JPS62198095A - X-ray equipment - Google Patents

X-ray equipment

Info

Publication number
JPS62198095A
JPS62198095A JP3919686A JP3919686A JPS62198095A JP S62198095 A JPS62198095 A JP S62198095A JP 3919686 A JP3919686 A JP 3919686A JP 3919686 A JP3919686 A JP 3919686A JP S62198095 A JPS62198095 A JP S62198095A
Authority
JP
Japan
Prior art keywords
ray tube
current
voltage
sensor
tube current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3919686A
Other languages
Japanese (ja)
Inventor
Kazuo Kaneko
一男 金子
Hirobumi Hino
博文 日野
Hideki Uemura
植村 秀記
Keishin Hatakeyama
畠山 敬信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP3919686A priority Critical patent/JPS62198095A/en
Publication of JPS62198095A publication Critical patent/JPS62198095A/en
Pending legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To make it possible to control tube current accurately by detecting X-ray tube current by using a sensor sensitive to the magnetic field generated by X-ray tube current around a high voltage cable, in which the X-ray tube current flows, and feedback-controlling the current in the control circuit of an X-ray tube filament by the sensor's output. CONSTITUTION:Current iP flows toward an X-ray tube 14 in a core wire 49 by the application of the positive voltage of a high voltage rectifier 11, but contains charging currents iC and iC' of the capacitances between the conductor 49 and shields 46 and 47 respectively as well as the X-ray tube current iT. Since the charging currents iC and iC' are proportional to the length of the high voltage cable, on placing the shield 47 in the neighborhood of the X-ray tube 14, the capacitance of the shield 47 is smaller than that of the shield 46 and consequently iC'<<iC. As the charging current iC does not flow to the earth point of the X-ray tube 14 side because of the existence of a cutting point of the cable, a sensor 36 does not detect iC. Furthermore, as iC'<<iT, magnetic flux detected by the sensor 36 becomes substantially that due to the X-ray tube current iT. Therefore, iT can be exactly measured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、X線装置に係り、特にX線管電流を精度よく
制御するのに好適な装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an X-ray apparatus, and particularly to an apparatus suitable for precisely controlling an X-ray tube current.

〔発明の背景〕[Background of the invention]

従来、X線管の管電流を測定する方法としては。 Conventionally, the method of measuring the tube current of an X-ray tube is as follows.

第2図に示す如く高圧変圧器の中性点を接地し、その接
地点の近傍で高圧変圧器の出力電流を7ヤント抵抗で電
圧降下として検出する方法が行なわれている。高圧変圧
器の出力電圧は整流されてX線管に印加されるが、X線
管との接続には高電圧ケーブルが用いられる。このケー
ブルには通常、人が触れても安全なようにシールドが施
されている。このため、高圧出力部と接地間には静電容
量分を多く含み、中性点にはX線管電流のほかに、この
高電圧ケーブルの充電電流も流れ込む。また高圧変圧器
の出力巻線は数万ターンの巻数であり、層間絶縁を厚く
しているため浮遊容量が大きい。
As shown in FIG. 2, a method is used in which the neutral point of a high voltage transformer is grounded and the output current of the high voltage transformer is detected as a voltage drop by a 7 Yant resistor near the ground point. The output voltage of the high voltage transformer is rectified and applied to the X-ray tube, and a high voltage cable is used for connection to the X-ray tube. This cable is usually shielded to make it safe for human contact. Therefore, there is a large amount of capacitance between the high voltage output section and the ground, and in addition to the X-ray tube current, the charging current of this high voltage cable also flows into the neutral point. Furthermore, the output winding of a high-voltage transformer has tens of thousands of turns, and the stray capacitance is large because the interlayer insulation is thick.

この浮遊容量の充電電流も中性点の電流に流れ込み大き
な誤差成分となり、管電流の正確な測定ができないとい
う問題がある。
The charging current of this stray capacitance also flows into the current at the neutral point and becomes a large error component, causing the problem that the tube current cannot be accurately measured.

これらについて第2図を用いて詳細に説明する。These will be explained in detail using FIG. 2.

1は直流電源、2はトランジスタ、3はトランジスタ2
を駆動するだめのドライブ回路、4は平滑用リアクトル
、5は平滑用コンデンサ、2〜5は直流電圧変換回路を
構成しておシ、図示していない管電圧・管電流設定器に
より設定値に応じて適切なコンデンサ5の両端電圧に調
整する。6は直流−交流変換回路であり、6a〜6dは
トランジスタ、5e〜6hはダイオードである。タイマ
設定器8により設定したタイマに応じタイマ回路9で設
定時間のパルスを出力する。ドライブ回路7ではあらか
じめ設定しである周波数に応じタイマ時間だけトランジ
スタ63〜6dを駆動する信号を出力する。交流変換さ
れた電圧は高圧変圧器10に入力され、高圧ダイオード
lla〜lidから構成される高圧整流器11で再度直
流電圧に変換され、高電圧ケーブル12及び13を介し
てX線管14に印加される。
1 is a DC power supply, 2 is a transistor, 3 is a transistor 2
4 is a smoothing reactor, 5 is a smoothing capacitor, and 2 to 5 are a DC voltage conversion circuit. The voltage across the capacitor 5 is adjusted accordingly. 6 is a DC-AC conversion circuit, 6a to 6d are transistors, and 5e to 6h are diodes. In accordance with the timer set by the timer setter 8, the timer circuit 9 outputs pulses for the set time. The drive circuit 7 outputs a signal for driving the transistors 63 to 6d for a timer period according to a preset frequency. The AC-converted voltage is input to a high-voltage transformer 10, converted to a DC voltage again by a high-voltage rectifier 11 composed of high-voltage diodes lla to lid, and applied to the X-ray tube 14 via high-voltage cables 12 and 13. Ru.

一方、直流電源16及びトランジスタ17、駆動回路1
8、平滑用リアクトル19及び平滑用コンデンサ20は
フィラメント電圧調整回路を構成しておりコンデンサ2
0の両端電圧は図示しない管電流設定器からの出力電圧
である管電流基準値33に応じて管電流制御回路35を
介して調整される。直流電源16の出力電圧はトランジ
スタ21a、21 bb駆動回路22で構成される直流
−交流変換回路21で交流変換される。交流電圧は加熱
変圧器15を介してX線管14のフィラメントに印加さ
れる。高圧変圧器10の中性点は全波整流器23、電流
計25.透視時間路するスイッチ24.シャント抵抗2
6を介して接地される。
On the other hand, a DC power supply 16, a transistor 17, a drive circuit 1
8. Smoothing reactor 19 and smoothing capacitor 20 constitute a filament voltage adjustment circuit, and capacitor 2
The voltage at both ends of 0 is adjusted via a tube current control circuit 35 in accordance with a tube current reference value 33 which is an output voltage from a tube current setting device (not shown). The output voltage of the DC power supply 16 is converted into AC by a DC-AC conversion circuit 21 including transistors 21a and 21bb drive circuit 22. An alternating current voltage is applied to the filament of the x-ray tube 14 via a heating transformer 15. The neutral point of the high voltage transformer 10 is a full wave rectifier 23, an ammeter 25. Switch 24 for perspective time path. Shunt resistance 2
6 to ground.

従って、中性点を流れる電流はシャント抵抗26で電圧
変換される。シャント抵抗26の両端電圧は、抵抗27
.28、コンデンサ29及び演算増幅器30から成る積
分回路により管電流時間積(mA−s)に比例する出力
電圧を出力し、抵抗31を介して管電流時間積表示計3
2によりmA−s値が表示される。一方電流計25では
透視時における管電流(平均電流)が表示される。また
シャント抵抗26の出力電圧は前記管電流基準値33と
比較器34で比較され、シャント抵抗26両端電圧がタ
イマ信号スタート開始後宮に一定になるようにフィード
バック制御される。
Therefore, the current flowing through the neutral point is converted into voltage by the shunt resistor 26. The voltage across the shunt resistor 26 is the voltage across the resistor 27.
.. 28, an integrating circuit consisting of a capacitor 29 and an operational amplifier 30 outputs an output voltage proportional to the tube current time product (mA-s), and a tube current time product indicator 3 is output via a resistor 31.
2 displays the mA-s value. On the other hand, the ammeter 25 displays the tube current (average current) during fluoroscopy. Further, the output voltage of the shunt resistor 26 is compared with the tube current reference value 33 by a comparator 34, and feedback control is performed so that the voltage across the shunt resistor 26 is constant at the timer signal starting point.

ここで前述した如く中性点の電流に浮遊容量分の充電電
流が誤差としヤ含まれた場合、透視時の電流計26及び
管電流時間積(mA−8)表示計32の誤差が大きくな
る。まだ、管電流を制御するフィラメントの制御回路に
おいても、正確な管電流値に制御できない。このように
中性点の電流の誤差は、X線曝射量の正確な制御に大き
な支障となっている。
As mentioned above, if the charging current for the stray capacitance is included as an error in the current at the neutral point, the errors in the ammeter 26 and tube current time product (mA-8) indicator 32 during fluoroscopy will increase. . Even in the filament control circuit that controls the tube current, it is still not possible to control the tube current to an accurate value. In this way, the error in the neutral point current poses a major hindrance to accurate control of the amount of X-ray exposure.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記問題点を解消し、管電流を正確に
測定できるとともに、管電流を精度良く制御できるX線
装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide an X-ray apparatus that can accurately measure tube current and control tube current with high precision.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、X線管電流の流れる高電圧ケーブルの
周囲にX線管電流によりできる磁界に感応する七/すを
用いてX線管電流を検出し、その出力によりX線管フィ
ラメント制御回路の電流をフィードバック制御するとこ
ろにある。
A feature of the present invention is that the X-ray tube current is detected using a magnetic field sensitive to the magnetic field created by the X-ray tube current around the high-voltage cable through which the X-ray tube current flows, and the X-ray tube filament is controlled by the output. It is used to feedback control the current in the circuit.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。なお
、全図においては同一機能を有するものは同一符号を付
け、その繰り返しの説明は省略する。高電圧ケーブル1
2のシールドはX線管14の近傍で一旦切断し、l 2
aと12bに分割する。
An embodiment of the present invention will be described below with reference to FIG. In all the figures, parts having the same functions are designated by the same reference numerals, and repeated explanations thereof will be omitted. High voltage cable 1
2 shield is temporarily cut near the X-ray tube 14, and
Divide into a and 12b.

X線管14に近いシールド12bの外周部には磁気感応
センサ36(以下、単にセンサと称す。)を設置する。
A magnetically sensitive sensor 36 (hereinafter simply referred to as a sensor) is installed on the outer periphery of the shield 12b near the X-ray tube 14.

センサ36を制御し出力電圧を増巾する増巾器37の出
力は透視時閉路するスイッチ38、抵抗39を介して電
流計40に接続され、管電流を表示する。また増巾器3
7の出力は27〜30から成る積分回路により管電流時
間積(mA−8)に比例する出力電圧を出力し、抵抗3
1を介して管電流時間積表示計32によりmA−S値が
表示される。一方増巾器37の出力は前記管電流基準値
33と比較器34で比較され、増巾器37の出力電圧が
タイマ信号スタート開始後に常に一定になるようにフィ
ードバック制御される。
The output of an amplifier 37 that controls the sensor 36 and amplifies the output voltage is connected to an ammeter 40 via a switch 38 that is closed during fluoroscopy and a resistor 39 to display the tube current. Also, the amplifier 3
7 outputs an output voltage proportional to the tube current time product (mA-8) by an integrating circuit consisting of 27 to 30, and resistor 3
1, a tube current time product display meter 32 displays the mA-S value. On the other hand, the output of the amplifier 37 is compared with the tube current reference value 33 by a comparator 34, and feedback control is performed so that the output voltage of the amplifier 37 is always constant after the timer signal starts.

以下は前述の管電流制御回路35.フイラ゛メント電圧
調整回路直流−交流変換回路21の順に作動し、加熱変
圧器15に印加する電圧が調整されてX線管電流が一定
に保たれる。
Below is the tube current control circuit 35 described above. The filament voltage adjustment circuit and the DC-AC conversion circuit 21 operate in this order to adjust the voltage applied to the heating transformer 15 and keep the X-ray tube current constant.

センサ36の詳細については、第3図、第4図を用いて
説明する。第3図は高電圧ケーブル12a。
Details of the sensor 36 will be explained using FIGS. 3 and 4. FIG. 3 shows the high voltage cable 12a.

12b及びセンサ36の断面を説明する図であり、49
は高圧整流器の出力電流をX線管14に供給する高圧ケ
ーブルの芯線、48は芯線49の周囲を絶縁する絶縁層
、46及び47はその外周を被覆するシールドであり、
X線管14の近傍で分割されている。50はシールド4
6と47を絶縁するだめの絶縁層である。シールド47
の外周部にはセンサ36が設置されている。またシール
ド46及び47は高圧整流器11又はX線管14への接
続点近傍で接地されている。
12b and a cross section of the sensor 36;
is a core wire of a high-voltage cable that supplies the output current of the high-voltage rectifier to the X-ray tube 14; 48 is an insulating layer that insulates the periphery of the core wire 49; 46 and 47 are shields that cover the outer periphery;
It is divided near the X-ray tube 14. 50 is shield 4
This is an insulating layer that insulates 6 and 47. shield 47
A sensor 36 is installed on the outer periphery of the sensor 36 . The shields 46 and 47 are also grounded near the connection point to the high voltage rectifier 11 or the X-ray tube 14.

第3図の構成における動作を第4図で説明する。The operation of the configuration shown in FIG. 3 will be explained with reference to FIG.

高圧整流器11の正電圧により芯線49に電流ipがX
線管14に向って流れ出すが、電流ipイ+h びic′が含まれている。充電電流i(B及びlc′は
高電圧ケーブルの長さに比例するためシールド47をX
線管14の近傍にすればシールド47の静電容量はシー
ルド46のものより小さくなυi c’<(i Cとな
る。また充電電流1cはシールドの切断点があるためX
線管14側の接地点には流れず、センサ36はi(Hを
検出しない。さらKic’((iTであるからセンサ3
6が検出する磁束は、実際上、はとんどX線管電流IT
によるものとなり、iでを正確に測定することが可能で
ある。
Due to the positive voltage of the high voltage rectifier 11, the current ip flows through the core wire 49.
The current flows toward the wire tube 14, and contains currents ip+h and ic'. The charging current i (B and lc' are proportional to the length of the high voltage cable, so the shield 47 is
If placed near the wire tube 14, the capacitance of the shield 47 will be smaller than that of the shield 46, υi c'<(i C. Also, the charging current 1c will be
It does not flow to the ground point on the wire tube 14 side, and the sensor 36 does not detect i(H. Furthermore, since Kic'((iT), the sensor 36
The magnetic flux detected by 6 is actually almost equal to the X-ray tube current IT
Therefore, it is possible to accurately measure i.

また本実施例ではセンサ36は接地電位にあるシールド
の外周に設置されるので高電圧回路に対する絶縁の問題
は、すべてシールドで処理でき、センサは高電圧絶縁の
問題がないので構造が簡単である。
Furthermore, in this embodiment, the sensor 36 is installed on the outer periphery of the shield at ground potential, so all insulation problems for high-voltage circuits can be handled by the shield, and the sensor has a simple structure because there is no problem with high-voltage insulation. .

37はセンサ出力を増巾する増巾器であり、詳細は公知
文献 島田、木脇他 X線装置用磁気変調器式広領域絶縁形電
流センサ;電気学会マグネティクス研究会資料 MAG
−85−67(昭6O−7)における第図9に示すよう
な回路構成で実現できる。
Reference numeral 37 is a amplifier that amplifies the sensor output, and the details can be found in the public literature Shimada, Kiwaki et al. Magnetic modulator type wide-area isolated current sensor for X-ray equipment; Materials of the Magnetics Study Group of the Institute of Electrical Engineers of Japan MAG
This can be realized with a circuit configuration as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、X線管電流を高
電圧ケーブルや高圧変圧器の浮遊容量の影響を受けるこ
となく正確に測定できるので透視時等の管電流表示や撮
影時X線曝射管電流時間積値(mA−3)表示を精度高
く行なうことができる。
As explained above, according to the present invention, the X-ray tube current can be accurately measured without being affected by the stray capacitance of high-voltage cables or high-voltage transformers. The exposure tube current time product value (mA-3) can be displayed with high accuracy.

また管電流フィードバック制御においてもフィードバッ
ク値が正確であるから実際の管電流値を正確に制御でき
る。
Furthermore, since the feedback value is accurate in tube current feedback control, the actual tube current value can be accurately controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図は従来
の管電流量制御装置の問題点を説明するための回路図、
第3図はセンサの詳細を説明するだめの構造図、第4図
は第3図の動作を説明するための回路図。 ■・・・直流電源、2・・・トランジスタ、4・・・リ
アクトル、6・・・直流−交流変換回路、10・・・高
圧変圧器、11・・・高圧整流器、12・・・高電圧ケ
ーブル、14・・・X線管、36・・・センサ、37・
・・増巾器、40・・・管電流計、32・・・in A
−s計、33・・・管電流基準信号、21・・・直流−
交流変換回路、15・・・加熱変圧器。 代理人 弁理士 小川勝男い、’[j+: ’:’)゛
\−8゛−
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a circuit diagram illustrating the problems of a conventional tube current amount control device,
FIG. 3 is a structural diagram for explaining the details of the sensor, and FIG. 4 is a circuit diagram for explaining the operation of FIG. 3. ■...DC power supply, 2...Transistor, 4...Reactor, 6...DC-AC conversion circuit, 10...High voltage transformer, 11...High voltage rectifier, 12...High voltage Cable, 14... X-ray tube, 36... Sensor, 37.
...Amplifier, 40...Tube ammeter, 32...in A
-S meter, 33...Tube current reference signal, 21...DC-
AC conversion circuit, 15... heating transformer. Agent: Patent attorney Katsuo Ogawa, '[j+: ':')゛\-8゛-

Claims (1)

【特許請求の範囲】[Claims] 1、高圧変圧器と、その出力を整流する高圧整流器と、
整流された高電圧が印加されるX線管と、高圧整流器と
X線管とを接続する高電圧ケーブルと、X線管フィラメ
ントに電力を供給する加熱変圧器とを備えたX線装置に
おいて、高電圧ケーブルに流れる電流によりその高電圧
ケーブルの周囲にできる磁界に感応するセンサを設け、
このセンサ出力と予め設定しておいた管電流基準値とを
比較し、この比較電圧によつて加熱変圧器の入力電圧を
制御することを特徴とするX線装置。
1. A high voltage transformer, a high voltage rectifier that rectifies its output,
In an X-ray device comprising an X-ray tube to which a rectified high voltage is applied, a high-voltage cable connecting the high-voltage rectifier and the X-ray tube, and a heating transformer supplying power to the X-ray tube filament, A sensor is installed that is sensitive to the magnetic field created around the high voltage cable due to the current flowing through the cable.
An X-ray apparatus characterized in that this sensor output is compared with a preset tube current reference value, and the input voltage of a heating transformer is controlled based on this comparison voltage.
JP3919686A 1986-02-26 1986-02-26 X-ray equipment Pending JPS62198095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3919686A JPS62198095A (en) 1986-02-26 1986-02-26 X-ray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3919686A JPS62198095A (en) 1986-02-26 1986-02-26 X-ray equipment

Publications (1)

Publication Number Publication Date
JPS62198095A true JPS62198095A (en) 1987-09-01

Family

ID=12546366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3919686A Pending JPS62198095A (en) 1986-02-26 1986-02-26 X-ray equipment

Country Status (1)

Country Link
JP (1) JPS62198095A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365563U (en) * 1989-10-31 1991-06-26
EP4326008A1 (en) * 2022-08-18 2024-02-21 Koninklijke Philips N.V. Device for measuring an emission current of an x-ray tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365563U (en) * 1989-10-31 1991-06-26
EP4326008A1 (en) * 2022-08-18 2024-02-21 Koninklijke Philips N.V. Device for measuring an emission current of an x-ray tube
WO2024037929A1 (en) * 2022-08-18 2024-02-22 Koninklijke Philips N.V. Device for measuring an emission current of an x-ray tube

Similar Documents

Publication Publication Date Title
Kojovic Rogowski coils suit relay protection and measurement~ of power systems\
CN106574950B (en) Power pack with fluxgate detector
US5391977A (en) Regulated X-ray power supply using a shielded voltage sensing divider
US5023769A (en) X-ray tube high-voltage power supply with control loop and shielded voltage divider
James An induction flowmeter design suitable for radioactive liquids
JPS62198095A (en) X-ray equipment
US2869071A (en) Apparatus for measuring electrical conductivity of fluids
JPS62198096A (en) X-ray equipment
KR20070045606A (en) Ac current sensor using air core
JPH0241840Y2 (en)
US1307645A (en) waite
Braun et al. Optoelectronic electricity meter for high-voltage lines
US20180100909A1 (en) Correction device, correction method, and magnetic resonance imaging apparatus
JPS6142900A (en) X-ray generator
Schuster A High-Resolution Electrodynamic AC-to-DC Power Transfer Instrument
JPS6229993Y2 (en)
JPH0862264A (en) Insulation resistance measuring device for power cable
SU758275A1 (en) Device for measuring current in transient modes
RU2073250C1 (en) Method and device for determining dynamic induction of reactor
SU970084A1 (en) Transformer converter output signal correction method
SU754714A1 (en) X-ray generator
JPS5922719Y2 (en) mAs measurement circuit in 3-phase X-ray equipment
JPS61288171A (en) Detecting method for grounding resistance
SU1063560A1 (en) Apparatus for monitoring the excess of edges in hf welding
SU1550401A1 (en) Conductivity apparatus