JPS62198513A - Damping force control device for hydraulic buffer - Google Patents
Damping force control device for hydraulic bufferInfo
- Publication number
- JPS62198513A JPS62198513A JP4117586A JP4117586A JPS62198513A JP S62198513 A JPS62198513 A JP S62198513A JP 4117586 A JP4117586 A JP 4117586A JP 4117586 A JP4117586 A JP 4117586A JP S62198513 A JPS62198513 A JP S62198513A
- Authority
- JP
- Japan
- Prior art keywords
- damping force
- vehicle
- running condition
- compression
- hard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013016 damping Methods 0.000 title claims abstract description 70
- 230000006835 compression Effects 0.000 claims abstract description 41
- 238000007906 compression Methods 0.000 claims abstract description 41
- 230000035939 shock Effects 0.000 claims description 28
- 239000006096 absorbing agent Substances 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 7
- 230000001133 acceleration Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000035936 sexual power Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vehicle Body Suspensions (AREA)
- Fluid-Damping Devices (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、自動車等における油圧緩衝器の減衰力を伸長
側と圧縮側とで、それぞれ別個に制御可能な減衰力制御
装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a damping force control device that can separately control the damping force of a hydraulic shock absorber in an automobile or the like on an extension side and a compression side.
(従来の技術)
近時、自動車の基本性能に対する要求が高度化しており
、走行性、乗心地、操安性等の何れの課題についても高
レベルでその達成が求められる傾向にある。(Prior Art) In recent years, the requirements for the basic performance of automobiles have become more sophisticated, and there is a tendency for all issues such as driving performance, ride comfort, and handling stability to be achieved at a high level.
これらの課題に対応するために、油圧緩衝器の減衰力を
走路状態や走行状態等に応じて適切に選択できるアクチ
ュエータ内蔵の油圧緩衝器の減衰力制御装置が実用化さ
れており、例えばそのようなものとして特開昭58−1
42047号公報に記載のものがある。In order to address these issues, damping force control devices for hydraulic shock absorbers with a built-in actuator that can appropriately select the damping force of the hydraulic shock absorbers according to road conditions, driving conditions, etc. have been put into practical use. Unexamined Japanese Patent Publication No. 58-1
There is one described in Japanese Patent No. 42047.
この減衰力制御装置では、車両の走行状態を検出し、こ
の検出信号に基づいて走行状態に応じた減衰力の制御値
を演算する。そして、この演算結果に基づいて油圧緩衝
器のアクチュエータを操作してその減衰力を可変制御し
ている。This damping force control device detects the running state of the vehicle, and calculates a damping force control value according to the running state based on this detection signal. Based on this calculation result, the actuator of the hydraulic shock absorber is operated to variably control the damping force.
(発明が解決しようとする問題点)
しかしながら、このような従来の油圧緩衝器の減衰力制
御装置にあっては、油圧緩衝器の減衰力を伸長側と圧縮
側とで区別せずに同一に制御する(すなわち、同一の態
様で制御する)という構成になっていたため、運転性の
より一層の向上という観点からみると、次のような点で
改善の余地ありと考えられる。(Problem to be Solved by the Invention) However, in such a conventional damping force control device for a hydraulic shock absorber, the damping force of the hydraulic shock absorber is not differentiated between the extension side and the compression side, but is the same. Since the configuration is such that the vehicle is controlled (that is, controlled in the same manner), from the viewpoint of further improving drivability, it is thought that there is room for improvement in the following points.
例えば、油圧緩衝器の減衰力をハード(H)とソフト〔
S〕の2段階に切換える構造のものにおいて、減衰力が
伸長側、圧縮側の何れもハード(H)に設定されている
場合、
(1)ブレーキ時の前輪側では油圧緩衝器の荷重分担が
増大するが、このとき伸長側の減衰力もハード(H)に
なっているので、路面の凹凸のショックが吸収されにく
く乗心地が悪くなる。For example, the damping force of a hydraulic shock absorber can be divided into hard (H) and soft [
S], if the damping force is set to hard (H) on both the extension side and the compression side, (1) The load sharing of the hydraulic shock absorber on the front wheel side during braking is However, since the damping force on the extension side is also hard (H) at this time, it is difficult to absorb the shock from unevenness on the road surface, resulting in poor ride comfort.
(n)一方、上記(1)とは逆に後輪側では、荷重負担
が減少するため、圧縮側の減衰力が同じくハードCI(
)になっていると、路面の凹凸に車輪が追従できず操安
性と乗心地がともに悪化する。(n) On the other hand, contrary to (1) above, on the rear wheel side, the load burden is reduced, so the damping force on the compression side is the same as the hard CI (
), the wheels cannot follow the unevenness of the road surface, resulting in poor handling and ride comfort.
このように、減衰力が何れの側も同一の制′4DB様に
なっていると、乗心地のより一層の向上という面で改善
が望ましい。In this way, if the damping force is the same on both sides, it is desirable to improve the riding comfort further.
(発明の目的)
そごで本発明は、車両の走行状態を検出し、この走行状
態に応じて油圧緩衝器の伸長側と圧縮側のそれぞれの減
衰力を別々に可変とすることにより、きめ細かな減衰力
制御を可能として、ブレーキ時、加速時、コーナリング
時および乗員数や荷重増加時等における車両の乗心地の
より一層の向上をはかることを目的としている。(Objective of the Invention) Therefore, the present invention detects the running state of the vehicle and varies the damping force on the extension side and the compression side of the hydraulic shock absorber separately according to the running state. The purpose of this technology is to enable effective damping force control to further improve vehicle ride comfort during braking, acceleration, cornering, and when the number of passengers or load increases.
(問題点を解決するための手段)
本発明による油圧緩衝器の減衰力制御装置は上記目的達
成のため、その基本概念図を第1図に示すように、車両
の走行状態を検出する走行状態検出手段aと、車両の走
行状態に応じて減衰力可変手段Cの伸長側と圧縮側のそ
れぞれの減衰力を別々に可変とするための制御値を演算
する制御手段すと、制御手段すの制御値に基づいて伸長
側と圧縮側のそれぞれの減衰力を別々に可変とする減衰
力可変手段Cと、を備えている。(Means for Solving the Problems) In order to achieve the above object, the damping force control device for a hydraulic shock absorber according to the present invention detects the running state of the vehicle, as shown in FIG. A detection means a, a control means for calculating control values for separately varying the damping force on the extension side and the compression side of the damping force variable means C according to the running state of the vehicle, and the control means a. The damping force variable means C is provided to separately vary the damping force on the extension side and the compression side based on the control value.
(作用)
本発明では、走行状態検出手段によって車両の走行状態
が検出され、この検出信号から油圧緩衝器の伸長側と圧
縮側のそれぞれの減衰力を可変とするための制御値が乗
心地を高めるように別々に演算される。そして、この制
御値に基づいて伸長側と圧縮側のそれぞれの減衰力が独
立して適切に制御させる。(Function) In the present invention, the running state of the vehicle is detected by the running state detecting means, and control values for varying the damping forces on the extension side and the compression side of the hydraulic shock absorber are determined based on this detection signal to adjust ride comfort. are calculated separately to increase. Then, based on this control value, the damping forces on the expansion side and the compression side are appropriately controlled independently.
したがって、走行状態に応じて最も適切な伸長側と圧縮
側の減衰力の組合せが得られる。その結果、走行安定性
と乗心地の向上とを図ることができる。Therefore, the most appropriate combination of damping forces on the extension side and compression side can be obtained depending on the driving condition. As a result, it is possible to improve running stability and ride comfort.
(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.
第2〜6図は本発明の第1実施例を示す図である。2 to 6 are diagrams showing a first embodiment of the present invention.
まず、構成を説明する。第2図において、■は走行状態
検出手段としてのセンサ群であり、センサ群1は、例え
ば別表筒1のセンシング手段の項目に示すようにスピー
ドセンサ、アクセルペダルスイッチ
ピックアップ等複数のセンサにより構成される。First, the configuration will be explained. In Fig. 2, ■ is a sensor group as a driving state detection means, and sensor group 1 is composed of a plurality of sensors such as a speed sensor and an accelerator pedal switch pickup, as shown in the item of sensing means in Appendix 1. Ru.
センサ群1は車両の所定位置に設置され、車両の走行状
態を検出してセンサ出力Ssをコントロールユニット2
に出力する。The sensor group 1 is installed at a predetermined position on the vehicle, detects the running state of the vehicle, and sends the sensor output Ss to the control unit 2.
Output to.
コントロールユニット2は制御手段としての機能を有し
、マイクロコンピュータにより構成される。そして、コ
ントロールユニット2は内部のメモリに格納されている
プログラムに従ってセンサ群1から車両の走行状態に関
する情報を読み込むとともに、このセンサ情報に基づい
て油圧緩衝器(減衰力可変手段)3の伸長側と圧縮側に
おけるそれぞれの減衰力を別々に可変とするための処理
値を演算し、その演算結果に応じた制御信号SAを油圧
緩衝器3に出力する。油圧緩衝器は制御信号SAに基づ
いて伸長側と圧縮側のそれぞれの減衰力を別々に可変と
するもので、例えばダンパーオイルの通路面積を電磁弁
により各側共別々に加減して減衰力を変えるタイプのも
のが用いられる。The control unit 2 has a function as a control means and is composed of a microcomputer. Then, the control unit 2 reads information regarding the running state of the vehicle from the sensor group 1 according to a program stored in the internal memory, and also adjusts the extension side of the hydraulic shock absorber (damping force variable means) 3 based on this sensor information. Processing values for separately varying each damping force on the compression side are calculated, and a control signal SA corresponding to the calculation result is output to the hydraulic shock absorber 3. Hydraulic shock absorbers vary the damping force on the extension side and compression side separately based on the control signal SA. For example, the damping force can be adjusted by adjusting the damper oil passage area on each side separately using a solenoid valve. A variable type is used.
この種のものとしては、本出願と略同時期に本出願人が
提案している。This type of device was proposed by the present applicant at approximately the same time as the present application.
次に作用を説明する。Next, the effect will be explained.
第3図はコントロールユニット2より実行される減衰力
制御のプログラムを示すフローチャートであり、図中P
、〜P、はフローの各ステップを示している。なお、以
下の説明においては、説明の便宜上必要に応じて伸長側
、圧縮側をそれぞれ単に伸側、圧倒と略して用いること
にするとともに、ハード〔H〕、ソフト(S)という表
現については適宜ハード、ソフトとしてそれぞれ〔■]
〕、(S)を略す。FIG. 3 is a flowchart showing a damping force control program executed by the control unit 2.
, ~P, indicate each step of the flow. In the following explanation, for convenience of explanation, the expansion side and compression side will be simply referred to as expansion side and overwhelming, respectively, and the expressions hard [H] and soft (S) will be used as appropriate. Both hardware and software [■]
], (S) is omitted.
まず、Plでスピードセンサにより車両が停車中である
か否かを判別し、停車中のときは車両の状態が別表第1
に示す■に該当すると判断してP2に進み、そうでない
ときはP3に進む。なお、車両の走行状態は別表第1に
示すように■〜◎という符号に対応させて表し、以後フ
ロー中でも■〜@という表現を用いる。P2では伸側と
圧側とも全てハード(H)に設定する。これにより、人
の乗降時の車のゆれがおさえられることや次回発′進時
における車体状態の安定化が図られる。すなわち、何れ
もハードであるから車体のフロント側の急激な浮上りが
おさえられる(別表第2参照)。First, the speed sensor at Pl determines whether or not the vehicle is stopped, and if the vehicle is stopped, the state of the vehicle is
If it is determined that the condition (■) shown in (3) is applicable, the process proceeds to P2; otherwise, the process proceeds to P3. Note that the running state of the vehicle is expressed in correspondence with the symbols ■ to ◎, as shown in Appendix 1, and the expressions ■ to @ will be used hereinafter in the flow as well. In P2, both the extension side and compression side are set to hard (H). This suppresses the shaking of the vehicle when people get on and off the vehicle, and stabilizes the vehicle body the next time it starts. In other words, since they are both hard, sudden lifting of the front side of the vehicle body can be suppressed (see Appendix 2).
P3ではアクセル・ペダル・スイッチにより車両が加速
中であるか否かを判別し、加速中であればP4に進み、
加速中でなければP、に進む。In P3, the accelerator pedal switch determines whether the vehicle is accelerating or not, and if it is accelerating, the process advances to P4.
If it is not accelerating, proceed to P.
P4では操舵角センサにより車両が旋回中か否かを判別
し、旋回中であれば走行状態■に該当するからP2に進
んで上述の通り減衰力を全てハードに設定し、旋回中で
ないとき(すなわち直進の加速時)は走行状態■に該当
するのでP6で別表第1に示す処理を実行する。■の場
合の具体的制御はフロント(前輪)部の伸側をハードに
、圧側をソフト(S)にするとともに、リア(後輪)部
の伸側をソフト、圧倒をハードに設定する。In P4, the steering angle sensor determines whether the vehicle is turning or not. If the vehicle is turning, it corresponds to driving state ■, so proceed to P2 and set all damping forces to hard as described above. In other words, when the vehicle is accelerating straight ahead), this corresponds to the driving state (2), so the process shown in Appendix 1 is executed at P6. In case (2), the specific control is to set the front (front wheel) part's rebound side to hard and the compression side to soft (S), and set the rear (rear wheel)'s rebound side to soft and overwhelming to hard.
P、ではブレーキ・ランプ・スイッチにより車両がブレ
ーキ中であるか否かを判別し、ブレーキ中であればP7
に進み、ブレーキ中でなければP8に進む。At P, the brake lamp switch determines whether the vehicle is braking or not, and if the vehicle is braking, P7
Proceed to P8 if braking is not in progress.
P7ではP4と同様の手段で旋回中であるか否かを判別
し、旋回中であれば、走行状態■に該当するとしてPt
に進み、そうでないとき(すなわち、ブレーキ時)は前
進時Oあるいは後進時・に該当するとしてP6に進む。In P7, it is determined whether or not it is turning using the same means as in P4, and if it is turning, it is determined that it corresponds to the driving state ■ and Pt
If this is not the case (that is, when braking), it is assumed that the vehicle is moving forward (O) or backward (O), and the process proceeds to P6.
この場合、別表第1に示すように0−.0ではフロント
部とリア部の減衰力がそれぞれ伸側と圧側で逆になるよ
うに設定され、従来のように共に同一の制御態様となっ
ているのと異なる。したがって、従来の問題点として指
摘した例によると、本実施例では前進力を伸側かソフト
、圧倒がハードになっているため、路面の凹凸のショッ
クが極めてスムーズに吸収されて乗心地が格段と向上す
る。一方、リア部ではこれとは逆に伸側かハード、圧側
かソフトになっているため、路面の凹凸に車輪を適切に
追従させることができ、操安性と乗心地が共に向上する
。In this case, as shown in Attached Table 1, 0-. At 0, the damping forces at the front and rear sections are set to be opposite on the expansion side and the compression side, which is different from the conventional control mode in which the damping forces are the same for both. Therefore, according to the example pointed out as a conventional problem, in this example, the forward force is soft on the rebound side and hard on the overpowering side, so the shock from unevenness on the road surface is absorbed extremely smoothly and the riding comfort is significantly improved. and improve. On the other hand, the rear section is hard on the rebound side and soft on the compression side, allowing the wheels to properly follow uneven road surfaces, improving both steering and ride comfort.
PIlではP4およびP、と同様の手段で旋回中である
か否かを判別し、旋回中であればP、に進み、そうでな
いときはP、。に進む。In PI1, it is determined whether or not the vehicle is turning using the same means as in P4 and P, and if the vehicle is turning, the program proceeds to P; otherwise, the program proceeds to P. Proceed to.
P、では操舵角センサにより旋回が右方向か否かを判別
し、右方向であれば走行状LQ(jEE)に該当すると
してP、に進み、右方向でなければ走行状(右輪)の伸
側をハード、圧倒をソフトにするとともに、LH(左輪
)の伸側をソフト、圧倒をハードとする。また、Oのと
きはフロント部とリア部のRHの伸側を共にソフト、圧
倒を共にハードとし、LHの伸側をハード、圧倒をソフ
トにそれぞれ設定する。At P, the steering angle sensor determines whether the turning is to the right or not. If the turning is to the right, it is determined that the turning corresponds to driving condition LQ (jEE) and the process proceeds to P. If it is not to the right, it is determined whether the turning is to the right or not. In addition to making the rebound side hard and the overwhelming one soft, the LH (left wheel)'s rebound side is soft and the overwhelming one is hard. Further, in the case of O, the front and rear RH's RH rebound sides are both set to soft, the overwhelm is both set to hard, and the LH's rebound side is set to hard, and the overwhelm is set to soft.
一方、P8では旋回中でないときは走行状80に該当す
ると判別し、PIGで伸側、圧側ともすべてをソフトに
設定してリターンする。On the other hand, in P8, when the vehicle is not turning, it is determined that the running condition corresponds to 80, and PIG is set to soft on both the extension side and the compression side, and the process returns.
このように、車両の各種走行状態■〜@に応じて油圧緩
衝器3の減衰力が伸側、圧倒とも別々の態様で制御され
る。したがって、上述の如くブレーキ時の状態を詳細に
説明したように、他の各種走行状態にあっても車両の運
転性を格段に向上させることができる。すなわち、ブレ
ーキ時、加速時、コーナリング時およびそれらの組合せ
時における乗心地と操安性とをより一層向上させること
ができる。In this way, the damping force of the hydraulic shock absorber 3 is controlled in different manners on the rebound side and on the overwhelming side, depending on the various running conditions of the vehicle. Therefore, as described above in detail regarding the state during braking, the drivability of the vehicle can be significantly improved even in various other running states. That is, it is possible to further improve ride comfort and maneuverability during braking, acceleration, cornering, and combinations thereof.
なお、本実施例ではセンサ群1として別表第1に示すも
のを用い、減衰力可変の態様も同表1に示す通りの制御
としているが、本発明ではこれらの制御態様には限られ
ない。本発明の目的の範囲内において制御態様が種々変
更可能であることは勿論である。本実施例ではすべて走
行状態を網羅できないという事情に濫み、主要な状態を
例として挙げたものである。In this embodiment, the sensor group 1 shown in Attached Table 1 is used, and the damping force variable mode is also controlled as shown in Table 1, but the present invention is not limited to these control modes. It goes without saying that the control mode can be modified in various ways within the scope of the purpose of the present invention. In this embodiment, since it is not possible to cover all driving conditions, major conditions are listed as examples.
第4〜8図は本発明の第2実施例を示す図である。本実
施例は走行状態検出手段として車高センサを用いた車両
への適用例であり、主に車高の変化に即して減衰力が最
適に可変とされる。4 to 8 are diagrams showing a second embodiment of the present invention. This embodiment is an example of application to a vehicle using a vehicle height sensor as a driving state detection means, and the damping force is optimally varied mainly in accordance with changes in vehicle height.
本実施例ではそのハード的構成は第1実施例と同様であ
るため省略し、制御内容を詳述する。In this embodiment, the hardware configuration is the same as that of the first embodiment, so it will be omitted, and the details of the control will be explained in detail.
車高の検出は車高センサにより行い、センサ出力から車
高の変位を演算する。一方、停車時においてフロント・
リアの荷重分担が相等しいときのセンサ出力に基づいて
平均車高を演算する。以上の演算結果を用いて伸側、圧
側の減衰力がそれぞれ最適となるような組合せを演算す
る。The vehicle height is detected by a vehicle height sensor, and the displacement of the vehicle height is calculated from the sensor output. On the other hand, when stopped, the front
The average vehicle height is calculated based on the sensor output when the rear load sharing is equal. Using the above calculation results, a combination is calculated so that the damping force on the expansion side and the compression side are respectively optimal.
まず、その組合せの第1の態様については第4図のよう
に示される。すなわち、第4図に示すように、標準車高
を中心とする所定の車高幅W内では一般可変域として伸
側、圧倒とも従来と同様に同一の制御態様(ハード又は
ソフトに統一)に制御される。一方、平均車高が上記車
高幅Wよりも低い状態では圧側の減衰力が伸側に比して
一ランクソフトな領域に設定され、また同車高幅Wより
高い状態では伸側が圧側よリーランクソフトな領域に設
定される。これにより、車高の変位状態に応じて乗心地
を快適とするようなきめの細かい減衰ノコが得られ、乗
心地がより一層向上する。First, the first aspect of the combination is shown as shown in FIG. In other words, as shown in Fig. 4, within a predetermined vehicle height width W centered around the standard vehicle height, the same control mode (unified as hard or soft) is used for both rebound and overwhelming as in the general variable range. controlled. On the other hand, when the average vehicle height is lower than the vehicle height width W, the damping force on the compression side is set to be one rank softer than the damping force on the rebound side, and when the average vehicle height is higher than the vehicle height width W, the damping force on the compression side is set to be one rank softer than the damping force on the compression side. It is set in a soft ranking area. This provides a finely tuned damping saw that makes the ride comfortable according to the state of displacement of the vehicle height, further improving the ride comfort.
また、上記組合せの第2の態様については第5図のよう
に示される。第5図においては、第4図における高側、
低側のそれぞれのソフト域の限界側に、さらに伸側、圧
倒を共にハードに設定するというハード領域が設けられ
る。このようにすることにより、第4図の場合に比して
次のような利点がある。Further, a second aspect of the above combination is shown as shown in FIG. In Fig. 5, the high side in Fig. 4,
At the limit side of each of the soft areas on the low side, there is a hard area where both the extension side and the overpowering side are set to hard. By doing so, there are the following advantages compared to the case shown in FIG.
すなわち、第4図に示す第1の態様では乗心地の向上は
格段のものがあるが、油圧緩衝器3のストロークが圧縮
気味の状態のとき圧側減衰力を伸側に比して弱くソフト
にしているため、圧縮方向のストロークが大きくなりや
すい。このため、平均車高がさらに圧縮方向へ移行した
場合に、油圧緩衝器3のピストンロンドがストローク端
に衝突するおそれがある。したがって、減衰力を最大と
して(ハードとして)、圧縮時における上記衝突のおそ
れを回避している。これは、伸側についても同様である
。That is, in the first mode shown in FIG. 4, the riding comfort is significantly improved, but when the stroke of the hydraulic shock absorber 3 is in a state of compression, the compression side damping force is made weaker and softer than that on the rebound side. Therefore, the stroke in the compression direction tends to become large. For this reason, when the average vehicle height moves further in the compression direction, there is a risk that the piston rond of the hydraulic shock absorber 3 will collide with the stroke end. Therefore, the damping force is maximized (hard) to avoid the risk of collision during compression. This also applies to the expansion side.
第6図は上記のような制御態様の基で車両が停車状態か
ら定速状に至るまでの車高の変化を時間の経過に沿って
グラフ化したものであり、その制御時の状況は別表第2
のように示される。同表では、特に加速時におけるフロ
ント部の伸側および圧側の減衰力の選択に限定して作用
説明がなされている。Figure 6 is a graph showing changes in vehicle height over time from a stopped state to a constant speed state based on the control mode described above, and the situation during the control is shown in a separate table. Second
It is shown as follows. In this table, the explanation is limited to the selection of the damping force on the extension side and the compression side of the front section especially during acceleration.
但し、L0〜tl :停車状態
1、−12 :加速状態
t2〜t3 ニ一定速状態
■、■:路面の凹凸が比較的小さい場合■、■:路面の
凹凸が比較的大きい場合第6図において、停車時(to
〜t、)には路面からの入力がないので、伸側、圧側と
もハードまたはソフトのどちらに設定してもよい。また
、一定速時(ttxt、)には路面の凹凸のショックを
吸収するために■(すなわち路面の凹凸が大)であれば
伸側、圧側ともソフトに設定し、■(同じく凹凸が小)
であれば凹凸のショックが小さいので、ハード、ソフト
どちらに設定してもよい。したがって、これらの状態の
ときは従来と全く同様となる。一方、加速時(t、xt
、)には、フロント急激な浮上りを抑制し、車体の状態
を安定化させるために伸側、圧側ともハードにする。However, L0 to tl: Stopped state 1, -12: Acceleration state t2 to t3 D. Constant speed state ■, ■: When the unevenness of the road surface is relatively small ■, ■: When the unevenness of the road surface is relatively large In Fig. 6 , when stopped (to
~t, ), there is no input from the road surface, so both the expansion side and the compression side may be set to either hard or soft. In addition, at constant speed (ttxt), in order to absorb the shock of uneven road surfaces, if ■ (that is, the unevenness of the road surface is large), both the rebound and compression sides are set to soft, and ■ (also when the unevenness is small)
If so, the shock from unevenness is small, so you can set it to either hard or soft. Therefore, these states are exactly the same as before. On the other hand, during acceleration (t, xt
,), both the rebound and compression sides are made harder to suppress the sudden rise of the front and stabilize the condition of the car body.
また、■(凹凸小)において平均車高が一定値を越えた
ときは乗心地向上のため伸側のみソフトに変え、■(凹
凸大)においては伸側のみソフトとする。その結果、加
速時(1+〜tz)には従来例と比較して、加速中にお
ける車体の安定化を達成しつつ路面の凹凸のショックを
より一層減衰できるという効果が得られる。In addition, when the average vehicle height exceeds a certain value in ■ (small unevenness), only the rebound side is changed to soft to improve ride comfort, and in ■ (large unevenness), only the rebound side is made soft. As a result, during acceleration (1+ to tz), compared to the conventional example, it is possible to achieve the effect of stabilizing the vehicle body during acceleration and further attenuating shocks from unevenness on the road surface.
さらに、第3の態様としては例えば次のようなものがあ
る。すなわち、平均車高が低い(車両の荷重増)ときは
路面の凹凸による車両の上下振動のエネルギ量が増大し
、油圧緩衝器3の吸収エネルギ量も大きくなる。したが
って、同一の減衰力では上下振動を吸収する時間が長く
なり、乗心地の悪化を招来する。そこで荷重増のときに
は減衰力を圧側、伸側ともに高減衰力の領域、すなわち
ハードにする。なお、この荷重増は停車時において前・
後の平均車高が両方とも低(なった状態により判断する
。Furthermore, as a third aspect, there is the following, for example. That is, when the average vehicle height is low (vehicle load increases), the amount of energy of vertical vibration of the vehicle due to unevenness of the road surface increases, and the amount of energy absorbed by the hydraulic shock absorber 3 also increases. Therefore, with the same damping force, it takes a longer time to absorb vertical vibrations, leading to deterioration of riding comfort. Therefore, when the load increases, the damping force is set to a high damping force region on both the compression side and the rebound side, that is, hard. Please note that this load increase is due to the front and rear wheels when stopped.
Both average vehicle heights are low (judge based on the condition).
このように、本実施例では乗員・荷重によりきめの細か
い減衰力の選定が行われ、乗心地をより一層向上させる
ことができる。In this way, in this embodiment, the damping force is selected in detail depending on the occupant and the load, and the riding comfort can be further improved.
なお、上記各実施例では減衰力可変手段として油圧緩衝
器の減衰力を圧倒、伸側ともそれぞれハード〔H〕、ソ
フl−(S)の2段階に切換える例を示したが、減衰力
の切換えはこれに限定されるものではない。例えば、圧
倒、伸側ともにハード〔H〕、ミディアム〔M〕、ソフ
ト(S)の3段階に切換え可能なものにおいて、乗員(
および荷重)が少ない時には圧側、伸側とも3段階に切
換のうち、ソフト(S)とミディアムCM)の組合せを
それぞれ選択し、乗員(および荷重)が多い時には圧倒
、伸側ともソフト(S)を選択しないように減衰力を組
合せてもよい。また、加速時においてはフロント部の圧
側をハード〔H〕、伸側をミディアムCM)に設定する
等減衰力を圧側、伸側とも多段切換や連続可変とするこ
とによって、より精密な減衰力制御を実現したものにも
本発明の適用が可能となることは言うまでもない。In each of the above embodiments, the damping force of the hydraulic shock absorber is overpowered as the damping force variable means, and the damping force is switched to two stages, hard [H] and soft l-(S), respectively on the rebound side. Switching is not limited to this. For example, in a vehicle where both the overwhelming and rebound sides can be switched to three levels: hard [H], medium [M], and soft (S), the occupant (
When the number of occupants (and load) is small, both the compression side and the extension side are switched in three stages, and a combination of soft (S) and medium CM) is selected, and when the number of occupants (and load) is large, the combination is selected between overwhelming and soft (S) for both the compression side and the extension side. It is also possible to combine damping forces so as not to select . In addition, during acceleration, the damping force can be switched in multiple stages or continuously variable on both the compression and rebound sides, such as setting the compression side of the front section to hard [H] and the rebound side to medium CM), allowing for more precise damping force control. It goes without saying that the present invention can also be applied to those that have achieved this.
(効果)
本発明によれば、車両の走行状態に応じて圧側、伸側と
も減衰力をそれぞれ独立に可変としているので、減衰力
をきめ細かく最適な組合せとすることができ、乗心地と
操安性のより一層の向上を図ることができる。(Effects) According to the present invention, since the damping force on both the compression side and the rebound side is independently variable according to the running condition of the vehicle, the damping force can be finely tuned to the optimum combination, improving ride comfort and handling. It is possible to further improve sexual performance.
第1図は本発明の基本概念図、第2.3図は本発明に係
る油圧緩衝器の減衰力制御装置の第1実施例を示す図で
あり、第2図はその全体構成図、第3図はその減衰力可
変制御のプログラムを示すフローチャート、第4〜6図
は本発明に係る油圧緩衝器の減衰力制御装置の第2実施
例を示す図であり、第4図はその平均車高と減衰力の制
御値との1例を示す図、第5図はその平均車高と減衰力
の制御値との他の例を示す図、第6図は車高の変化を示
すタイムチャートである。
1・・・・・・センサ群(走行状態検出手段)、2・・
・・・・コントロールユニット(制御B 手段)、3・
・・・・・油圧緩衝器(減衰力可変手段)。FIG. 1 is a basic conceptual diagram of the present invention, FIGS. 2 and 3 are diagrams showing a first embodiment of a damping force control device for a hydraulic shock absorber according to the present invention, and FIG. 2 is an overall configuration diagram thereof, and FIG. FIG. 3 is a flowchart showing a program for variable damping force control, FIGS. 4 to 6 are diagrams showing a second embodiment of the damping force control device for a hydraulic shock absorber according to the present invention, and FIG. Fig. 5 is a diagram showing another example of the average vehicle height and damping force control value, Fig. 6 is a time chart showing changes in vehicle height. It is. 1...Sensor group (running state detection means), 2...
...Control unit (control B means), 3.
...Hydraulic shock absorber (damping force variable means).
Claims (1)
圧縮側のそれぞれの減衰力を別々に可変とするための制
御値を演算する制御手段と、c)制御手段の制御値に基
づいて伸長側と圧縮側のそれぞれの減衰力を別々に可変
とする減衰力可変手段と、 を備えたことを特徴とする油圧緩衝器の減衰力制御装置
。[Claims] A) a running state detection means for detecting the running state of the vehicle; and b) a damping force variable means for varying the damping force on the extension side and the compression side separately according to the running state of the vehicle. c) a damping force variable means that separately varies the damping force on the extension side and the compression side based on the control value of the control means; A damping force control device for a hydraulic shock absorber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4117586A JPS62198513A (en) | 1986-02-25 | 1986-02-25 | Damping force control device for hydraulic buffer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4117586A JPS62198513A (en) | 1986-02-25 | 1986-02-25 | Damping force control device for hydraulic buffer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62198513A true JPS62198513A (en) | 1987-09-02 |
Family
ID=12601090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4117586A Pending JPS62198513A (en) | 1986-02-25 | 1986-02-25 | Damping force control device for hydraulic buffer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62198513A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01152811U (en) * | 1988-04-15 | 1989-10-20 | ||
JPH01152810U (en) * | 1988-04-15 | 1989-10-20 | ||
JPH01152812U (en) * | 1988-04-15 | 1989-10-20 | ||
JPH01158209U (en) * | 1988-04-19 | 1989-11-01 | ||
JPH01158210U (en) * | 1988-04-19 | 1989-11-01 | ||
FR2665670A1 (en) * | 1990-08-07 | 1992-02-14 | Bosch Gmbh Robert | DEVICE FOR DAMPING MOTION PHASES. |
WO1996008385A1 (en) * | 1994-09-14 | 1996-03-21 | Unisia Jecs Corporation | Vehicle suspension apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60199710A (en) * | 1984-03-22 | 1985-10-09 | Nissan Motor Co Ltd | Roll rate control device in car |
-
1986
- 1986-02-25 JP JP4117586A patent/JPS62198513A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60199710A (en) * | 1984-03-22 | 1985-10-09 | Nissan Motor Co Ltd | Roll rate control device in car |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01152811U (en) * | 1988-04-15 | 1989-10-20 | ||
JPH01152810U (en) * | 1988-04-15 | 1989-10-20 | ||
JPH01152812U (en) * | 1988-04-15 | 1989-10-20 | ||
JPH01158209U (en) * | 1988-04-19 | 1989-11-01 | ||
JPH01158210U (en) * | 1988-04-19 | 1989-11-01 | ||
FR2665670A1 (en) * | 1990-08-07 | 1992-02-14 | Bosch Gmbh Robert | DEVICE FOR DAMPING MOTION PHASES. |
WO1996008385A1 (en) * | 1994-09-14 | 1996-03-21 | Unisia Jecs Corporation | Vehicle suspension apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3125603B2 (en) | Suspension control device | |
CN102729761B (en) | Draft hitch | |
JPS62139709A (en) | Active suspension system for automobile | |
US12017497B2 (en) | Vehicle control device | |
JP3083113B2 (en) | Vehicle suspension system | |
JPS62198513A (en) | Damping force control device for hydraulic buffer | |
JP2012136111A (en) | Vehicle control system and apparatus | |
JPS62253506A (en) | Damping force control method for vehicle | |
JPH06219125A (en) | Method and device for closed and/or open loop control of vehicle chassis | |
JP4621582B2 (en) | Control device for variable damping force damper | |
JP2998224B2 (en) | Vehicle suspension control device | |
JP3061841B2 (en) | Vehicle attitude control device | |
JPH0986131A (en) | Suspension control device | |
JPH07156628A (en) | Suspension control device | |
JP2002331816A (en) | Suspension characteristic control device for vehicle | |
JP3139579B2 (en) | Control device for vehicle suspension | |
KR102716490B1 (en) | Vehicle integrated control method and system | |
JPH07205628A (en) | Suspension controller | |
KR100770308B1 (en) | Method for setting damping force in electric suspension controlling system | |
JP2561869Y2 (en) | Vehicle suspension system | |
JP2529184Y2 (en) | Active suspension system for vehicles | |
JP3308413B2 (en) | Vehicle electronically controlled suspension | |
JP3016528B2 (en) | Vehicle suspension system | |
JP3314215B2 (en) | Suspension control device | |
JPH0123846Y2 (en) |