JPS62199590A - Diving and floating device - Google Patents

Diving and floating device

Info

Publication number
JPS62199590A
JPS62199590A JP4032486A JP4032486A JPS62199590A JP S62199590 A JPS62199590 A JP S62199590A JP 4032486 A JP4032486 A JP 4032486A JP 4032486 A JP4032486 A JP 4032486A JP S62199590 A JPS62199590 A JP S62199590A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
water
buoyancy tank
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4032486A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suzuki
啓之 鈴木
Mitsumasa Shibata
柴田 充蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4032486A priority Critical patent/JPS62199590A/en
Publication of JPS62199590A publication Critical patent/JPS62199590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To enable diving to be performed in a rapid speed further to reduce a loss of hydrogen gas, by connecting a hydrogen absorbing alloy storage, having a heating and cooling equipment, with a buoyancy tank. CONSTITUTION:Water 4 is introduced into a buoyancy tank 1 while absorbing hydrogen gas 6 in the buoyancy tank 1 to a low pressure acting-type alloy 3. Hereafter, hydrogen, generated by heating the low pressure acting-type alloy 3 through a heater-cooler 5 during an underwater navigation, is pressurized by a pressurizing unit 7 utilizing the external water pressure or the like, and the hydrogen is introduced and absorbed to a storage tank 9 of a high pressure acting-type alloy 8 by closing valves 12, 14 while opening a valve 15. Here a heater-cooler 10 removes heat from the alloy 8 because it generates the heat. In the depths of the sea, the high pressure hydrogen, generated in a relatively low temperature by heating of the heater-cooler 10, is introduced to the buoyancy tank 1 passing through valves 16, 11, while the water is drained by opening a valve 13. In this way, a device enables a loss of hydrogen gas to be reduced very small while the hydrogen gas, lost by resolving water, to be supplemented.

Description

【発明の詳細な説明】 (発明の利用分野) この発明は、水中構造物あるいは水上構造物の浮力を、
浮力タンク内の水の充排出によって調節する従来の装置
に、水素吸蔵合金が加熱・冷却されることにより生じる
水素ガスの圧力・体積変化の利用を加えた装置に関する
ものである。
[Detailed Description of the Invention] (Field of Application of the Invention) The present invention aims to reduce the buoyancy of underwater structures or floating structures.
The present invention relates to a device that utilizes changes in pressure and volume of hydrogen gas caused by heating and cooling a hydrogen storage alloy, in addition to the conventional device that adjusts by charging and discharging water in a buoyancy tank.

(従来の技術) 浮力タンク内の水の排出には、従来空気などの圧縮ガス
が用いられる。水中構造物として潜水艇上例にとると、
この潜水艇の潜航時には浮力がいらないので、浮力タン
ク内には水が充満しているが、浮上時にはタンクに圧縮
ガスを導入し、この圧力によって水會追い出すことによ
り浮力を得る。
(Prior Art) Conventionally, compressed gas such as air is used to discharge water in a buoyancy tank. Taking a submersible as an example of an underwater structure,
Since this submersible does not require buoyancy when diving, the buoyancy tank is filled with water, but when surfacing, compressed gas is introduced into the tank and the pressure is used to expel the water, thereby obtaining buoyancy.

また、潜水時は、タンク上部の開放口よシ、ガスを水中
へ投棄しながら、外部の水を取り込んでタンクを満たす
ことにより浮力を失う。
Also, when diving, the tank loses its buoyancy by dumping gas into the water through the open opening at the top of the tank and drawing in water from outside to fill the tank.

(発明が解決しようとする問題点) 潜水艇が潜水してゆく過程で、水中に投棄されるガスが
、あぶくの軌跡となり、問題となる場合がある。また、
いったん浮力タンクに供給されたガスを、水中に投棄せ
ずに回収するには、深海の高い水圧ならばこの圧力全利
用することもできるが、水上付近の低圧では、大容量の
コンプレッサーを相当量の電力を費して回すような方法
しかなく、それではエネルギーロスが大きいうえに、回
収(=潜航)に時間がかかつてしまう。
(Problems to be Solved by the Invention) During the process of a submersible submersible diving, gas dumped into the water may become a trail of bubbles, which may pose a problem. Also,
In order to recover the gas once supplied to the buoyancy tank without dumping it into the water, it is possible to use all of this pressure in the high water pressure of the deep sea, but in the low pressure near the surface, a large capacity compressor is required to recover the gas. The only way to spin it is to use the same amount of electricity to spin it, which not only results in a large loss of energy, but also takes time to recover (dive).

また、ガスを回収しない場合は、これに補充するために
潜水時間が制約されるという問題点が上げられる。圧縮
空気では、水中投棄した分は後で浮上して補充する必要
がある。空気または水の分解による水素・酸累以外の圧
縮ガスを用いると、補充のため寄港する頻度が多くなる
Another problem is that if gas is not recovered, the diving time is limited in order to replenish the gas. With compressed air, what is dumped into the water must be refilled later by surfacing. Using compressed gases other than hydrogen/acid accumulation from air or water decomposition increases the frequency of replenishment port calls.

よって、コンプレッサー電力などを必要としない省エネ
型の、かつ高速・高効率にガスを回収できる浮力装置が
必要とされる。
Therefore, there is a need for an energy-saving buoyancy device that does not require compressor power and can recover gas at high speed and with high efficiency.

(問題点を解決するだめの手段) 本発明はか〜る問題点を解決するために水素吸蔵合金を
利用するものであp、加熱及び冷却設備を写する水素吸
蔵合金貯蔵装置を、浮力タンクに連結した潜水、浮上装
置?提供するものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention utilizes a hydrogen storage alloy. A diving and flotation device connected to the ? This is what we provide.

以下、本発明を図面に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

本発明の装置は第1図に示すように、潜水艇のような水
中構造物の浮力タンク1に、水素吸蔵合金3を貯蔵した
水素吸蔵合金貯蔵槽2を、ガスパイプ20を介して連結
したことを特徴とする。
As shown in FIG. 1, the device of the present invention is such that a hydrogen storage alloy storage tank 2 storing a hydrogen storage alloy 3 is connected to a buoyancy tank 1 of an underwater structure such as a submersible via a gas pipe 20. It is characterized by

浮力タンク1には、海水又は淡水4と水素ゲス6が封入
されており、更に水取入れパルプ13及び水素ガス水中
投棄用開放パルプ19が設けられている。ガスパイプ2
0には、補助コンプレッサー21が操作パルプ11.1
8と共に設置される。
The buoyancy tank 1 is filled with seawater or fresh water 4 and hydrogen gas 6, and is further provided with a water intake pulp 13 and an open pulp 19 for disposing of hydrogen gas underwater. gas pipe 2
0, the auxiliary compressor 21 operates the operating pulp 11.1
Installed together with 8.

合金貯蔵槽2には加熱及び冷却設備5が設けられ、貯蔵
合金3が急速に加熱、冷却される。該合金貯蔵槽の前後
に操作パルプ12.14が設けられ、水素を燃料とする
動力22が、該パルプ14を介して設けられている。
The alloy storage tank 2 is provided with heating and cooling equipment 5, and the storage alloy 3 is rapidly heated and cooled. Operating pulps 12, 14 are provided before and after the alloy storage tank, and a hydrogen-fueled power 22 is provided via the pulps 14.

上記水素吸蔵合金3は、水上附近の水圧程度で急速に水
素を吸蔵する合金、例えば低圧作動型合金として、Ca
dls k用いれば、何ら動力を必要とすることなく、
高速なガス回収による浮力タンクへの給水、すなわち潜
航が可能である。浮上の際には、該合金を加熱すれば、
この合金温度が高ければ高い程、高圧の放出水素ガスが
得られるので、この圧力により浮力タンク内を排水して
浮力全得る。
The hydrogen storage alloy 3 is an alloy that rapidly stores hydrogen under water pressure near water, for example, a low-pressure operating type alloy.
If you use dls k, no power is required,
It is possible to supply water to the buoyancy tank by recovering gas at high speed, which means diving is possible. During levitation, if the alloy is heated,
The higher the alloy temperature, the higher the pressure of released hydrogen gas, which drains the buoyancy tank to obtain full buoyancy.

このように、1種類の合金でも十分であるが、水上付近
の水圧で吸蔵が可能なような低圧作動型の合金から、深
水の高圧に対抗して浮力タンクから排水できる程の水素
圧を生じさせるには、合金をかなり高温に加熱しなけ・
ればならない。そこで、高圧作動型の異なる合金の貯蔵
槽を別に用意し、これと低圧作動型合金槽との間で、水
素の授受を行えるようにする方法も考えられる。
In this way, one type of alloy is sufficient, but a low-pressure operating type alloy that can absorb water under water pressure near the surface of the water can generate enough hydrogen pressure to drain water from a buoyancy tank against the high pressure of deep water. To achieve this, the alloy must be heated to a fairly high temperature.
Must be. Therefore, a method can be considered in which a storage tank of a different high-pressure operating type alloy is prepared separately, and hydrogen can be exchanged between this storage tank and a low-pressure operating type alloy tank.

この方法を具体的に示したのが、第1図の点線で囲んだ
系統を加えた設備である。
A concrete example of this method is the equipment that includes the system surrounded by the dotted line in Figure 1.

水素吸蔵合金貯蔵槽2に、低圧作動型合金を貯蔵し、ガ
スワイプ20と分岐したガスワイプ23?介し、筒圧作
動型合金8例えばMmN i jを貯蔵する水素吸蔵合
金貯蔵槽9を併設する。16.17は操作パルプである
。また、該槽9には加熱及び冷却設備10が設けられて
いる。合金貯蔵槽2と9の間には、水圧等で作動する加
圧装置が操作パルプ15を介して設置されている。
The hydrogen storage alloy storage tank 2 stores a low-pressure operating type alloy, and the gas wipe 23 is branched off from the gas wipe 20? A hydrogen storage alloy storage tank 9 for storing a cylinder pressure-operated alloy 8 such as MmN i j is also provided. 16.17 is the manipulated pulp. Further, the tank 9 is provided with heating and cooling equipment 10. A pressurizing device operated by water pressure or the like is installed between the alloy storage tanks 2 and 9 via an operating pulp 15.

(作用) 先ず1種類の合金を使用する場合について説明すると、
水上附近の低圧な所で、水中構造物、例えば潜水艇の浮
力タンク1?満している水素ガス6を、パルプ11.1
2を開けて合金槽2に導入し、合金3に吸蔵させる。同
時にバルブ13才開けて、浮力タンク1内に外部の水4
全導入する。
(Function) First, we will explain the case where one type of alloy is used.
Underwater structures, such as the buoyancy tank 1 of a submersible, in a low-pressure area near water? Filled with hydrogen gas 6, pulp 11.1
2 is opened and introduced into the alloy tank 2, and the alloy 3 is occluded. At the same time, open the valve 13 and add external water 4 into the buoyancy tank 1.
Fully introduced.

合金3は、吸蔵時には発熱するので、加熱・冷却装置5
によって抜熱する。
Since Alloy 3 generates heat during occlusion, heating/cooling device 5 is used.
Heat is removed by

これらの諸操作で潜水艇は、浮力タンク1が水4に満さ
れて潜水していく。浮上時には、合金槽2を加熱・冷却
装置5により加熱し、発生した高圧水素パルプ11.1
2’ii開けて浮力タンク1に導入し、同時にパルプ1
3を開けて、浮力タンクから外部に水を排出する。これ
により潜水艇は浮上する。
Through these operations, the buoyancy tank 1 is filled with water 4 and the submersible dives. During levitation, the alloy tank 2 is heated by the heating/cooling device 5, and the generated high-pressure hydrogen pulp 11.1
2'ii open and introduce into buoyancy tank 1, and at the same time pulp 1
3 and drain the water from the buoyancy tank to the outside. This causes the submersible to surface.

次に、2種類の水素吸蔵合金を用いる場合について説明
すると、先ず、潜水時には1種類の合金しか用いない場
合と同様に、第1図において、浮力タンクl内の水素ガ
ス6を、低圧作動型合金3に吸蔵させながら浮力タンク
に水4を導入する。
Next, to explain the case where two types of hydrogen storage alloys are used, first, in the same way as when only one type of alloy is used during diving, the hydrogen gas 6 in the buoyancy tank l is Water 4 is introduced into the buoyancy tank while being occluded by alloy 3.

この後、潜航中に低圧作動型合金3を加熱・冷却装置5
で加熱して発生させた水素才、外部の水圧など7利用す
る加圧装置7によって加圧し、パルプ12.14を閉じ
バルブ157開けて、隔圧作動型合金8の貯蔵槽9に導
入し吸蔵させる。
After this, during the dive, the low-pressure operating type alloy 3 is heated and cooled by the heating and cooling device 5.
The pulp 12.14 is closed, the valve 157 is opened, the pulp 12.14 is closed, the valve 157 is opened, and the pulp 12.14 is introduced into the storage tank 9 of the pressure-operated alloy 8 for occlusion. let

この際、合金8は発熱するため加熱・冷却装置10で抜
熱する。深海では、加熱・冷却装置10の加熱により比
較的低温で発生した高圧水素を、パルプ16,11を通
して浮力タンクlに導入し、パルプ13を開けて排水す
る。これらの操作の中で、浮力タンクに水素を直接送る
のが不都合ならば、圧力を伝送する媒介ガスを用いても
良い。
At this time, since the alloy 8 generates heat, the heat is removed by the heating/cooling device 10. In the deep sea, high-pressure hydrogen generated at a relatively low temperature by heating by the heating/cooling device 10 is introduced into the buoyancy tank l through the pulps 16 and 11, and the pulp 13 is opened and drained. In these operations, if it is inconvenient to deliver hydrogen directly to the buoyancy tank, a mediating gas that transmits pressure may be used.

このように低圧作動型合金全加熱して、比較的低温で発
生させた低圧水素を、水圧を利用するなどして加圧して
、高圧作動型合金に吸蔵させておき、深海では後者の合
金を加熱し、比較的低温で高圧水素ガス全発生させうる
ので、高圧ガスを得るのに必要な加熱のだめの熱量の合
計は、1種類の合金ヲ用いるよりも少なくて済む。
The low-pressure hydrogen generated at a relatively low temperature by completely heating the low-pressure alloy is then pressurized using water pressure and stored in the high-pressure alloy. Since the entire high-pressure hydrogen gas can be generated by heating at a relatively low temperature, the total amount of heat required for heating to obtain the high-pressure gas is less than when using one type of alloy.

作動圧の異なる合金は2糧類に限らず、複数種?それぞ
れ別の貯蔵槽に入れ、各々で水素の授受を行えるように
すれば、作動圧範囲を広くとることができる。
Are there multiple types of alloys with different operating pressures, not just two types? If they are placed in separate storage tanks and hydrogen can be exchanged between them, the operating pressure range can be widened.

これらの方法において、水素ガスの回収が100係まで
は不可能としても、水の分解によって失われた水素ガス
を補充できるので、寄港・浮上することなく、よシ長時
間の潜航が可能となる。
With these methods, even if it is impossible to recover up to 100 units of hydrogen gas, the hydrogen gas lost due to water decomposition can be replenished, making it possible to dive for longer periods of time without having to call at a port or surface. .

(発明の効果) この発明の特有な効果は、急速なガス回収による急速潜
水が可能であり、水中投棄の様な形での、水素ガスのロ
スが極めて少ない。又ロスされた水素ガスは、水の分解
により補充でき、潜水・浮上操作に関わるエネルギーロ
スが従来法より少ない。
(Effects of the Invention) The unique effects of this invention are that rapid diving is possible due to rapid gas recovery, and there is extremely little loss of hydrogen gas in the form of underwater dumping. In addition, lost hydrogen gas can be replenished by water decomposition, and energy loss associated with diving and surfacing operations is less than in conventional methods.

東に一種類の水素吸蔵合金に限らず、複数種の合金金用
意することにより、作動水素圧範囲を広くとることがで
き、わずかな加熱で低圧から高圧まで取り出せる。
By preparing not only one type of hydrogen storage alloy but also multiple types of alloy metals, the operating hydrogen pressure range can be widened, and it is possible to extract from low pressure to high pressure with a small amount of heating.

水素吸蔵合金は水素を吸蔵する際発熱し、抜熱しなけれ
ば合金温度の上昇のため吸蔵速度が低下するという問題
があるが、本発明ではこの余剰の熱を伝熱管を通して水
中に放出することによシ、吸蔵速度を高いまま維持する
ことができる。又水素吸蔵合金の吸蔵時の発熱を、熱源
として兄電などに利用でき水素燃料として、動力を動か
すことができ、水素吸蔵合金は重いので、構造物内にバ
ラストとして配置できる。
Hydrogen storage alloys generate heat when storing hydrogen, and if the heat is not removed, the storage rate will decrease due to the rise in alloy temperature.However, in the present invention, this excess heat is released into the water through a heat transfer tube. Yes, the storage rate can be maintained high. Furthermore, the heat generated during storage of hydrogen storage alloys can be used as a heat source for power generation devices, and can be used as hydrogen fuel to drive power.Since hydrogen storage alloys are heavy, they can be placed in structures as ballast.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例として低圧作動型合金と高
圧作動型合金の二つの貯蔵槽を、浮力タンクに直結した
装置のフロー図である。 1・・・浮力タンク    2,9・・・合金貯蔵槽3
・・・低圧作動型合金   8・・・高圧作動型合金4
・・・海水あるいは淡水 5.10・・・加熱・冷却装
置6・・・水素ガス      マ・・・加圧装置11
〜19・・・操作パルプ  2θ、23・・・ガスパイ
プ21・・・補助コンプレッサー 22・・・水素盆燃料とする動力 代理人 弁理士  茶野木 立 夫 手続ネ市正で3 (自発)
FIG. 1 is a flow diagram of an apparatus in which two storage tanks for a low-pressure working type alloy and a high-pressure working type alloy are directly connected to a buoyancy tank as an embodiment of the present invention. 1... Buoyancy tank 2, 9... Alloy storage tank 3
...Low pressure working type alloy 8...High pressure working type alloy 4
...Seawater or fresh water 5.10...Heating/cooling device 6...Hydrogen gas M...Pressure device 11
~19...Operating pulp 2θ, 23...Gas pipe 21...Auxiliary compressor 22...Power agent to use as hydrogen tray fuel Patent attorney Tatsuo Chanoki 3 (voluntary)

Claims (1)

【特許請求の範囲】 1 加熱及び冷却設備を有する水素吸蔵合金貯蔵装置を
、浮力タンクに連結したことを特徴とする潜水浮上装置 2 低圧作動型水素吸蔵合金貯蔵装置と、高圧作動型水
素吸蔵合金貯蔵装置とを併設した特許請求の範囲第1項
記載の潜水浮上装置。
[Scope of Claims] 1. A diving flotation device characterized in that a hydrogen storage alloy storage device having heating and cooling equipment is connected to a buoyancy tank. 2. A low-pressure operating hydrogen storage alloy storage device and a high-pressure operating hydrogen storage alloy. A diving flotation device according to claim 1, further comprising a storage device.
JP4032486A 1986-02-27 1986-02-27 Diving and floating device Pending JPS62199590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4032486A JPS62199590A (en) 1986-02-27 1986-02-27 Diving and floating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4032486A JPS62199590A (en) 1986-02-27 1986-02-27 Diving and floating device

Publications (1)

Publication Number Publication Date
JPS62199590A true JPS62199590A (en) 1987-09-03

Family

ID=12577426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4032486A Pending JPS62199590A (en) 1986-02-27 1986-02-27 Diving and floating device

Country Status (1)

Country Link
JP (1) JPS62199590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110510092A (en) * 2019-08-26 2019-11-29 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) A kind of high pressure gas that drainage rates are controllable blowing main ballast tank device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110510092A (en) * 2019-08-26 2019-11-29 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) A kind of high pressure gas that drainage rates are controllable blowing main ballast tank device

Similar Documents

Publication Publication Date Title
US4873828A (en) Energy storage for off peak electricity
US7743609B1 (en) Power plant with energy storage deep water tank
CN203366760U (en) Reactor cavity water-injection system of nuclear power station
CN112319691A (en) Ballast and discharge system suitable for floating wind power platform and operation method
CA2086089A1 (en) A method and device for producing compressed air and a wataer pumping device using the compressed air
JP2895937B2 (en) Air storage power plant
CN104979024B (en) The passive blood pressure lowering water filling cooling system of floating nuclear power plant and its operation method
RU2079317C1 (en) Generator for gas-type fire-fighting plant
JPH0283494A (en) Apparatus and method for injecting liquid into high temperature and high pressure container
JPS62199590A (en) Diving and floating device
JP2000352371A (en) Compressed air storage type combined power generation system
US5375983A (en) Expanding fluid pressure system
JPH0194916A (en) Dissolving method of carbon dioxide in high-pressure seawater
JP2755778B2 (en) Deep sea power storage plant
JPH02119638A (en) Energy storage system using compressed air
US3623443A (en) Underwater housing structure
US20230250603A1 (en) Power Generation System and Method
CN217629776U (en) Frequency conversion steady voltage blue alga cyst group broken wall device
JPS62113866A (en) Storage water circulation submersible hydro-electric power station
JPH01136097A (en) Injector for fluid into pressure container
CN221098318U (en) Liquid nitrogen waste gas recovery system and liquid nitrogen cooling system
CN114313174B (en) Supercritical carbon dioxide power generation fault processing system and unmanned submarine
JPS6213483B2 (en)
RU2226722C1 (en) Nuclear steam-generating plant
JPH08129089A (en) Water immersion type marine nuclear reactor