JPS62198747A - Oxygen concentration detecting device for internal combustion engine - Google Patents

Oxygen concentration detecting device for internal combustion engine

Info

Publication number
JPS62198747A
JPS62198747A JP61041268A JP4126886A JPS62198747A JP S62198747 A JPS62198747 A JP S62198747A JP 61041268 A JP61041268 A JP 61041268A JP 4126886 A JP4126886 A JP 4126886A JP S62198747 A JPS62198747 A JP S62198747A
Authority
JP
Japan
Prior art keywords
oxygen concentration
internal combustion
sensor
combustion engine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61041268A
Other languages
Japanese (ja)
Other versions
JPH07117515B2 (en
Inventor
Yasushi Okada
岡田 泰仕
Nobuyuki Ono
大野 信之
Toyohei Nakajima
中島 豊平
Toshiyuki Mieno
三重野 敏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61041268A priority Critical patent/JPH07117515B2/en
Publication of JPS62198747A publication Critical patent/JPS62198747A/en
Publication of JPH07117515B2 publication Critical patent/JPH07117515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a detection output which depends upon neither variation in exhaust temperature nor variation in exhaust air flow by detecting plural operation parameters of an internal combustion engine and correcting the output signal of an oxygen concentration sensor with a coefficient of correction based upon those operation parameters. CONSTITUTION:A suction pipe negative pressure sensor 31 and a TD pulser 34 for outputting engine rotating speed information are provided so as to detect plural operation parameters of the internal combustion engine. A CPU 309 corrects the output signal of the oxygen concentration sensor with the coefficient of correction based upon those operation parameters. The detection output which depends upon neither variation in exhaust temperature and variation in exhaust flow rate is therefore obtained without performing complicate temperature control by a heater current supply circuit 308 nor making the structure of the sensor body complex. Thus, variance in detected air-fuel ratio due to exhaust temperature dependency and exhaust flow rate dependency is eliminated, so the accuracy of air-fuel ratio control is improved.

Description

【発明の詳細な説明】 良風上I 本発明は、内燃エンジンの排気ガス中の酸素濃度を検出
する酸素濃度検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen concentration detection device for detecting the oxygen concentration in exhaust gas of an internal combustion engine.

五」Uえガ 内燃エンジンの排気ガス浄化、燃費改善等を目的として
、排気ガス中の酸素濃度を検出し、この検出結果に応じ
てエンジンへの供給混合気の空燃比を目標空燃比にフィ
ードバックIII tllする空燃比制御装置がある。
For the purpose of exhaust gas purification and fuel efficiency improvement of internal combustion engines, the oxygen concentration in the exhaust gas is detected, and the air-fuel ratio of the air-fuel mixture supplied to the engine is fed back to the target air-fuel ratio according to the detection results. There is an air-fuel ratio control device that controls the air-fuel ratio.

この空燃比制御装置には、内燃エンジンの排気系に設け
られて排気ガス中の酸素濃度に比例した出力信号を発生
する酸素濃度センサが用いられる (特開昭52−72
286号公報等参照)。
This air-fuel ratio control device uses an oxygen concentration sensor that is installed in the exhaust system of an internal combustion engine and generates an output signal proportional to the oxygen concentration in the exhaust gas.
(See Publication No. 286, etc.).

ところで、この種の酸素濃度センサには一般に、空燃比
に対する出力特性がセンサ部の温度の変化によって変動
する、いわゆる排気温度依存性、更には吸入空気mQa
の゛変化(負荷の変化)によってセンサ温度が変動する
、いわゆる排気流量依存性があることが知られている。
By the way, this type of oxygen concentration sensor generally has a so-called exhaust temperature dependence, in which the output characteristic with respect to the air-fuel ratio varies depending on changes in the temperature of the sensor section, and furthermore, the output characteristic with respect to the air-fuel ratio varies depending on the temperature change of the sensor section.
It is known that there is a so-called exhaust flow rate dependence in which the sensor temperature fluctuates due to changes in the exhaust gas (changes in load).

これら依存性に起因してセンサ出力に誤差が生じること
になり、その結果検出空燃比にバラツキが生じ、良好な
空燃比制御が望めないことになる。
These dependencies cause errors in the sensor output, resulting in variations in the detected air-fuel ratio, making it impossible to expect good air-fuel ratio control.

この排気温度依存性及び排気流量依存性に対する対策と
して、まず排気温度依存性に対しては、センサ本体にヒ
ータを装着しこのヒータ温度をエンジンの運転パラメー
タに応じて制御することにより素子温度を一定に保つ方
法、排気流量依存性に対しては、センサ本体に保護カバ
ーを装着しこの保護カバーを多重にすることにより排気
流量による直接の影響を緩和する方法等が採られている
As a countermeasure against this exhaust temperature dependence and exhaust flow rate dependence, first, a heater is attached to the sensor body and the element temperature is kept constant by controlling the heater temperature according to the engine operating parameters. In order to reduce the dependence on the exhaust flow rate, methods have been adopted to reduce the direct influence of the exhaust flow rate by attaching a protective cover to the sensor body and layering these protective covers.

しかしながら、前者にあってはヒータ温度を制御するた
めの複雑な制御回路が必要となり、また後者にあっては
保護カバーの多重構造によってセンサ本体の構造が複雑
になるという問題点がある。
However, the former requires a complicated control circuit to control the heater temperature, and the latter has the problem that the structure of the sensor body becomes complicated due to the multiple structure of the protective covers.

1更立且1 本発明は、上述した点に鑑みなされたもので、ヒータの
複雑な温度制御をせずに、更にはセンサ本体の構造を複
雑化することなく、排気温度変化及び排気流量変化に依
存しない検出出力を得ることが可能な内燃エンジン用酸
素濃度検出装置を提供することを目的とする。
1. Further improvements and 1. The present invention has been made in view of the above-mentioned points, and is capable of controlling exhaust gas temperature changes and exhaust flow rate changes without complicated temperature control of the heater and without complicating the structure of the sensor body. An object of the present invention is to provide an oxygen concentration detection device for an internal combustion engine that can obtain a detection output that does not depend on the oxygen concentration.

本発明による内燃エンジン用酸素濃度検出装置は、内燃
エンジンの複数の運転パラメータを検出し、これら運転
パラメータに基づく補正係数を得てこの補正係数に基づ
いて酸素濃度センサの出力信号を補正することを特徴と
している。
The oxygen concentration detection device for an internal combustion engine according to the present invention detects a plurality of operating parameters of the internal combustion engine, obtains a correction coefficient based on these operating parameters, and corrects the output signal of the oxygen concentration sensor based on the correction coefficient. It is a feature.

見−皇−1 以下、本発明の実施例を図面を参照しつつ説明する。Mi-Emperor-1 Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)、(b)において、酸素濃度センサ本体1
0は、はぼ立方体状の酸素イオン伝導性固体電解質部材
1を有しており、この酸素イオン伝導性固体電解質部材
1内には第1及び第2気体滞留室2,3が形成されてい
る。第1気体滞留空2は固体電解質部材1外部から被測
定気体の排気ガスを導入する導入孔4に連通し、導入孔
4は内燃エンジンの排気管(図示せず)内において排気
ガスが第1気体滞留室2内に流入し易いように位置され
る。第1気体滞留至2と第2気体滞留至3との間の壁部
には連通孔5が一形成され、第2気体滞留空3内に排気
ガスが導入孔4、第1気体滞留室2、そして連通孔5を
介して導入されるようになっている。
In FIGS. 1(a) and (b), the oxygen concentration sensor body 1
0 has a roughly cubic oxygen ion conductive solid electrolyte member 1, and inside this oxygen ion conductive solid electrolyte member 1, first and second gas retention chambers 2 and 3 are formed. . The first gas retention space 2 communicates with an introduction hole 4 through which exhaust gas of the gas to be measured is introduced from the outside of the solid electrolyte member 1. It is positioned so that it can easily flow into the gas retention chamber 2. A communication hole 5 is formed in the wall between the first gas retention space 2 and the second gas retention space 3, and the exhaust gas enters the second gas retention space 3 through the introduction hole 4 and the first gas retention chamber 2. , and is introduced through the communication hole 5.

また酸素イオン伝導性固体電解質部材1には外気等を導
入する気体参照室6が第1及び第2気体滞留至2,3と
壁を隔てるように形成されている。
Further, a gas reference chamber 6 into which outside air or the like is introduced is formed in the oxygen ion conductive solid electrolyte member 1 so as to be separated from the first and second gas reservoirs 2 and 3 by a wall.

第1及び第2気体滞留室2.3の気体参照室6とは反対
側の壁部内には電極保護孔7が形成されている。第1気
体滞留至2と気体参照室6との間の壁部及び第1気体滞
留室2と電極保護孔7との間の壁部には電極対12a、
12b、11a、11bが各々形成され、また第2気体
滞留室3と気体参照室6との間の壁部及び第2気体滞留
室3と電極保護孔7との間の壁部には電極対14a、1
4b、13a、13bが各々形成されている。固体電解
質部材1及び電極対11a、11bが第11!!素ポン
プ素子15として、固体電解質部材1及び電極対12a
、12bが第1電池素子16として各々作用する。また
固体電解質部材1及び電極対13a、13bが第2酸素
ポンプ素子17として、固体電解質部材1及び電極対1
4a、14bが第2N池素子18として各々作用する。
Electrode protection holes 7 are formed in the walls of the first and second gas retention chambers 2.3 on the side opposite to the gas reference chamber 6. On the wall between the first gas retention chamber 2 and the gas reference chamber 6 and on the wall between the first gas retention chamber 2 and the electrode protection hole 7, an electrode pair 12a,
12b, 11a, and 11b are formed respectively, and electrode pairs are formed on the wall between the second gas retention chamber 3 and the gas reference chamber 6 and the wall between the second gas retention chamber 3 and the electrode protection hole 7. 14a, 1
4b, 13a, and 13b are formed, respectively. The solid electrolyte member 1 and the electrode pair 11a, 11b are the 11th! ! As the elementary pump element 15, the solid electrolyte member 1 and the electrode pair 12a
, 12b each act as the first battery element 16. Further, the solid electrolyte member 1 and the electrode pair 13a, 13b serve as the second oxygen pump element 17.
4a and 14b each act as a second N-cell element 18.

また気体参照室6の外壁面及び電極保護孔7の外壁面に
ヒータ素子19.20が各々設けられている。ヒータ素
子19.20は電気的に互いに並列に接続されており、
第1及び第2酸素ポンプ素子15.17並びに第1及び
第2電池素子16゜18を均等に加熱すると共に固体電
解質部材1内の保温性の向上を図っている。なお、酸素
イオン伝導性固体電解質部材1は複数の断片から一体に
形成される。また第1及び第2気体滞留室の壁部を全て
酸素イオン伝導性固体電解質から形成する必要はなく、
少なくとも電極対を設ける部分だけがその固体電解質か
らなれば良い。
Further, heater elements 19 and 20 are provided on the outer wall surface of the gas reference chamber 6 and the outer wall surface of the electrode protection hole 7, respectively. The heater elements 19, 20 are electrically connected to each other in parallel;
The first and second oxygen pump elements 15, 17 and the first and second battery elements 16, 18 are heated evenly, and the heat retention inside the solid electrolyte member 1 is improved. Note that the oxygen ion conductive solid electrolyte member 1 is integrally formed from a plurality of pieces. Further, it is not necessary that the walls of the first and second gas retention chambers are entirely made of an oxygen ion conductive solid electrolyte.
It is sufficient that at least only the portion where the electrode pair is provided is made of the solid electrolyte.

酸素イオン伝導性固体電解質部材1としては、zr○2
 (二酸化ジルコニウム)が用いられ、電極11aない
し14bとしてはPt(白金)が用いられる。
As the oxygen ion conductive solid electrolyte member 1, zr○2
(zirconium dioxide) is used, and Pt (platinum) is used as the electrodes 11a to 14b.

第2図において、第1及び第2W1素ポンプ素子15.
17並びに第1及び第2電池素子16,18には電流供
給回路21が接続されている。第2図に示すように電流
供給回路21は差動増幅回路22.23.電流検出抵抗
24,25.基準電圧源26.27及び切替回路28.
29からなる。
In FIG. 2, first and second W1 element pump elements 15.
17 and the first and second battery elements 16 and 18 are connected to a current supply circuit 21 . As shown in FIG. 2, the current supply circuit 21 includes differential amplifier circuits 22, 23, . Current detection resistors 24, 25. Reference voltage source 26.27 and switching circuit 28.
Consists of 29.

第1酸素ポンプ素子15の外側M極11aは切替回路2
8のスイッチ28a1電流検出抵抗24を介して差動増
幅回路22の出力端に接続され、内側電極11bは切替
回路29のスイッチ29aを介してアースされるように
なっている。第1電池素子16の外側電極12aは差動
増幅回路22の反転入力端に接続され、内側電極12b
は切替回路29のスイッチ29bを介してアースされる
ようになっている。
The outer M pole 11a of the first oxygen pump element 15 is connected to the switching circuit 2.
The switch 28a1 of No. 8 is connected to the output terminal of the differential amplifier circuit 22 via the current detection resistor 24, and the inner electrode 11b is grounded via the switch 29a of the switching circuit 29. The outer electrode 12a of the first battery element 16 is connected to the inverting input terminal of the differential amplifier circuit 22, and the inner electrode 12b
is grounded via the switch 29b of the switching circuit 29.

同様に第2酸素ポンプ素子17の外側電極13aは切替
回路28のスイッチ28b1電流検出抵抗25を介して
差動増幅回路23の出力端に接続され、内側電極13b
は切替回路29のスイッチ29aを介してアースされる
ようになっている。
Similarly, the outer electrode 13a of the second oxygen pump element 17 is connected to the output terminal of the differential amplifier circuit 23 via the switch 28b1 of the switching circuit 28, the current detection resistor 25, and the inner electrode 13b
is grounded via a switch 29a of the switching circuit 29.

第2電池素子18の外側電極14aは差動増幅回路23
の反転入力端に接続され、内側電極14bは切替回路2
つのスイッチ29bを介してアースされるようになって
いる。差動増幅回路22の非反転入力端には基準電圧源
26が接続され、差動増幅回路23の非反転入力端には
基準電圧+1127が接続されている。基準電圧源26
.27の出力電圧は理論空燃比に相当する電圧(例えば
、0゜4V)である。電流検出抵抗24の両端間が第1
センサの出力をなし、電流検出抵抗25の両端間が第2
センサの出力をなしている。電流検出抵抗24.25の
1i4tli電圧は制御回路30に供給される。なお、
差動増幅回路22.23には正負の電源電圧が供給され
る。
The outer electrode 14a of the second battery element 18 is connected to the differential amplifier circuit 23.
The inner electrode 14b is connected to the inverting input terminal of the switching circuit 2.
It is configured to be grounded via one switch 29b. A reference voltage source 26 is connected to the non-inverting input terminal of the differential amplifier circuit 22, and a reference voltage +1127 is connected to the non-inverting input terminal of the differential amplifier circuit 23. Reference voltage source 26
.. The output voltage of 27 is a voltage corresponding to the stoichiometric air-fuel ratio (for example, 0°4V). The first electrode is connected between both ends of the current detection resistor 24
The output of the sensor is connected between both ends of the current detection resistor 25.
It serves as the output of the sensor. The 1i4tli voltage of the current detection resistor 24.25 is supplied to the control circuit 30. In addition,
Positive and negative power supply voltages are supplied to the differential amplifier circuits 22 and 23.

内燃エンジンの複数の運転パラメータを検出するために
、例えば吸気管負圧(Pa )センサ31及びエンジン
回転数(Ne )情報を出力するためのTDCバルサ3
2が設けられている。Paセンサ31は吸気マニホール
ド(図示せず)内の負圧Psに応じたレベルの出力を発
生し、TDCバルサ32はクランクシャフト(図示せず
)に連動してピストンが上死点に達する毎にパルスを発
生する。なお、エンジン回転数(Ne )情報を出力す
る手段としては、クランクシャフトが所定角度だけ回転
する毎にパルスを発生するもの、イグニッションコイル
(図示せず)の−次コイルに発生するパルスを検出する
ものであっても良い。
In order to detect a plurality of operating parameters of the internal combustion engine, for example, an intake pipe negative pressure (Pa) sensor 31 and a TDC balsa 3 for outputting engine speed (Ne) information are provided.
2 is provided. The Pa sensor 31 generates an output at a level corresponding to the negative pressure Ps in the intake manifold (not shown), and the TDC balsa 32 works in conjunction with the crankshaft (not shown) to generate an output every time the piston reaches top dead center. Generates a pulse. Note that the means for outputting the engine rotation speed (Ne) information includes one that generates a pulse every time the crankshaft rotates by a predetermined angle, and one that detects a pulse generated in the second coil of an ignition coil (not shown). It may be something.

制御回路30は、電流検出抵抗24.25の両端電圧を
ディジタル信号に変換する差動入力のA/D(アナログ
/ディジタル)変換器301と、Peセンサ31の出力
信号をディジタル信号に変換するA/D変換器302と
、TDCバルサ32の出力信号を波形整形する波形整形
回路303と、この波形整形回路303から出力される
TDCパルスの発生間隔をクロック発生回路304から
のクロックをカウントすることにより計測するカウンタ
305と、切替回路28.29を切替え駆動する駆動回
路306と、電磁弁33を開弁駆動する駆動回路307
と、ヒータ素子19.20に電流を供給するヒータ電流
供給回路308と、プログラムに従ってディジタル演算
等を行なうCPU(中央処理回路)309と、各種の処
理プログラム及びデータが予め書き込まれたROM31
0及びRAM311からなっている。
The control circuit 30 includes a differential input A/D (analog/digital) converter 301 that converts the voltage across the current detection resistor 24 and 25 into a digital signal, and an A/D (analog/digital) converter 301 that converts the output signal of the Pe sensor 31 into a digital signal. /D converter 302, a waveform shaping circuit 303 that shapes the output signal of the TDC balsa 32, and the generation interval of the TDC pulse output from this waveform shaping circuit 303 by counting the clock from the clock generation circuit 304. A counter 305 for measurement, a drive circuit 306 that switches and drives the switching circuits 28 and 29, and a drive circuit 307 that drives the solenoid valve 33 to open.
, a heater current supply circuit 308 that supplies current to the heater elements 19 and 20, a CPU (central processing circuit) 309 that performs digital calculations etc. according to a program, and a ROM 31 in which various processing programs and data are written in advance.
0 and RAM311.

かかる制御回路30において、波形整形回路303から
出力されるTDCパルスはCPU309の割込端子にも
供給され、これにより後述する酸素濃度センサ出力の補
正処理を行なう場合のTe3割込みを可能としている。
In the control circuit 30, the TDC pulse output from the waveform shaping circuit 303 is also supplied to the interrupt terminal of the CPU 309, thereby enabling a Te3 interrupt when performing correction processing of the oxygen concentration sensor output, which will be described later.

なお、酸素濃度センサ出力である電流検出抵抗24.2
5を流れるポンプ電流値1p (1) 、I p (2
)はA/D変換器301を介してCPU309に読み込
まれる。
In addition, the current detection resistor 24.2 which is the oxygen concentration sensor output
Pump current values 1p (1) and I p (2
) is read into the CPU 309 via the A/D converter 301.

電磁弁34はエンジン気化器絞り弁下流の吸気マニホー
ルド内に連通する吸気2次空気供給通路(図示せず)に
設けられている。またヒータ素子19.20にはヒータ
電流供給回路308から電流が供給され、これによりヒ
ータ素子19.20が発熱して酸素ポンプ素子15.1
7及び電池素子16.18を排気ガスより高い適温に加
熱する。
The solenoid valve 34 is provided in a secondary intake air supply passage (not shown) that communicates with the intake manifold downstream of the engine carburetor throttle valve. Further, current is supplied to the heater element 19.20 from the heater current supply circuit 308, which causes the heater element 19.20 to generate heat and the oxygen pump element 15.1
7 and battery elements 16 and 18 are heated to an appropriate temperature higher than the exhaust gas.

かかる構成においては、排気管内の排気ガスが導入孔4
から第1気体滞留室2内に流入し拡散する。また第1気
体滞留室2内の排気ガスは連通孔5から第2気体滞留室
3内に流入し拡散する。
In such a configuration, the exhaust gas in the exhaust pipe passes through the introduction hole 4.
The gas then flows into the first gas retention chamber 2 and diffuses therein. Furthermore, the exhaust gas in the first gas retention chamber 2 flows into the second gas retention chamber 3 through the communication hole 5 and diffuses therein.

切替回路28.29において、第2図に示す如くスイッ
チ28aが電極11aを電流検出抵抗24に接続し、ス
イッチ28bが電極13aの接続ラインを開放し、スイ
ッチ29aが電極11bをアースしかつ電極13bの接
続ラインを開放し、またスイッチ29bが電極12bを
アースしかつ電極14bの接続ラインを開放する選択位
置にされると、第1センサの選択状態になる。
In the switching circuits 28 and 29, as shown in FIG. 2, a switch 28a connects the electrode 11a to the current detection resistor 24, a switch 28b opens the connection line of the electrode 13a, and a switch 29a grounds the electrode 11b and connects the electrode 13b. When the connection line of the electrode 14b is opened and the switch 29b is set to the selection position where the electrode 12b is grounded and the connection line of the electrode 14b is opened, the first sensor is in the selected state.

この第1センサの選択状態には、先ず、エンジン供給混
合気の空燃比がリーン領域のときには差動増幅回路22
の出力レベルが正レベルになり、この正レベル電圧が抵
抗24及び第1酸素ポンプ素子15の直列回路に供給さ
れる。よって、第1酸素ポンプ素子15の電極11a、
11b間にポンプ電流が流れる。このポンプ電流は電極
11aから電極11bに向って流れるので第1気体滞留
室2内の酸素が電極11bにてイオン化して第1酸素ポ
ンプ素子15内を移動して電極11aから酸素ガスとし
て放出され、第1気体滞留室2内の酸素が汲み出される
In the selection state of the first sensor, first, when the air-fuel ratio of the air-fuel mixture supplied to the engine is in the lean region, the differential amplifier circuit 22
The output level becomes a positive level, and this positive level voltage is supplied to the series circuit of the resistor 24 and the first oxygen pump element 15. Therefore, the electrode 11a of the first oxygen pump element 15,
A pump current flows between 11b and 11b. Since this pump current flows from the electrode 11a to the electrode 11b, oxygen in the first gas retention chamber 2 is ionized at the electrode 11b, moves within the first oxygen pump element 15, and is released from the electrode 11a as oxygen gas. , the oxygen in the first gas retention chamber 2 is pumped out.

第1気体滞留室2内の酸素の汲み出しにより第1気体滞
留室2内の排気ガスと気体参照室6内の気体の間に酸素
濃度差が生ずる。この酸素濃度差によって電池素子16
の電極12a、12b間に電圧Vsが発生する。この電
圧Vsは差動増幅回路22の反転入力端に供給される。
By pumping out the oxygen in the first gas retention chamber 2, a difference in oxygen concentration occurs between the exhaust gas in the first gas retention chamber 2 and the gas in the gas reference chamber 6. Due to this oxygen concentration difference, the battery element 16
A voltage Vs is generated between the electrodes 12a and 12b. This voltage Vs is supplied to the inverting input terminal of the differential amplifier circuit 22.

差動増幅回路22の出力電圧は電圧Vsと基準電圧源2
6の出力電圧Vr+ との差電圧に比例した電圧となる
のでポンプ電流値は排気ガス中の酸素濃度に比例する。
The output voltage of the differential amplifier circuit 22 is the voltage Vs and the reference voltage source 2.
Since the voltage is proportional to the difference voltage from the output voltage Vr+ of No. 6, the pump current value is proportional to the oxygen concentration in the exhaust gas.

リッチ領域の空燃比のときには電圧Vsが基準電圧源2
6の出力電圧Vr+を越える。よって、差動増幅回路2
2の出力レベルが正レベルから負レベルに反転する。こ
の負レベルにより第1酸素ポンプ素子15の電極11a
、11b間に流れるポンプ電流が減少し、電流方向が反
転する。すなわち、ポンプ電流は電極11bから電極1
1a方向に流れるので外部の酸素が電極11aにてイオ
ン化して第111i素ポンプ素子15内を移動して電極
11bから酸素ガスとして第1気体滞留室2内に放出さ
れ、酸素が第1気体滞留空2内に汲み込まれる。従って
、第1気体滞留室2内の酸素濃度が常に一定になるよう
にポンプ電流を供給することにより酸素を汲み込んだり
、汲み出したりするのでポンプ電流値Ip及び差動増幅
回路22の出力電圧はリーン及びリッチ領域にて排気ガ
ス中の酸素濃度に各々比例するのである。第3図の実線
aはそのポンプ電流値Ipを示している。
When the air-fuel ratio is in the rich region, the voltage Vs is the reference voltage source 2.
6 output voltage Vr+. Therefore, differential amplifier circuit 2
The output level of No. 2 is inverted from a positive level to a negative level. Due to this negative level, the electrode 11a of the first oxygen pump element 15
, 11b decreases, and the current direction is reversed. That is, the pump current flows from electrode 11b to electrode 1.
1a direction, external oxygen is ionized at the electrode 11a, moves through the 111i elementary pump element 15, and is released from the electrode 11b as oxygen gas into the first gas retention chamber 2, so that oxygen is retained in the first gas retention chamber 2. It is pumped into the sky 2. Therefore, since oxygen is pumped in and out by supplying the pump current so that the oxygen concentration in the first gas retention chamber 2 is always constant, the pump current value Ip and the output voltage of the differential amplifier circuit 22 are It is proportional to the oxygen concentration in the exhaust gas in the lean and rich regions, respectively. A solid line a in FIG. 3 indicates the pump current value Ip.

ポンプ電流[Ipは電荷を01導入孔4による排気ガス
に対する拡散係数をσo1排気ガス中の酸素濃度をPO
eXh、第1気体滞留室2内の酸素濃度をPoVとする
と、次式の如くで表わすことができる。
Pump current [Ip is the electric charge, 01 is the diffusion coefficient for the exhaust gas through the introduction hole 4, is σo1 is the oxygen concentration in the exhaust gas, is PO
When eXh and the oxygen concentration in the first gas retention chamber 2 are PoV, it can be expressed as in the following equation.

rp−4eao (Poexh −PoV )”−・・
(1)ここで、拡散係数σ0は導入孔4の面積をA、ボ
ルツマン定数をk、絶対温度をT1導入孔4の長さをρ
、拡散定数をDとすると、次式の如く表わすことができ
る。
rp-4eao (Poexh-PoV)"-...
(1) Here, the diffusion coefficient σ0 is the area of the introduction hole 4, A is the Boltzmann constant, k is the absolute temperature, and the length of the introduction hole 4 is ρ.
, where D is the diffusion constant, it can be expressed as in the following equation.

σo=D−A/kTjl  −(2) 次に、スイッチ28aが電極11aの接続ラインを開放
し、スイッチ28bが電極13aを電流検出抵抗25に
接続し、スイッチ29aがM極13bをアースしかつ電
III 1 bの接続ラインを開放し、またスイッチ2
9bが電極14bをアースしかつ電極12bの接続ライ
ンを開放する選択位置にされると、第2センサの選択状
態となる。
σo=D-A/kTjl-(2) Next, the switch 28a opens the connection line of the electrode 11a, the switch 28b connects the electrode 13a to the current detection resistor 25, and the switch 29a grounds the M pole 13b and Open the connection line of power supply III 1b, and also switch 2
When the electrode 9b is brought to the selected position where the electrode 14b is grounded and the connection line of the electrode 12b is opened, the second sensor is in the selected state.

この第2センサの選択状態には上記した第1センサの選
択状態と同様の動作により第2気体滞留室3内の酸素濃
度が常に一定になるようにポンプ電流が第2酸素ポンプ
素子17の電極13a、13b間に供給されて酸素が汲
み込まれたり、汲み出されたりするのでポンプ電流値I
p及び差動増幅回路23の出力電圧はリーン及びリッチ
領域にて排気ガス中の酸素濃度に各々比例するのである
In the selected state of the second sensor, the pump current is applied to the electrodes of the second oxygen pump element 17 so that the oxygen concentration in the second gas retention chamber 3 is always constant by the same operation as in the selected state of the first sensor described above. Since oxygen is supplied between 13a and 13b and pumped out, the pump current value I
P and the output voltage of the differential amplifier circuit 23 are proportional to the oxygen concentration in the exhaust gas in the lean and rich regions, respectively.

この第2センサ選択状態のポンプ電流値IPは上記した
式(1)において拡散係数σ0を導入孔4及び連通孔5
によるものとし、またPoVを第2気体滞留室3内の酸
素濃度とすることにより表わされる。ポンプ電流値Ip
の大きさは、第4図に示すように、空燃比のリーン及び
リッチ領域において拡散係数σ0の大きざに反比例する
拡散抵抗が大きくなるほど小さくなることが明らかにな
っている。よって、第2センサ選択状態には第1センサ
選択状態よりも拡散抵抗が大となるので、第3図に破線
すで示す如くポンプ電流値Ipの大きさはリーン及びリ
ッチ領域において小さくなり、連通孔5の大きさ及び長
さを調整することにより、第3図に示すように、第2セ
ンサ選択状態におけるリッチwAi+!のポンプ電流値
特性が第1センサ選択状態におけるリーン領域のポンプ
電流値特性にIp=Oにて直線的に連続するのである。
The pump current value IP in the second sensor selection state is calculated using the diffusion coefficient σ0 of the introduction hole 4 and the communication hole 5 in the above equation (1).
It is also expressed by setting PoV to be the oxygen concentration in the second gas retention chamber 3. Pump current value Ip
As shown in FIG. 4, it has been revealed that the magnitude of σ becomes smaller as the diffusion resistance, which is inversely proportional to the difference in the diffusion coefficient σ0, increases in the lean and rich air-fuel ratio regions. Therefore, the diffusion resistance is larger in the second sensor selection state than in the first sensor selection state, so the magnitude of the pump current value Ip becomes smaller in the lean and rich regions, as shown by the broken line in FIG. By adjusting the size and length of the hole 5, as shown in FIG. 3, the rich wAi+! The pump current value characteristic continues linearly with the pump current value characteristic in the lean region in the first sensor selection state at Ip=O.

また差動増幅回路22.23の出力電圧特性も0(V)
にて直線的に連続したものになる。
In addition, the output voltage characteristics of the differential amplifier circuits 22 and 23 are also 0 (V).
becomes linearly continuous.

制御回路30においては、酸素濃度センサ10の出力信
号を補正する処理も行なわれる。このセンサ出力の補正
処理を行なうために、制御回路30内のROM310に
は予め、内燃エンジンの複数の運転パラメータ、例えば
エンジン回転数Ne及び吸気管負圧Psに対応して第5
図に示す如く設定された補正係数がNe−Paマツプと
して記憶されている。そして、CPU309はセンサ出
力の補正処理を第6図のフロー図に示す手順にしたがっ
て行なう。なお、この補正処理は、エンジンの制御にお
いて毎点火ごとに処理するルーチンの中で、T2C割込
みによって行なわれる。
In the control circuit 30, processing for correcting the output signal of the oxygen concentration sensor 10 is also performed. In order to perform this sensor output correction process, the ROM 310 in the control circuit 30 is preliminarily stored with five parameters corresponding to a plurality of operating parameters of the internal combustion engine, such as engine speed Ne and intake pipe negative pressure Ps.
The correction coefficients set as shown in the figure are stored as a Ne-Pa map. Then, the CPU 309 performs sensor output correction processing according to the procedure shown in the flowchart of FIG. Note that this correction processing is performed by a T2C interrupt in a routine that is processed for each ignition in engine control.

CPU309は先ず、波形整形回路303からのTDC
パルスによるT2C割込みによって割込み処理を行なう
(ステップ1)。そして、酸素濃度センサ10の出力で
ある電流検出抵抗24.25を流れるポンプ電流値I 
p (1) 、I p (2)の読取りを行ない(ステ
ップ2)、続いて前回のTDCタイミングから今回のT
DCタイミングまでにカウンタ305でカウントされた
カウント数に基づいてエンジン回転数Neの計棹を行な
いくステップ3)、更に吸気管負圧センサ37の出力電
圧の読取りを行なう(ステップ4)、、そして、検出さ
れたエンジン回転数Ne及び吸気管負圧Paに対応する
補正係数をROM310のNe−Paマツプから得てこ
の補正係数に基づいて酸素濃度センサ10の出力の補正
を行なう(ステップ5)。
The CPU 309 first receives the TDC from the waveform shaping circuit 303.
Interrupt processing is performed by a T2C interrupt caused by a pulse (step 1). Then, the pump current value I flowing through the current detection resistor 24.25 which is the output of the oxygen concentration sensor 10
P (1) and I p (2) are read (step 2), and then the current TDC timing is changed from the previous TDC timing.
The engine rotation speed Ne is measured based on the count counted by the counter 305 up to the DC timing (Step 3), and the output voltage of the intake pipe negative pressure sensor 37 is read (Step 4). A correction coefficient corresponding to the detected engine speed Ne and intake pipe negative pressure Pa is obtained from the Ne-Pa map in the ROM 310, and the output of the oxygen concentration sensor 10 is corrected based on this correction coefficient (step 5).

補正係数は、第5図から明らかなように、エンジン回転
数Neが低くかつ吸気管負圧PBが大なる場合、即ち吸
入空気IQaが少ない場合に大きく(例えば、1.2倍
)、エンジン回転数Neが高くかつ吸気管負圧P8が小
なる場合、即ち吸入空気ff1Qaが多い場合に小さく
(例えば、0.8倍)となるように設定される。
As is clear from FIG. 5, the correction coefficient is large (for example, 1.2 times) when the engine speed Ne is low and the intake pipe negative pressure PB is large, that is, when the intake air IQa is small. It is set to be small (for example, 0.8 times) when the number Ne is high and the intake pipe negative pressure P8 is small, that is, when the intake air ff1Qa is large.

以上の一連の手順によってセンサ出力の補正処理が行な
われ、これによりヒータ素子19.20の複雑な温度制
御をしたり、センサ本体に保護カバーを多重に装着して
センサ本体の構造を複雑にしたりしなくても、ROM3
10のプログラムを変更しかつNe−Peマツプを予め
記憶しておくのみで、排気温度変化及び排気流量変化に
依存しないセンサ出力を得ることができる。
Through the above series of steps, the sensor output is corrected, and this allows for complex temperature control of the heater elements 19 and 20, and for making the structure of the sensor body complicated by attaching multiple protective covers to the sensor body. Even if you don't, ROM3
By simply changing the program No. 10 and storing the Ne-Pe map in advance, it is possible to obtain a sensor output that is independent of changes in exhaust temperature and flow rate.

なお、上記実施例においては、センサ出力の補正処理動
作を空燃比をおこなう制御回路30で行なう場合につい
て説明したが、補正処理を行なうための専用のコントロ
ーラ、メモリ等を制御回路30とは別に設けるようにし
ても良いことは勿論である。
In the above embodiment, a case has been described in which the correction processing operation of the sensor output is performed by the control circuit 30 that performs air-fuel ratio adjustment, but a dedicated controller, memory, etc. for performing the correction processing may be provided separately from the control circuit 30. Of course, it is also possible to do so.

また、上記実施例では、補正係数をNe−Paマツプと
してROM310に予め記憶しておき、検出されたエン
ジン回転数Ne及び吸気管負圧PBに対応する補正係数
をROM310のマツプから読み出して補正するように
しているが、CPU309において検出されたエンジン
回転数Ne及び吸気管負圧PBに基づいて所定の演算式
で演算することによって補正係数を得てこの補正係数に
基づいて補正するようにすることも可能である。
Further, in the above embodiment, the correction coefficient is stored in advance in the ROM 310 as a Ne-Pa map, and the correction coefficient corresponding to the detected engine speed Ne and intake pipe negative pressure PB is read out from the map in the ROM 310 and corrected. However, a correction coefficient is obtained by calculating a predetermined calculation formula based on the engine rotation speed Ne and intake pipe negative pressure PB detected by the CPU 309, and correction is performed based on this correction coefficient. is also possible.

更には、本発明による酸素濃度検出装置に用いられる酸
素濃度検出センサは、第1図(a)。
Furthermore, the oxygen concentration detection sensor used in the oxygen concentration detection device according to the present invention is shown in FIG. 1(a).

(b)に示された構造のものに限定されるものではない
It is not limited to the structure shown in (b).

1且立皇」 以上説明したように、本発明による酸素濃度検出装置に
おいては、内燃エンジンの複数の運転パラメータを検出
し、これら運転パラメータに基づく補正係数を得てこの
補正係数に基づいて酸素濃度センサの出力信号を補正す
る構成となっているので、ヒータの複雑な温度制御をせ
ずに、更にはセンサ本体の構造を複雑化することなく、
排気温度変化及び排気流量変化に依存しない検出出力を
得ることが可能となる。よって、排気温度依存性及び排
気流量依存性による検出空燃比のバラツキを防止できる
ので、空燃比制御の精度向上が図れるのである。
As explained above, the oxygen concentration detection device according to the present invention detects a plurality of operating parameters of an internal combustion engine, obtains correction coefficients based on these operating parameters, and determines the oxygen concentration based on the correction coefficients. Since it is configured to correct the output signal of the sensor, there is no need for complicated temperature control of the heater, and there is no need to complicate the structure of the sensor body.
It is possible to obtain a detection output that is independent of changes in exhaust temperature and flow rate. Therefore, it is possible to prevent variations in the detected air-fuel ratio due to exhaust gas temperature dependence and exhaust flow rate dependence, thereby improving the accuracy of air-fuel ratio control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明による酸素濃度検出装置の一実施
例を示す平面図、第1図(b)は第1図(a)のIb−
Ib部分の断面図、第2図は空燃比1IIJ III装
置を含む電流供給回路を示す回路図、第3図は第1図の
装置の出力特性を示す図、第4図は拡散抵抗とポンプ電
流値との関係を示す特性図、第5図はNe−Paマツプ
の補正係数の一例を示す図、第6図は酸素濃度センサ出
力の補正処理の手順を示すフロー図である。 主要部分の符号の説明 1・・・・・・酸素イオン伝導性固体電解質部材2.3
・・・・・・気体滞留室 4・・・・・・導入孔 5・・・・・・連通孔 6・・・・・・気体参照至 10・・・・・・酸素濃度センサ 15.17・・・・・・酸素ポンプ素子16.18・・
・・・・電池素子 19.20・・・・・・ヒータ素子 21・・・・・・電流供給回路 30・・・・・・制御回路
FIG. 1(a) is a plan view showing an embodiment of the oxygen concentration detection device according to the present invention, and FIG. 1(b) is a plan view showing an embodiment of the oxygen concentration detection device according to the present invention.
2 is a circuit diagram showing the current supply circuit including the air-fuel ratio 1IIJ III device, 3 is a diagram showing the output characteristics of the device in 1, and 4 is the diffusion resistance and pump current. FIG. 5 is a diagram showing an example of the correction coefficient of the Ne-Pa map, and FIG. 6 is a flowchart showing the procedure for correcting the output of the oxygen concentration sensor. Explanation of symbols of main parts 1...Oxygen ion conductive solid electrolyte member 2.3
......Gas retention chamber 4...Introduction hole 5...Communication hole 6...Gas reference to 10...Oxygen concentration sensor 15.17 ...Oxygen pump element 16.18...
...Battery element 19.20...Heater element 21...Current supply circuit 30...Control circuit

Claims (2)

【特許請求の範囲】[Claims] (1)内燃エンジンの排気系に設けられて排気ガス中の
酸素濃度を検出しかつこの酸素濃度に比例した出力信号
を発生する酸素濃度センサを含む内燃エンジン用酸素濃
度検出装置であって、前記内燃エンジンの複数の運転パ
ラメータを検出する手段と、前記複数の運転パラメータ
に基づく補正係数を得てこの補正係数を基づいて前記酸
素濃度センサの出力信号を補正する手段とを備えたこと
を特徴とする内燃エンジン用酸素濃度検出装置。
(1) An oxygen concentration detection device for an internal combustion engine, which includes an oxygen concentration sensor installed in the exhaust system of the internal combustion engine to detect the oxygen concentration in the exhaust gas and generate an output signal proportional to the oxygen concentration, the device comprising: It is characterized by comprising means for detecting a plurality of operating parameters of the internal combustion engine, and means for obtaining a correction coefficient based on the plurality of operating parameters and correcting the output signal of the oxygen concentration sensor based on the correction coefficient. Oxygen concentration detection device for internal combustion engines.
(2)前記補正係数は前記複数の運転パラメータに対応
して予めメモリに記憶されていることを特徴とする特許
請求の範囲第1項記載の内燃エンジン用酸素濃度検出装
置。
(2) The oxygen concentration detection device for an internal combustion engine according to claim 1, wherein the correction coefficient is stored in a memory in advance in correspondence with the plurality of operating parameters.
JP61041268A 1986-02-26 1986-02-26 Oxygen concentration detector for internal combustion engine Expired - Fee Related JPH07117515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61041268A JPH07117515B2 (en) 1986-02-26 1986-02-26 Oxygen concentration detector for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61041268A JPH07117515B2 (en) 1986-02-26 1986-02-26 Oxygen concentration detector for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS62198747A true JPS62198747A (en) 1987-09-02
JPH07117515B2 JPH07117515B2 (en) 1995-12-18

Family

ID=12603692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61041268A Expired - Fee Related JPH07117515B2 (en) 1986-02-26 1986-02-26 Oxygen concentration detector for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07117515B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110407176A (en) * 2018-04-28 2019-11-05 深圳市美好创亿医疗科技有限公司 Obtain the oxygenerator and method for producing oxygen through of high oxygen concentration processed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110407176A (en) * 2018-04-28 2019-11-05 深圳市美好创亿医疗科技有限公司 Obtain the oxygenerator and method for producing oxygen through of high oxygen concentration processed
CN110407176B (en) * 2018-04-28 2023-02-17 深圳市美好创亿医疗科技股份有限公司 Oxygen generator for obtaining high oxygen generation concentration and oxygen generation method

Also Published As

Publication number Publication date
JPH07117515B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
US4724814A (en) System of abnormality detection for oxygen concentration sensor
US4777922A (en) Method of abnormality detection of oxygen concentration sensor
US4905652A (en) Device for measuring a component of a gaseous mixture
US4819602A (en) System of abnormality detection for oxygen concentration sensor
JPH07119741B2 (en) Output correction method for proportional exhaust concentration sensor
JPH07119742B2 (en) Degradation determination method for oxygen concentration detector
US4860712A (en) Method of controlling an oxygen concentration sensor
US4719895A (en) Method for controlling an oxygen concentration sensor
JP2553509B2 (en) Air-fuel ratio controller for internal combustion engine
US4760822A (en) Method for controlling the air/fuel ratio of an internal combustion engine with a fuel cut operation
US4787966A (en) Oxygen concentration sensor for an internal combustion engine
US6708681B2 (en) Method and device for feedback controlling air-fuel ratio of internal combustion engine
JPH0343459B2 (en)
US4763628A (en) Method of compensating output from oxygen concentration sensor of internal combustion engine
JPS62129751A (en) Regulation of oxygen concentration detector
JPS62198747A (en) Oxygen concentration detecting device for internal combustion engine
US5199409A (en) Air/fuel ratio control system for internal combustion engine
US4732127A (en) Air/fuel ratio control system for an internal combustion engine with a function for preventing the blackening phenomenon of oxygen concentration sensor
JPS5859321A (en) Method for controlling air-fuel ratio in internal-combustion engine
JP2780710B2 (en) Air-fuel ratio control method for internal combustion engine
JPS62126235A (en) Air-fuel ratio control device
JPS62214249A (en) Method for correcting output of oxygen density sensor for internal combustion engine
JPS6276449A (en) Method for controlling oxygen concentration sensor
JPH0746091B2 (en) Oxygen concentration detector
JPS62218634A (en) Correction of output from oxygen density sensor for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees