化【行う配泣分子會用いることによ
り、高速度の優込みが可能となジ、また誉替え可能記録
素子が実現できた。
To summarize the present invention, the present invention relates to a V-mechanical memory element, which is a photoisomerizable organic material having at least one gold-M complex as a gold coordination molecule, or a polymer compound containing the gold-M complex. Qualified electrodes, facing! Electrode, reference electrode, and electrolyte solution characterized by containing gold 0 In other words, a certain electrode is selectively irradiated with light (-1 The structure of the coordination molecules in the organometallic complex on its surface changes completely, and the coordination of the metal By changing the order, the redox potential of the organometallic complex on the irradiated electrode changes compared to before irradiation, which is used as a memory element.In the present invention, the photoisomerism of the coordination molecule is Since desorption promotes the activation of the coordination structure T, it is much faster than desorption by light irradiation, and redox potential can be measured in an extremely short time, making it possible to input and output information in a short time and with ease. Historically, since photoisomerization is a reversible reaction, it is possible to return the complex to the state of the coordination number by causing a reverse reaction, and it is possible to replace the information. In the present invention, by using a molecular association that performs reversible isomerization, it has been possible to realize a recording element that is capable of high-speed processing and that is also replaceable.

本発明の有機記憶素子は上記金縞錯体會含有する1!極
が、互いに絶縁された複数個の電極全配列したものが好
ましい。
The organic memory element of the present invention contains 1! Preferably, the electrodes are a complete array of a plurality of electrodes that are insulated from each other.

配位分子である有機材料としては、光異性化して錯体の
配位数が変化するものであれば何でもよいが、好ましく
は下記一般式1slr、It:(式中R,及びR,は、
水素、ハロゲン、アルキル基、アルコキシル基、水酸基
、芳香族基、及びこれらの誘導体よりなる群から選ばれ
た1柚を示し、互いに同じでも異なっていてもよい)で
示される材料がよい。式Is  n、iのハロゲンとし
てはフッ素、塩素、臭素、ヨウ素が挙けられる。アルキ
ル基としては、メチル基、エチル基、グロビル基、ブチ
ル基などと、これらの誘導体などが挙けられる。アルコ
キシル基としては、メトキシ基、エトキシ基、プロポキ
シ基、ブトキシ基などとこれらの誘導体などが挙げら基 れる。芳香族としては、フェニル基、ナフチルΔ 基、アントラセニル基などが挙げられる。これら置換基
金変えることにより、主に電極上に有機金属錯体*’e
形成する際の溶媒との相溶性、電極との密着性、使用時
における安定性など全最適にすることができる。
The organic material that is the coordination molecule may be any material as long as it can be photoisomerized to change the coordination number of the complex, but preferably has the following general formula 1slr, It: (where R and R are
Preferred materials are hydrogen, halogen, alkyl groups, alkoxyl groups, hydroxyl groups, aromatic groups, and derivatives thereof (which may be the same or different). Halogens of formula Is n,i include fluorine, chlorine, bromine, and iodine. Examples of the alkyl group include methyl group, ethyl group, globyl group, butyl group, and derivatives thereof. Examples of the alkoxyl group include methoxy, ethoxy, propoxy, butoxy, and derivatives thereof. Examples of the aromatic group include a phenyl group, a naphthyl Δ group, an anthracenyl group, and the like. By changing these substitution funds, organometallic complexes are mainly formed on the electrode.
Compatibility with solvents during formation, adhesion with electrodes, and stability during use can all be optimized.

また、錯体を形成する元素としては、鉄、ルテニウム、
オスミウム、コバルト、クロム、銅、マンガン、ニッケ
ル、鉛、白金、すすなどが挙けられる。
In addition, elements that form complexes include iron, ruthenium,
Examples include osmium, cobalt, chromium, copper, manganese, nickel, lead, platinum, and soot.

光異性化を起こす配位分子としては、例えば、などが挙
げられる。
Examples of coordination molecules that cause photoisomerization include the following.

金属錯体kffむ高分子化合物の例としては、ナフィオ
ン(NafiOn、デュポン社製)、ポリビニルピリジ
ン、スルホン化ポリスチレンなどの高分子を解質と金属
錯体の混合物あるいは、金属錯体を含む単量体それ自体
の重合体又は該単量体とビニルピリジン、スルホン化ス
チレンなどとの共1合体が挙げられる。
Examples of polymer compounds containing metal complexes include mixtures of polymers such as NafiOn (manufactured by DuPont), polyvinylpyridine, and sulfonated polystyrene with metal complexes, or monomers themselves containing metal complexes. or a comonomer of the monomer with vinylpyridine, sulfonated styrene, etc.

電解重合金起こす配位分子としては、例えば、CH2=
CH ジビニルポルフィリン などが挙げられる。
Examples of coordination molecules caused by electrolytic heavy alloys include CH2=
Examples include CH divinylporphyrin.

配位分子としては、例えば、 (C6H5)!P%  (p−CHsCsHa)sPs
 (Cabs)sAθ、(C8H5)38b。
Examples of coordination molecules include (C6H5)! P% (p-CHsCsHa)sPs
(Cabs)sAθ, (C8H5)38b.

(C4Hs )!P% (C6H5)zPcH3、(C
sHs)zAacHzA8(CaHs)z、(CsHs
 )zPcミCP(C5Hs )z、(C5Hs )z
P (CHz ) nP(C5Hs )z (n=1−
9)、などが挙げられる。
(C4Hs)! P% (C6H5)zPcH3, (C
sHs)zAacHzA8(CaHs)z, (CsHs
)zPcmiCP(C5Hs)z, (C5Hs)z
P (CHz) nP(C5Hs)z (n=1-
9), etc.

また、金属錯体の対イオンとしては、例えば、バークロ
レートイオン、67フ化リンイオン、4フツ化はつ累イ
オン等が挙げられる。
Further, examples of the counter ion of the metal complex include barchlorate ion, 67 fluoride phosphorus ion, tetrafluoride fluoride ion, and the like.

本発明に使用する複数の電極配列は、例えば以下の方法
により容易に作製できるが、基板に同様の導を性のパタ
ーンが形成できれば、他の方法音用いても良い。すなわ
ち、石英基板あるいは表面を酸化したシリコン基&など
の絶縁基板上に、白金、金、アルミニウムなどで配線パ
ターン金リングラフィ技術により作製し、各配線パター
ンの電極接続部分に白金等の電極を形成して各々配線と
接続する。その上に窒化ケイ素などで絶縁層を形成した
後、該電極上にスルーホール全役け、基板上に複数の電
極を形成する。
The plurality of electrode arrays used in the present invention can be easily produced, for example, by the following method, but other methods may be used as long as a pattern with similar conductivity can be formed on the substrate. That is, on an insulating substrate such as a quartz substrate or a silicon-based substrate with an oxidized surface, a wiring pattern of platinum, gold, aluminum, etc. is created using gold phosphorography technology, and an electrode of platinum, etc. is formed at the electrode connection part of each wiring pattern. and connect each wire. After forming an insulating layer of silicon nitride or the like thereon, all through holes are formed on the electrode, and a plurality of electrodes are formed on the substrate.

各電極の表面全光異性化する有機材料を配位分子として
少なくとも1つ持つ金属錯体あるいは該金属錯体を含む
高分子化合物で修飾するには、例えば以下の方法がある
。すなわち、電極がある基板面全体を該有機金属材料で
被覆したのち、レジストなどを用いて、電極上のみに該
有機金属材料?残すように加工してやれば良い0あるい
は、光異性化する有機材料と電解重合が可能な有機材料
全配位分子として少なくともそれぞれ1つ待つ金属錯体
を各電極上で!解重合させ、各電極を修飾することもで
きる。
For example, the following method can be used to modify the organic material that undergoes total photoisomerization on the surface of each electrode with a metal complex having at least one coordinating molecule or a polymer compound containing the metal complex. That is, after covering the entire surface of the substrate where the electrodes are located with the organic metal material, a resist or the like is used to coat the organic metal material only on the electrodes. You can process it so that it remains 0 or an organic material that photoisomerizes and an organic material that can be electrolytically polymerized At least one metal complex awaits each as a total coordination molecule on each electrode! Each electrode can also be modified by depolymerization.

酸化還元の電位は、電解質の入った浴媒に該記憶素子、
白金などの対向電極、飽和カロメル電極などの参照電極
をいれ、ポテンシオスタットなどにより各電極上の金属
錯体の酸化若しくは還元反応の電位全測定することによ
り行う。
The oxidation-reduction potential is determined by applying the memory element to a bath medium containing an electrolyte.
This is carried out by inserting a counter electrode such as platinum or a reference electrode such as a saturated calomel electrode, and measuring the total potential of the oxidation or reduction reaction of the metal complex on each electrode using a potentiostat or the like.

あるいは、次の方法も可能である。すなわち、該電極に
比べ修飾した有機金属錯体の酸化還元電位が高い(酸化
反応)場合にはその酸化電位以下の、低い(還元反応)
場合にはその還元電位以上の酸化あるいは還元電位金持
つ金属錯体を電解質溶液中に予め添加しておく。各電極
上の該金属錯体の異性化状態は、電極の電位音読金属錯
体の光異性化前後の酸化若しくは還元電位の中間の電位
にした時の電流の有無によって検出できる。
Alternatively, the following method is also possible. In other words, if the modified organometallic complex has a higher redox potential (oxidation reaction) than the electrode, the redox potential is lower than that oxidation potential (reduction reaction).
In this case, a metal complex having an oxidation or reduction potential higher than the reduction potential of gold is added in advance to the electrolyte solution. The isomerization state of the metal complex on each electrode can be detected by reading the potential of the electrode and the presence or absence of current when the potential is set to an intermediate potential between the oxidation or reduction potentials before and after photoisomerization of the metal complex.

これらの電位測定時に使用する電解質としては、アルカ
リ金属イオンや第4級アルキルアンモニウム塩からなる
カチオンとハロゲンイオン、硫酸イオン、過塩素酸イオ
ンなどのアニオンからなる塩を用いることができる。代
燥的なものとしては、テトラエチルアンモニウムバーク
ロレート、テトラn−プチルアンモニウムパークロレー
ト、テトラエチルアンモニウムテトラフルオロボロン、
テトラn−ブチルアンモニウムテトラフルオロボロンな
どがあげられる。また、溶媒としては、を解質ゲ良く溶
解し、溶解した電′M質全解離できるだけの誘電率金持
っていればどのようなものでもよく、例えば、水、無水
酢酸、メタノール、テトラヒドロフラン、プロピレンカ
ーボネート、ニトロメタン、アセトニトリル、ジメチル
ホルムアミド、ジメチルスルホキシド、ヘキサメチルホ
スホトリアミドなどが挙けられる。
As the electrolyte used in these potential measurements, a salt consisting of a cation such as an alkali metal ion or a quaternary alkyl ammonium salt and an anion such as a halogen ion, a sulfate ion, or a perchlorate ion can be used. Alternatives include tetraethylammonium perchlorate, tetran-butylammonium perchlorate, tetraethylammonium tetrafluoroboron,
Examples include tetra n-butylammonium and tetrafluoroboron. The solvent may be any solvent as long as it has enough dielectric constant to dissolve the electrolyte and completely dissociate the dissolved electrolyte, such as water, acetic anhydride, methanol, tetrahydrofuran, and propylene. Carbonate, nitromethane, acetonitrile, dimethylformamide, dimethyl sulfoxide, hexamethylphosphotriamide, and the like.

一方、情報の書込み、誉替えの際の光源としては、配位
分子の有機材料に光異性化を起こさせるものであればい
ずれでもよく、例えば、超高圧水銀灯、キセノン灯、ア
ルゴンレーザー、色素レーザーなどが挙けられる。また
、元の波長上かえることにエフ、誉込みと省替え金独立
に制御することができる。
On the other hand, as a light source for writing information or changing the name, any light source that causes photoisomerization of the organic material of the coordination molecule may be used, such as an ultra-high pressure mercury lamp, a xenon lamp, an argon laser, or a dye laser. Examples include. In addition, it can be independently controlled to change back to the original wavelength.

〔実施例〕〔Example〕

以下、本発明全実施例により更に具体的に説明するが、
本発明はこれらT節制に限足妬れlい0 ピリジン9.4 r 金ジメチルホルムアミド5〇−に
溶解し、塩化リチウム85■會加えて8時間還流した。
Hereinafter, the present invention will be explained in more detail with reference to all examples,
The present invention is limited to these T-sparing methods.The solution was dissolved in 9.4 liters of pyridine and 50 grams of gold dimethylformamide, and 85 grams of lithium chloride was added thereto, followed by refluxing for 8 hours.

その後、アセトンを250−加え、0℃で24時間放置
した。得られた結晶金フィルタで濾過した後、水、ジエ
チルエーテルで洗浄した。次に、該結晶2.62と5,
5′−アゾピリジン9f全水:エタノール=1=1の混
合#謹500−に溶解させ、窒素ガス金20分間吹込ん
だ後、窒素気流中で工5時間還流した。その後、過塩素
酸リチウム會過剰に添加し、赤橙色の結晶1.8を全書
た。
Thereafter, 250 °C of acetone was added and the mixture was left at 0°C for 24 hours. After filtration with the obtained crystalline gold filter, it was washed with water and diethyl ether. Next, the crystals 2.62 and 5,
5'-Azopyridine 9F was dissolved in a mixture of total water and ethanol (1=1) #500, and after blowing nitrogen gas into it for 20 minutes, it was refluxed in a nitrogen stream for 5 hours. Then, an excess of lithium perchlorate was added to obtain 1.8% of reddish-orange crystals.

製造例2 三塩化ルテニウムの三水和物7.8 tと5,3−アゾ
ピリジン11riジメチルホルムアミド5〇−に溶解し
、塩化リチウム85”vffi加えて8118間還流し
た。その後、アセトンi250m加え、0℃で24時間
放置した。得られた結晶をフィルタで濾過した後、水、
ジエチルエーテルで洗浄した。次に、該結晶2.3tと
3,3′−アゾピリジン9tf水:エタノール=1=1
の混合溶媒300m7!に溶解させ、窒素ガス全20分
間吹込んだ後、窒素気流中で五5時間還流した。その後
、過塩素酸リチウム全過剰に添加し、赤橙色の結晶1.
9 f ’!l−得た。
Production Example 2 Ruthenium trichloride trihydrate (7.8 t) was dissolved in 11 ri of 5,3-azopyridine and 50 - of dimethylformamide, 85"vffi of lithium chloride was added thereto, and the mixture was refluxed for 8118 min. Then, 250 ml of acetone was added and It was left to stand for 24 hours at ℃.The obtained crystals were filtered with water,
Washed with diethyl ether. Next, 2.3t of the crystals and 9tf of 3,3'-azopyridine water:ethanol=1=1
300m7 of mixed solvent! After blowing in nitrogen gas for a total of 20 minutes, the mixture was refluxed in a nitrogen stream for 55 hours. Then, add lithium perchlorate in total excess to give red-orange crystals 1.
9 f'! l-obtained.

製造例3 製造例1において、三塩化ルテニウムの三水和物の代り
に三塩化オスミウムを用、いて同様の方法で合成全行っ
たところ、赤橙色の結晶が得られた。
Production Example 3 Synthesis was carried out in the same manner as in Production Example 1, except that osmium trichloride was used instead of ruthenium trichloride trihydrate, and red-orange crystals were obtained.

製造例4 製造例2において、三塩化ルテニウムの三水和物の代り
に三塩化オスミウムを用いて同様の方法で合成を行った
ところ、赤橙色の結晶が得られた。
Production Example 4 When synthesis was carried out in the same manner as in Production Example 2 using osmium trichloride instead of the trihydrate of ruthenium trichloride, red-orange crystals were obtained.

製造例5 三塩化ルテニウムの三水和物7.8 fと3,3−アゾ
ピリジン112をジメチルホルムアミド50―に溶解し
、塩化リチウムssW/金加えて8時間還流した。その
後、アセトン全250−加え、0℃で24時間放置した
。得られた結晶奮フィルタでr遇した後、水、ジエチル
エーテルで洗浄した。次に、該結晶2.3fとN−(4
−ピリジル)シンチアミド11全音::エタノール=1
:1の混合溶媒300ゴに溶解させ、窒素ガスt−20
分間吹込んだ後、窒素気流中で五5時間還流した。その
後、過塩素酸リチウム全過剰に添加し、赤橙色の結晶3
ff得た。
Production Example 5 Ruthenium trichloride trihydrate (7.8 f) and 3,3-azopyridine (112) were dissolved in dimethylformamide (50), lithium chloride ssW/gold was added thereto, and the mixture was refluxed for 8 hours. Thereafter, 250 ml of acetone was added, and the mixture was left at 0° C. for 24 hours. The obtained crystallization filter was filtered and washed with water and diethyl ether. Next, the crystal 2.3f and N-(4
-pyridyl) sinthiamide 11 whole tone:: ethanol = 1
:Dissolved in 300 g of mixed solvent of 1 and nitrogen gas t-20
After bubbling for a minute, the mixture was refluxed in a nitrogen stream for 55 hours. Then, add to the total excess of lithium perchlorate, red-orange crystals 3
I got ff.

製造例6 製造例5において、三塩化ルテニウムの三水和物の代り
に三塩化オスミウム全相いて同様の方法で合成全行った
ところ、赤橙色の結晶が得られた。
Production Example 6 When the synthesis was carried out in the same manner as in Production Example 5 except that osmium trichloride was used instead of the ruthenium trichloride trihydrate, red-orange crystals were obtained.

製造例7 三塩化ルテニウムの三水和物7.8F、2.2−ビピリ
ジン9.36 t 、塩化リチウムaJr金ジメチルホ
ルムアミド50−に溶解させ、8時間還流させた。その
後、アセ)yi250td加え、0℃で24時間放置し
た。得られ九結晶全フィルタで沢過した後、水、ジエチ
ルエーテルで洗浄した。次に、得られた結晶2−629
と1,2−ビス(ジフェニルホスフィノ)エチレン4.
42”7500mAの水に溶解させ、窒素ガス全20分
間吹込んだ後、窒素気流中で5.5時間還流した。
Production Example 7 Ruthenium trichloride trihydrate 7.8F, 2.2-bipyridine 9.36t, lithium chloride aJr gold dimethylformamide 50% were dissolved and refluxed for 8 hours. Thereafter, 250 td of ace)yi was added, and the mixture was left at 0° C. for 24 hours. The nine crystals obtained were filtered through a filter and washed with water and diethyl ether. Next, the obtained crystal 2-629
and 1,2-bis(diphenylphosphino)ethylene4.
42" was dissolved in water at 7500 mA, nitrogen gas was blown in for a total of 20 minutes, and then refluxed in a nitrogen stream for 5.5 hours.

その後、六フッ化りんアンモニウム會過剰に添加し、淡
黄色の結晶3fi得た。
Thereafter, an excessive amount of ammonium phosphorus hexafluoride was added to obtain pale yellow crystals 3fi.

製造例8 製造例1において、2.2’−ビピリジンの代りに4−
ビニル−2,2′−ビピリジンを用いて金属錯体會得た
。得られた金属錯体12とスルホン化スチレン1 ha
−トルエン100ゴに溶解シ、アゾビスブチロニトリル
50岬を加えて60℃で5時間かくはんした。得られた
浴放會メタノールに注ぎ赤役色ポリマーを得た。元素分
析より求めたスルホン化スチレンの共重合率は63モル
チであった。
Production Example 8 In Production Example 1, 2,2'-bipyridine was replaced with 4-
A metal complex was obtained using vinyl-2,2'-bipyridine. The obtained metal complex 12 and sulfonated styrene 1 ha
- 50 g of azobisbutyronitrile dissolved in 100 g of toluene was added and stirred at 60° C. for 5 hours. The resulting bath was poured into methanol to obtain a reddish color polymer. The copolymerization rate of sulfonated styrene determined by elemental analysis was 63 mol.

製造例9 衣面kl化したシリコン基板上に外部接続用の電極バッ
トと金の配線パターンで接続された白金のバット′(i
−直径1μm1  ピッチ2μmで2×100のマトリ
クス状に形成した。次に、各白金のバット及び金の配線
部分音シリコンの窒化膜で被覆した後、白金上の酸化シ
リコン金エツチングして白金金算出させた。該シリコン
基板全外部接続コネクタの付いた基板に接層し、コネク
タと11L極パツト金結線した後、白金部分紮除いて絶
縁皮膜で被覆してマトリクス状の白金!物音作表した。
Production Example 9 A platinum batt' (i
- Formed in a 2×100 matrix with a diameter of 1 μm and a pitch of 2 μm. Next, each platinum batt and the gold wiring partial were covered with a silicon nitride film, and then the silicon oxide on the platinum was etched to calculate platinum gold. The entire silicon substrate is attached to a substrate with an external connector, and after connecting the connector with the 11L pin gold wire, the platinum portion is removed and covered with an insulating film to form a matrix of platinum! I recorded the sounds.

実施例1〜8 製造例1〜4又は7で得られた結晶ケ(12%ナフィオ
ンのエタノール溶液に0.3モルチの濃度で溶解させ、
キャスティングにより製造例9で得られた電極基叛葡1
μm厚の金属錯体でそれぞれ被覆し、!他部分i残して
該金属錯体音エツチング除去することにより、修飾電極
全書た(実施例1〜4及び7)。また、製造例5及び6
で得られた結晶會アセトニトリルに0゜5モルチの濃度
で溶解させ、製造例9で得られた電極上に金属錯体it
解重合させることにエフ、修飾!極を得た(実施例5及
び6)。更に、製造例8で得られたポリマー全トルエン
に浴牌させ、キャスティングにより製造例9で得られた
電極基板金1μm厚の金属錯体ポリマーで被覆した(実
施例8)。
Examples 1 to 8 Crystals obtained in Production Examples 1 to 4 or 7 (dissolved in a 12% Nafion ethanol solution at a concentration of 0.3 molar,
Electrode substrate 1 obtained by casting in Production Example 9
Each coated with a μm thick metal complex! The entire modified electrode was prepared by etching away the metal complex leaving other parts (Examples 1 to 4 and 7). In addition, Production Examples 5 and 6
The crystalline mixture obtained in Example 9 was dissolved in acetonitrile at a concentration of 0.5 mol.
F, modification to depolymerize! Poles were obtained (Examples 5 and 6). Furthermore, the polymer obtained in Production Example 8 was bathed in all toluene, and the electrode substrate gold obtained in Production Example 9 was coated with the metal complex polymer having a thickness of 1 μm (Example 8).

これらi、Q、IMの過塩素酸テトラn−ブチルアンモ
ニウムのアセトニトリル溶液に浸漬し、白金金対向!極
、飽和カロメル電極全参照t!Mとして、錯体の酸化還
元電位全測定した。次に、修飾電極上の金属錯体に50
0Wのキセノンランプの元をレンズで絞9、波長400
nm以下の元を吸収するフィルタ全通して照射した後、
酸化還元電位を測定したところ、表1の結果かえられた
These i, Q, and IM were immersed in an acetonitrile solution of tetra-n-butylammonium perchlorate, and platinum and gold were faced! Pole, saturated calomel electrode full reference t! As M, the entire redox potential of the complex was measured. Next, the metal complex on the modified electrode was
At the source of the 0W xenon lamp, use a lens to set the aperture to 9 and the wavelength to 400.
After irradiating through the entire filter that absorbs elements below nm,
When the redox potential was measured, the results shown in Table 1 were different.

実施例? 実施例1〜8で得られた配位分子が光異性化している修
飾を極に、超高圧水銀灯の元を、波長400nm以上の
元金吸収するフィルタ全通して照射した後、実施例1〜
8と同様の方法で酸化還元電位全測定したところ、いず
れの錯体も表1と同様の結果が得られた。
Example? Taking advantage of the modification in which the coordination molecules obtained in Examples 1 to 8 are photoisomerized, the source of an ultra-high pressure mercury lamp was irradiated through the entire filter that absorbs the principal metal at a wavelength of 400 nm or more, and then Examples 1 to 8 were
When the redox potential was measured in the same manner as in Example 8, the same results as in Table 1 were obtained for all complexes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による有機記憶素子は有機
分子に元を照射したときの構造変化全記憶の原理として
いるため、記憶密度全大幅に向上できる。
As explained above, since the organic memory element according to the present invention is based on the principle of total memory of structural changes when organic molecules are irradiated with a source, the total memory density can be greatly improved.

また、構造変化には、可逆的な光異性化反応全利用して
いるため情報の誓書えが可能でるる。
In addition, since the structural change utilizes all reversible photoisomerization reactions, it is possible to record information.

更に、情報の読み出しには、電気化学的方法全利用して
いるため、非常に高速でアクセスできる0 以上のことは、記憶素子における高速、高密度化に顕著
な効果を示す。
Furthermore, since all electrochemical methods are used to read information, the fact that 0 or more can be accessed at extremely high speeds has a remarkable effect on increasing the speed and density of memory elements.

Claims (1)

【特許請求の範囲】 1、光異性化する有機材料を配位分子として少なくとも
1つ持つ金属錯体あるいは、該金属錯体を含む高分子化
合物で修飾された電極、対向電極、参照電極及び電解質
溶液を含有していることを特徴とする有機記憶素子。 2、該金属錯体を含有する電極が、互いに絶縁された複
数個の電極を配列したものである特許請求の範囲第1項
記載の有機記憶素子。 3、該光異性化する有機材料が、下記一般式:▲数式、
化学式、表等があります▼・・・〔 I 〕 (式中R_1及びR_2は、水素、ハロゲン、アルキル
基、アルコキシル基、水酸基、芳香族基、及びこれらの
誘導体よりなる群の中から選ばれた1種を示し、互いに
同じでも異なつていてもよい)で示される化合物である
特許請求の範囲第1項又は第2項記載の有機記憶素子。 4、該光異性化する有機材料が、下記一般式:▲数式、
化学式、表等があります▼・・・〔II〕 (式中R_1及びR_2は、水素、ハロゲン、アルキル
基、アルコキシル基、水酸基、芳香族基、及びこれらの
誘導体よりなる群の中から選ばれた1種を示し、互いに
同じでも異なつていてもよい。)で示される化合物であ
る特許請求の範囲第1項又は第2項記載の有機記憶素子
。 5、該光異性化する有機材料が、下記一般式:▲数式、
化学式、表等があります▼・・・〔III〕 (式中R_1及びR_2は、水素、ハロゲン、アルキル
基、アルコキシル基、水酸基、芳香族基、及びこれらの
誘導体よりなる群の中から選ばれた1種を示し、互いに
同じでも異なつていてもよい。)で示される化合物であ
る特許請求の範囲第1項又は第2項記載の有機記憶素子
。 6、該錯体を形成する元素が、鉄、ルテニウム、オスミ
ウム、コバルト、クロム、銅、マンガン、ニッケル、鉛
、白金及びすずよりなる群の中から選ばれた1種以上で
ある特許請求の範囲第1項記載の有機記憶素子。
[Claims] 1. An electrode, a counter electrode, a reference electrode, and an electrolyte solution modified with a metal complex having at least one photoisomerizable organic material as a coordination molecule or a polymer compound containing the metal complex. An organic memory element characterized by containing: 2. The organic memory element according to claim 1, wherein the electrode containing the metal complex is an array of a plurality of mutually insulated electrodes. 3. The organic material to be photoisomerized has the following general formula: ▲ Formula,
There are chemical formulas, tables, etc.▼...[I] (In the formula, R_1 and R_2 are selected from the group consisting of hydrogen, halogen, alkyl group, alkoxyl group, hydroxyl group, aromatic group, and derivatives thereof. The organic memory element according to claim 1 or 2, which is a compound represented by the following formula (which may be the same or different from each other). 4. The organic material to be photoisomerized has the following general formula: ▲ Formula,
There are chemical formulas, tables, etc.▼...[II] (In the formula, R_1 and R_2 are selected from the group consisting of hydrogen, halogen, alkyl group, alkoxyl group, hydroxyl group, aromatic group, and derivatives thereof. 3. The organic memory element according to claim 1 or 2, which is a compound represented by the formula (1), which may be the same or different from each other. 5. The organic material to be photoisomerized has the following general formula: ▲ Formula,
There are chemical formulas, tables, etc. ▼...[III] (In the formula, R_1 and R_2 are selected from the group consisting of hydrogen, halogen, alkyl group, alkoxyl group, hydroxyl group, aromatic group, and derivatives thereof. 3. The organic memory element according to claim 1 or 2, which is a compound represented by the formula (1), which may be the same or different from each other. 6. Claim No. 6, wherein the element forming the complex is one or more selected from the group consisting of iron, ruthenium, osmium, cobalt, chromium, copper, manganese, nickel, lead, platinum, and tin. The organic memory element according to item 1.
JP4408086A 1986-03-03 1986-03-03 Organic memory element Pending JPS62201968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4408086A JPS62201968A (en) 1986-03-03 1986-03-03 Organic memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4408086A JPS62201968A (en) 1986-03-03 1986-03-03 Organic memory element

Publications (1)

Publication Number Publication Date
JPS62201968A true JPS62201968A (en) 1987-09-05

Family

ID=12681640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4408086A Pending JPS62201968A (en) 1986-03-03 1986-03-03 Organic memory element

Country Status (1)

Country Link
JP (1) JPS62201968A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021727A1 (en) * 1999-09-23 2001-03-29 California Institute Of Technology Photoinduced molecular switches
EP1170259A1 (en) * 2000-07-05 2002-01-09 Sony International (Europe) GmbH Electrochemical apparatus and process for purification of fluids
EP2463950A1 (en) * 2010-12-07 2012-06-13 Samsung Electronics Co., Ltd. Lithium air battery
CN103971876A (en) * 2014-04-16 2014-08-06 江苏科技大学 Eight-cyan-group magnetic compound, preparation method of eight-cyan-group magnetic compounds and application of eight-cyan-group magnetic compounds as magnetic materials
JP2015507645A (en) * 2011-12-06 2015-03-12 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Composition of photoswitchable material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021727A1 (en) * 1999-09-23 2001-03-29 California Institute Of Technology Photoinduced molecular switches
US6433270B1 (en) * 1999-09-23 2002-08-13 California Institute Of Technology Photoinduced molecular switches
EP1170259A1 (en) * 2000-07-05 2002-01-09 Sony International (Europe) GmbH Electrochemical apparatus and process for purification of fluids
CN100415936C (en) * 2000-07-05 2008-09-03 索尼德国有限责任公司 Electrochemical apparatus and method for purification of fluid
EP2463950A1 (en) * 2010-12-07 2012-06-13 Samsung Electronics Co., Ltd. Lithium air battery
US9178254B2 (en) 2010-12-07 2015-11-03 Samsung Electronics Co., Ltd. Lithium air battery
JP2015507645A (en) * 2011-12-06 2015-03-12 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Composition of photoswitchable material
CN103971876A (en) * 2014-04-16 2014-08-06 江苏科技大学 Eight-cyan-group magnetic compound, preparation method of eight-cyan-group magnetic compounds and application of eight-cyan-group magnetic compounds as magnetic materials

Similar Documents

Publication Publication Date Title
JPS60229249A (en) Light information memory method and light responder
JPS58219527A (en) Electrode containing electric multicolor polymer film and display device using same
Khan et al. Research advances in the synthesis and applications of ferrocene‐based electro and photo responsive materials
US4066804A (en) Metal deposition process
Xia et al. Preparation of redox-and photo-responsive ferrocene-and azobenzene-based polymer films and their properties
US5041582A (en) Novel ferrocene derivatives, surfactants containing same and process for producing organic thin films
JPS62201968A (en) Organic memory element
Guo et al. 7-Trifluoromethylquinoline-functionalized luminescent photochromic spiropyran with the stable merocyanine species both in solution and in the solid state
Gould et al. Photochemical ligand loss as a basis for imaging and microstructure formation in a thin polymeric film
US4825408A (en) Multistate optical switching and memory apparatus using an amphoteric organic charge transfer material
Collomb-Dunand-Sauthier et al. Electrochemical elaboration of thin films of poly [RuII (L)(CO) 2Cl2](L= 4-(2-pyrrol-1-ylethyl)-4'-methyl-2, 2'-bipyridine or 4, 4'-bis ((3-pyrrol-1-ylpropyloxy) carbonyl)-2, 2'-bipyridine): photochemical properties and photoimaging
KR0165310B1 (en) Soluble conductive polymer manufacturing method thereof and display device employing the same
Tse et al. Self‐Assembled Monolayer Formed by a Rhenium Complex Containing Hyperbranched Polymer
JPH0260166A (en) Memory element provided with thin fulvalenes film
US4816536A (en) Polymers of 3,4-substituted pyrrole compounds and their preparation method
Akiyama et al. Photochemical Reduction of (η5-Cyclopentadienyl)(1, 2-disubstituted 1, 2-ethylenedichalcogenolato) cobalt (III) and (η5-Cyclopentadienyl)(1, 2-benzenedithiolato) cobalt (III) Complexes in the Presence of Triethanolamine
TWI238159B (en) Indolestyryl compounds and use thereof for a high density recording medium and method for producing the same
USRE29039E (en) Metal deposition process
Kumar et al. Synthesis and characterization of novel Al (III)‐metallopolymer and its application as a non‐volatile resistive memristive material
JPS60217213A (en) Electronic material of diacetylene
JP2007216439A (en) Coloring matter for forming recording layer of optical recording medium, optical recording medium and its recording method
JP2660857B2 (en) Optical recording medium
Coetzee et al. Solvent dependence of equilibrium constants and dissociation rate constants of the mono-complex of nickel (II) ion with 4-phenylpyridine
US5026774A (en) Polymer composition containing pendant organic charge transfer salt moieties useful in switching devices
JP2007230145A (en) Coloring matter for forming recording layer of optical recording medium, optical recording medium using the same, and recording method for the optical recording medium