JPS62198040A - Electromagnetic deflection yoke - Google Patents

Electromagnetic deflection yoke

Info

Publication number
JPS62198040A
JPS62198040A JP3821486A JP3821486A JPS62198040A JP S62198040 A JPS62198040 A JP S62198040A JP 3821486 A JP3821486 A JP 3821486A JP 3821486 A JP3821486 A JP 3821486A JP S62198040 A JPS62198040 A JP S62198040A
Authority
JP
Japan
Prior art keywords
ringing
core
deflection
ferrite core
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3821486A
Other languages
Japanese (ja)
Inventor
Hiroshi Takeuchi
宏 竹内
Hideaki Usui
臼井 秀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP3821486A priority Critical patent/JPS62198040A/en
Publication of JPS62198040A publication Critical patent/JPS62198040A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To restrict the ringing, by reducing the combining capacity of a deflecting coil and a ferrite core extensively. CONSTITUTION:At the surface of a ferrite core for a deflection yoke, an electroconductive membrane 4 is formed, over which a spacer of an insulating coating 5, a plastic mesh, or the like is formed, and further on them, horizontal and/or vertical deflecting coils 2 and 3 are furnished. Since the conductive membrane 4 shields up the dielectric property of the ferrite core 1, the capacity is only of the surface side. Therefore, as far as the insulating coating and the like is not too large, the capacity formed in the core is prevented even though the ferrite core 1 is made of a highly dielectric constant material such as Mn-Zn type with a low resistance (10<2>OMEGA-cm or more), and the ringing can be restricted.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は電磁偏向型陰極線管(CRT)の偏向ヨークに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a deflection yoke for an electromagnetic deflection type cathode ray tube (CRT).

〔従来技術とその問題点〕[Prior art and its problems]

電磁偏向型陰極線管(CRT)の偏向ヨークの形11に
は基本的に次の3つがある。
There are basically three types of deflection yokes 11 for electromagnetic deflection type cathode ray tubes (CRTs):

1)コイルを鞍と類似の形を形成するように捲き、コア
の内側にボビンを介して配置するサドル(鞍型) 2)水平偏向コイルは1)のサドル型に捲き、垂直偏向
コイルをコアの外周上に直接トロイダルに捲いたセミト
ロイダル型 3)1)の鞍型の一種でコアの内面のまわりに径方向に
複数個の溝を配置し、その溝の中にコイルを形成するス
ロット型 この3つの中で、2)のセミトロイダル型は垂直偏向の
効率が高く直流抵抗が低い事から偏向ヨークの主流とな
っている。
1) A saddle (saddle type) in which the coil is wound to form a shape similar to a saddle and placed inside the core via a bobbin. 2) The horizontal deflection coil is wound in the saddle shape of 1), and the vertical deflection coil is placed inside the core. Semi-toroidal type, which is directly wound toroidally on the outer periphery of the core.3) Slotted type, which is a type of saddle type described in 1) and has multiple grooves arranged in the radial direction around the inner surface of the core, and a coil is formed in the grooves. Among these three types, the semi-toroidal type (2) has become the mainstream deflection yoke because it has high vertical deflection efficiency and low direct current resistance.

第1図及び第2図は上記2)のセミトロイダル型式の偏
向ヨークを示すもので、。2分割体を合体したラッパ形
フェライトコア1に垂直偏向コイル2を直接巻き、また
水平偏向コイル3をフェライトコア1の内面に沿わせて
配置したものである。
1 and 2 show the semi-toroidal type deflection yoke of 2) above. A vertical deflection coil 2 is directly wound around a trumpet-shaped ferrite core 1 which is a combination of two halves, and a horizontal deflection coil 3 is arranged along the inner surface of the ferrite core 1.

上記のいずれの型式の偏向ヨークでも、偏向コイルに偏
向電流を流した場合、現在リンギングと呼ばれる水平偏
向電流の乱れが生じ問題となる。
In any of the above types of deflection yokes, when a deflection current is passed through the deflection coil, a disturbance in the horizontal deflection current, currently called ringing, occurs, which poses a problem.

すなわち、第3図に示すように水平偏向電流は鋸歯状で
あることを理想とするのであるが、実際には第4図のよ
うに波形の立下りの直後に波形の小さい振動が生じ、ま
たその時間微分に比例する電圧にも同様な振動を生じる
。この波形の乱れは水平偏向磁界にも乱れを生じさせ、
電子ビームの水平方向の角度変化として現われる。これ
はCRTの画面上では画面の側縁近くで縦方向の濃淡の
縞模様として現われ、画質を低下させる。
In other words, it is ideal that the horizontal deflection current has a sawtooth shape as shown in Figure 3, but in reality, as shown in Figure 4, a small waveform oscillation occurs immediately after the waveform falls, and A similar oscillation occurs in the voltage proportional to its time derivative. This waveform disturbance also causes disturbance in the horizontal deflection magnetic field,
It appears as a horizontal angle change of the electron beam. On a CRT screen, this appears as a striped pattern of vertical shading near the side edges of the screen, degrading the image quality.

このリンギングは偏向ヨークのどの形態でも発生するが
、特にセミトロイダル型に強く発生する事がわかってい
る。
Although this ringing occurs with any type of deflection yoke, it is known that it occurs particularly strongly with the semi-toroidal type.

偏向ヨークコアとして使用されるフェライトには次の様
な物がある。
The following types of ferrite are used as the deflection yoke core.

1つはフェライトの組成の中で酸化鉄(Fe20B)の
割合を50 mol X以下にしたもので、通常Mg−
Mn−Zn糸+ N 1− Cu −Z n系、N1−
Zn系フェライトがこれに属する。この種のフェライト
は比誘電率が低く (10’〜10”)、かつ高抵抗(
106〜109Ω−cIrL)であるため磁心に直接コ
イルを捲くことが可能になり、又コストも低いために民
生用テレビの主流になっている。しかしこれらのフェラ
イトは比較的磁心損失が大きいので、偏向周波数の高い
高精細度ディスプレイ用偏向ヨークコアとして使用する
と、コアの発熱が大きいという欠点を有する。
One type is one in which the proportion of iron oxide (Fe20B) in the ferrite composition is 50 mol X or less, and is usually Mg-
Mn-Zn yarn + N1- Cu-Zn series, N1-
Zn-based ferrite belongs to this category. This type of ferrite has a low dielectric constant (10'~10'') and high resistance (
106 to 109 Ω-cIrL), it is possible to wind a coil directly on the magnetic core, and the cost is low, so it has become mainstream in consumer televisions. However, since these ferrites have a relatively large core loss, when used as a deflection yoke core for a high-definition display with a high deflection frequency, they have the disadvantage that the core generates a large amount of heat.

一方磁心損失の優れたフェライトとしては、一般にMn
−Znフェライトが知られている。このMn−Znフェ
ライトはそれ自体の持つ良好な磁気特性をより強めるた
めに、通常酸化鉄の割合を50 mol X以上の組成
にしている。その為磁心損失だけでなく、透磁率や飽和
磁束密度など磁気特性全般にすぐれ、高精細度ディスプ
レイ用備向ヨークコアとして使用しても発熱の問題は起
こらない。しかしながら、Mn−Znフェライトだけで
なく上記Mg−Mn−Zn系やNi系フェライトもその
組成を鉄過剰とした場合、結晶の抵抗は低くなり(10
−2〜10°Ω−cIIL)、それに比べて結晶間(粒
界)の抵抗は高い(104〜105Ω−crn)ので、
結晶が絶縁された形となり、フェライトの比誘電率は非
常に高くなる。(1〜5X10’)この様な高誘電率フ
ェライトを使用した偏向ヨークは、低誘電率の物に比べ
てリンギングが非常に強く発生する事がわがっている。
On the other hand, Mn is generally used as a ferrite with excellent core loss.
-Zn ferrite is known. This Mn--Zn ferrite usually has a composition in which the proportion of iron oxide is 50 mol X or more in order to further strengthen its own good magnetic properties. Therefore, it has excellent overall magnetic properties such as magnetic permeability and saturation magnetic flux density, as well as core loss, and does not cause heat generation problems even when used as a yoke core for high-definition displays. However, when the composition of not only Mn-Zn ferrite but also the above-mentioned Mg-Mn-Zn and Ni-based ferrites is iron-excessive, the crystal resistance becomes low (10
-2 to 10°Ω-cIIL), and compared to that, the intercrystalline (grain boundary) resistance is high (104 to 105Ω-crn).
The crystal becomes insulated, and the dielectric constant of ferrite becomes extremely high. (1 to 5X10') It is known that a deflection yoke using such a high dielectric constant ferrite causes much stronger ringing than a deflection yoke with a low dielectric constant.

又、リンギングは偏向周波数が高くなると大きくなる傾
向があるので、高誘電率材のリンギング発生は重要な問
題となっている。したがって、偏向ヨークに発生するリ
ンギングの抑制は強く望まれている。
Furthermore, since ringing tends to increase as the deflection frequency increases, the occurrence of ringing in high dielectric constant materials has become an important problem. Therefore, it is strongly desired to suppress ringing that occurs in the deflection yoke.

〔発明の目的〕[Purpose of the invention]

本発明は電磁偏向ヨークにおいてリンギング現象を防止
し、すぐれた画質のブラウン管(CRT)を提供するこ
とを目的とする。
An object of the present invention is to prevent the ringing phenomenon in an electromagnetic deflection yoke and provide a cathode ray tube (CRT) with excellent image quality.

より限定的な目的は、偏向ヨークのフェライトコアがM
n−Znフェライトのような低抵抗の場合にリンギング
を抑制すること、またセミトロイダル型偏向ヨークにお
けるこの問題を解決することKある。
For more specific purposes, the ferrite core of the deflection yoke is M
There is a need to suppress ringing in the case of low resistance materials such as n-Zn ferrite, and to solve this problem in semi-toroidal deflection yokes.

〔発明の概要〕[Summary of the invention]

本発明の上記の目的は、偏向ヨーク用フェライトコアの
表面(特にコイルが巻装される個所)に、導電率が10
9−α以下の薄い導電性物質(金属、導電性塗料)の被
膜を形成し、その上に絶縁被覆、プラスチック網等のス
ペーサを介在して所定の水平及び垂直偏向コイルを配置
したことを特徴とする電磁偏向ヨークによって達成され
る。
The above object of the present invention is to have a conductivity of 10 on the surface of the ferrite core for a deflection yoke (particularly at the part where the coil is wound).
It is characterized by forming a thin film of conductive material (metal, conductive paint) of 9-α or less, and placing predetermined horizontal and vertical deflection coils on top of it with spacers such as insulation coatings and plastic nets interposed. This is achieved by an electromagnetic deflection yoke.

好ましくは、フェライトコアはMn−Zn系のような高
誘電率タイプのものから選択する。また好ましくは垂直
偏向コイルは直巻きトロイダル型とし、水平偏向コイル
はサドル型とする。
Preferably, the ferrite core is selected from high dielectric constant types such as the Mn-Zn system. Preferably, the vertical deflection coil is of a direct-wound toroidal type, and the horizontal deflection coil is of a saddle type.

本発明によれば、リンギング現象は十分に防止または抑
制されて高精密のブラウン管を提供することができる。
According to the present invention, the ringing phenomenon can be sufficiently prevented or suppressed, and a highly precise cathode ray tube can be provided.

以下に本発明の詳細な説明するが、発明の理解を容易に
するためその前にリンギング発生の機構に触れておく。
The present invention will be described in detail below, but in order to facilitate understanding of the invention, the mechanism of ringing generation will be described first.

〔リンギング発生の機構〕[Mechanism of ringing generation]

偏向ヨークはヨーク外部に漏れる磁束を利用する部品で
あるが、コイルが形成されているために線間には必ず分
布容量が存在する。又、コイルの直流抵抗は小さいため
に、このコイルに伺らかの起電力が与えられると、コイ
ルのインダクタンスと線間のキャパシタンスによって共
振回路が形成され過渡電流が流れる。この過渡電流によ
る磁束が偏向磁束に重畳する事によってリンギングが生
じる。
The deflection yoke is a component that utilizes magnetic flux leaking to the outside of the yoke, but since a coil is formed, distributed capacitance always exists between the lines. Further, since the DC resistance of the coil is small, when a certain electromotive force is applied to this coil, a resonant circuit is formed by the inductance of the coil and the capacitance between the lines, and a transient current flows. Ringing occurs when the magnetic flux due to this transient current is superimposed on the deflection magnetic flux.

この時コイルには近接してフェライトコアが存在するが
、フェライトコアのl電率は空気の誘電率よりも大きい
為に線間な静電結合させ分布容量を増加させる。これを
モデル化すると第5図のようになる。
At this time, there is a ferrite core adjacent to the coil, and since the l electric constant of the ferrite core is larger than the dielectric constant of air, the capacitance is increased by electrostatic coupling between the lines. If this is modeled, it will look like Figure 5.

又、前述の低誘電率フェライトの誘を率101〜102
 程度であるのに比較して、高誘電率フェライトの′そ
れは1〜5X10’  と非常に高いので静電結合の度
合は太きい。線間分布容量が大きくなることは過渡現象
論から明らかなように過渡電流は増加する。
Further, the dielectric constant of the above-mentioned low dielectric constant ferrite is 101 to 102.
In comparison, high dielectric constant ferrite has a very high dielectric constant of 1 to 5×10, so the degree of electrostatic coupling is large. As is clear from the theory of transient phenomena, as the line-to-line distributed capacitance increases, the transient current increases.

一方リンギング発生のための起電力は垂直偏向コイルを
交差する水平偏向磁束によって与えられる。したがって
磁束の変化率が大きいほどコイル間に大きな電位差が発
生し、リンギングが現われる。垂直偏向コイルがトロイ
ダル捲きの場合、水平偏向磁束の方向とコイルの位置関
係から縦捲コイルよりも発生する起電力は大きく、した
がってリンギングも大きい。
On the other hand, the electromotive force for generating ringing is given by the horizontal deflection magnetic flux crossing the vertical deflection coil. Therefore, the larger the rate of change in magnetic flux is, the larger the potential difference will be generated between the coils, and ringing will appear. When the vertical deflection coil is toroidally wound, the electromotive force generated is larger than that of a vertically wound coil due to the direction of the horizontal deflection magnetic flux and the positional relationship of the coil, and therefore the ringing is also large.

以上の理由から偏向コイル線間の容量を抑える事がリン
ギングを減少させるのに大きな効果があるということが
わかる。
For the above reasons, it can be seen that suppressing the capacitance between the deflection coil wires has a great effect in reducing ringing.

なおリンギングの測定は次のように行った。Note that ringing was measured as follows.

〔リンギングの測定法について〕[About ringing measurement method]

ブラウン管内を通る磁界を正確に測定する事は困難であ
るので、リンギングの測定及び判定には次の方法を用い
た。
Since it is difficult to accurately measure the magnetic field passing through the cathode ray tube, the following method was used to measure and judge ringing.

偏向ヨークから発生する磁界とフェライトコア内を通る
磁束とは相対的な関係があるので、第8図のようにコア
1内の水平偏向磁束Φを、ピックアップコイル5にて拾
う。
Since there is a relative relationship between the magnetic field generated from the deflection yoke and the magnetic flux passing through the ferrite core, the horizontal deflection magnetic flux Φ within the core 1 is picked up by the pickup coil 5 as shown in FIG.

ピックアップコイル50両端に現われる電圧をオシロス
コープで見ると、第9図のようになり、リンギング部分
Aの拡大図は第10図のようになる。ここでリンギング
の最大振幅■と初期の周期Tを以ってリンギングとし、
■、Tが小さい程リンギングが小さいことになる。
When the voltage appearing across the pickup coil 50 is viewed with an oscilloscope, it is as shown in FIG. 9, and an enlarged view of the ringing portion A is as shown in FIG. 10. Here, the maximum amplitude of ringing ■ and the initial period T are defined as ringing,
(2) The smaller T is, the smaller the ringing is.

〔発明の詳細な説明〕[Detailed description of the invention]

発明の原理 本発明は上に述べた通り、リンギングの発生を抑制する
のに導電性の被膜を用いる。第6図は本発明の原理を示
す概略図で、偏向ヨーク用フェライトコア1の表面に導
電性被膜4が形成され、その表面に絶縁被覆5やプラス
チック網等のスペーサが形成され、その上に水平及び/
又は垂直偏向コイル2.3が配置されている。導電性被
膜4はフェライトコア1の誘電性を遮蔽してしまうから
、表面側だけの容量だけで済む。従って、絶縁被覆等の
スペーサのl電率があまり大きくなければ(例えば数1
0以下)、フェライトコア1が低抵抗材(102Ω1以
上)の例えばMn−Zn系のような高fA電性の材料か
ら製作されていてもコア内の容量形成を阻止し、リンギ
ングを抑制することができる(第6図参照)。
Principle of the Invention As stated above, the present invention uses a conductive coating to suppress the occurrence of ringing. FIG. 6 is a schematic diagram showing the principle of the present invention, in which a conductive coating 4 is formed on the surface of a ferrite core 1 for a deflection yoke, an insulating coating 5 or a spacer such as a plastic net is formed on the surface, and a spacer such as a plastic net is formed on the surface. horizontal and/or
Alternatively, a vertical deflection coil 2.3 is arranged. Since the conductive film 4 shields the dielectric property of the ferrite core 1, only the capacitance on the surface side is required. Therefore, if the electric current of the spacer such as an insulating coating is not very large (for example, the number 1
0 or less), and even if the ferrite core 1 is made of a low resistance material (102Ω1 or more), for example, a high fA conductivity material such as Mn-Zn system, capacitance formation in the core is prevented and ringing is suppressed. (See Figure 6).

実施例 第7図は本発明の実施例による電磁偏向ヨークに用いる
フェライトコア1を示す。フェライトコア1の内面及び
上下端面で水平及び垂直偏向コイル2.3(第1図に示
したものと同様のもの)が接する表面に導電性被膜4が
形成され、さらにその上に絶縁被覆5が形成される。
Embodiment FIG. 7 shows a ferrite core 1 used in an electromagnetic deflection yoke according to an embodiment of the present invention. A conductive coating 4 is formed on the inner surface and upper and lower end surfaces of the ferrite core 1, which are in contact with horizontal and vertical deflection coils 2.3 (similar to those shown in FIG. 1), and an insulating coating 5 is further formed on the surface. It is formed.

導電性被膜4は任意の方法で形成しうる。例えばAI 
、(”u等の金属の蒸着とか、A1、Cu、Ni等の金
属粒子を含んだペーストを塗布するなどの方法で形成す
る。その厚さに制限はない。その表面に、誘電率のあま
り高くない(数10以下)樹脂塗料、例えばフェス、エ
ポキシ、ウレタン等を塗布・乾燥し、必要なら硬化処理
をする。絶縁被覆の厚さは数百μ以下とする。絶縁被覆
5の誘電率は低いほど良いが、導電被膜4が介在するた
めフェライトコア1の18に率の影響は考えなくて良く
なり、かなり高くてもかまわないが、5以下、好ましく
は五5以下とする。
The conductive film 4 can be formed by any method. For example, AI
It is formed by vapor deposition of a metal such as ``U'' or by applying a paste containing metal particles such as A1, Cu, Ni, etc. There is no limit to its thickness. Apply and dry a resin paint that is not expensive (less than a few dozen), such as FES, epoxy, urethane, etc., and cure if necessary.The thickness of the insulating coating is several hundred microns or less.The dielectric constant of the insulating coating 5 is The lower the better, but since the conductive film 4 is present, there is no need to consider the influence of the ratio on the 18 of the ferrite core 1. Although it may be quite high, it is set to 5 or less, preferably 55 or less.

第7図に示した構成で、5μmのアルミニウム蒸着膜と
誘電率3.0の絶縁被覆とを設けたMn −Zn系フェ
ライトコア(TDK社製)人と、中間のアルミニウムを
省略したMn−Zn系フェライトココアと、何も施さな
いMn−Zn系フェライトココアと、何も施さないM 
g −M n −Z n  系フェライトコアDとを用
いてリンギングを測定した。
The configuration shown in Fig. 7 includes an Mn-Zn ferrite core (manufactured by TDK) with a 5 μm aluminum vapor-deposited film and an insulating coating with a dielectric constant of 3.0, and an Mn-Zn core without aluminum in the middle. ferrite cocoa, Mn-Zn ferrite cocoa without any treatment, and M without any treatment.
Ringing was measured using the g-Mn-Zn-based ferrite core D.

結果は次表に示した通りである。基準としてはコアDを
用い、他の物の特性はコアDに対する比で衣わした。
The results are shown in the table below. Core D was used as a standard, and other properties were determined by their ratios to core D.

なお、項目1は■(相対値)及び項目2はT(相対値)
を示す。なお、ブラウン管の画面で観察するとき項目1
.2が同時にそれぞれt25及び1.53以上になると
目に見える縦縞が現われはじめる。従って、サンプルA
はリンギングがなく、リンギングがないがやや大きい項
目1、・2を有し、Cはリンギングを住じる。
Note that item 1 is ■ (relative value) and item 2 is T (relative value).
shows. Note that when observing on a cathode ray tube screen, item 1
.. 2 simultaneously exceeds t25 and 1.53, respectively, visible vertical stripes begin to appear. Therefore, sample A
has no ringing, no ringing but slightly larger items 1, 2, and C has ringing.

〔作用効果〕[Effect]

以上のように、本発明は偏向コイルとフェライトコアの
結合容量を大幅に減少して、リンギングを抑制すること
ができる。従って、本発明の電磁偏向ヨークは特に低抵
抗高銹電率のフェライトコアな用いたときすぐれた作用
効果を発揮することができる。
As described above, the present invention can significantly reduce the coupling capacitance between the deflection coil and the ferrite core, thereby suppressing ringing. Therefore, the electromagnetic deflection yoke of the present invention can exhibit excellent effects especially when used with a ferrite core having low resistance and high galvanicity.

なお、上記実施例における絶縁被膜の代りに例えば太さ
11〜1−程度のプラスチック枠ないし網などのスペー
サを少なくとも垂直偏向コイルが巻かれる個所に施こし
ても良いことはすでに述べた通りである。
As already mentioned, instead of the insulating film in the above embodiment, a spacer such as a plastic frame or net having a thickness of about 11 to 1 mm may be applied at least to the area where the vertical deflection coil is wound. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電磁偏向用ヨークのうち、セミトロイダ
ル型ヨークの概略構造を示す背面図、給2図は同ヨーク
の一部を破断し且つ水平偏向コイルを省略して示した側
面図、第3図は電磁偏向用ヨークの水平偏向コイルに流
れる理想的な電流と電圧の波形を示すグラフ、第4図は
実際のリンギングを伴う電流及び電圧の波形を示すグラ
フ、第5図は垂直偏向コイルとヨークのフェライトコア
との間に形成される容量結合の様子を示す模型図、第6
図は本発明によって構成されたフェライトコアの構成原
理図、第7図は本発明の実施例によるフェライトコアの
部分破断側面図、第8図はリンギングの測定の説明図、
第9図はリンギングを定義するグラフ、及び第10図は
同拡大図である。 1・−7エフイトコア 4−・gt八へLしHシLJ’)シL 5・・絶職稚覆 第8図
Fig. 1 is a rear view showing the schematic structure of a semi-toroidal yoke among conventional electromagnetic deflection yokes, and Fig. 2 is a side view showing the same yoke with a part cut away and the horizontal deflection coil omitted. Figure 3 is a graph showing the ideal current and voltage waveforms flowing through the horizontal deflection coil of the electromagnetic deflection yoke, Figure 4 is a graph showing the current and voltage waveforms with actual ringing, and Figure 5 is the graph for vertical deflection. A schematic diagram showing the state of capacitive coupling formed between the coil and the ferrite core of the yoke, No. 6
FIG. 7 is a partially cutaway side view of a ferrite core according to an embodiment of the present invention; FIG. 8 is an explanatory diagram of ringing measurement;
FIG. 9 is a graph defining ringing, and FIG. 10 is an enlarged view of the same. 1.-7 Efit Core 4-.gt8 to L and HshiLJ')shiL5..

Claims (1)

【特許請求の範囲】 1、偏向ヨーク用フェライトコアの表面に導電率10Ω
−cm以下の薄い導電性被膜を形成し、その上にスペー
サを介在して、所定の水平及び垂直偏向コイルを配置し
たことを特徴とする電磁偏向ヨーク。 2、導電性被膜は少なくとも垂直偏向コイルが接する領
域に形成されている前記第1項記載の電磁偏向ヨーク。
[Claims] 1. The surface of the ferrite core for the deflection yoke has a conductivity of 10Ω.
1. An electromagnetic deflection yoke, characterized in that a thin conductive film of -cm or less is formed, and predetermined horizontal and vertical deflection coils are arranged on the conductive film with a spacer interposed therebetween. 2. The electromagnetic deflection yoke according to item 1 above, wherein the conductive coating is formed at least in a region in contact with the vertical deflection coil.
JP3821486A 1986-02-25 1986-02-25 Electromagnetic deflection yoke Pending JPS62198040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3821486A JPS62198040A (en) 1986-02-25 1986-02-25 Electromagnetic deflection yoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3821486A JPS62198040A (en) 1986-02-25 1986-02-25 Electromagnetic deflection yoke

Publications (1)

Publication Number Publication Date
JPS62198040A true JPS62198040A (en) 1987-09-01

Family

ID=12519059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3821486A Pending JPS62198040A (en) 1986-02-25 1986-02-25 Electromagnetic deflection yoke

Country Status (1)

Country Link
JP (1) JPS62198040A (en)

Similar Documents

Publication Publication Date Title
US2185138A (en) Cathode ray tube
US4846987A (en) Low loss oxide magnetic material
JPS62198040A (en) Electromagnetic deflection yoke
US3743983A (en) Focussing and deflecting system comprising a ferromagnetic wire-coil
JPS62198038A (en) Electromagnetic deflection yoke
US6242856B1 (en) Cathode ray tube comprising a deflection unit
US4870330A (en) Cathode-ray tube with deflection system
JPS62198039A (en) Electromagnetic deflection yoke
US3045139A (en) Magnetic deflecting yoke for cathoderay tubes
CA1143773A (en) Color picture tube magnetic shielding and degaussing structure
US2748305A (en) Cathode ray tubes for television and like purposes
JPS62198037A (en) Electromagnetic deflection yoke
JPH0616451B2 (en) Low loss oxide magnetic material
US2505011A (en) Magnetic deflecting system for cathode-ray tubes
US4737692A (en) Pincushion distortion correction device
JPS58209040A (en) Deflection yoke
KR100367968B1 (en) Space defining structure for magnetic homogenization
EP0302995B1 (en) Magnetic shunt for deflection yokes
JP2813121B2 (en) Deflection yoke
US3502938A (en) Distortion correcting devices for magnetic deflecting devices
CA1239975A (en) Display tube having ferromagnetic field shapers to prevent beam defocussing
JPH06119884A (en) Correcting coil for deflection yoke
JPH09223473A (en) Color cathode ray tube device
TW507243B (en) CRT having a deflection unit with anti-ringing characteristics
EP1430506A2 (en) Cathode ray tube with anti-ringing coil