JPS6219769B2 - - Google Patents

Info

Publication number
JPS6219769B2
JPS6219769B2 JP169680A JP169680A JPS6219769B2 JP S6219769 B2 JPS6219769 B2 JP S6219769B2 JP 169680 A JP169680 A JP 169680A JP 169680 A JP169680 A JP 169680A JP S6219769 B2 JPS6219769 B2 JP S6219769B2
Authority
JP
Japan
Prior art keywords
curing agent
epoxy resin
group
formula
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP169680A
Other languages
Japanese (ja)
Other versions
JPS5698228A (en
Inventor
Masahiro Matsumura
Masaaki Ootsu
Yoshihiro Kitsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP169680A priority Critical patent/JPS5698228A/en
Publication of JPS5698228A publication Critical patent/JPS5698228A/en
Publication of JPS6219769B2 publication Critical patent/JPS6219769B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、エポキシ樹脂用硬化剤に関するも
のである。 従来から、エポキシ樹脂の硬化剤として多官能
芳香族アミンやカルボン酸等が使用されている。
ところがこのような硬化剤では、生成エポキシ樹
脂硬化物の耐熱性を充分高めることができなかつ
た。そのため、このようなエポキシ樹脂硬化物を
用いたプリント配線基板は、耐熱性が不充分であ
り、実装密度の増大と配線パターンの高密度化と
にもとづく基板の耐熱性向上の要求に充分応えて
いないのが実情である。 この発明は、このような事情に鑑みなされたも
ので、下記の一般式 〔ただし、上記の式において、Rは構造中に少な
くとも一つの芳香環または複素環を含む2価以上
5価以下の基、R′およびR″は水素またはアルキ
ル基を示し、cは基Rの結合手に対応する2〜5
の数を示し、a、bはaが1のときはbが1でa
が2のときはbが0を示し、かつ、aとbの両方
ともが1の組み合わせを少なくとも一つ含む。ま
た、小括弧( )内のフエノール核にはアルキル
基、水酸基およびハロゲン原子の少なくとも一つ
が置換基として入つていてもよく、複数個の中括
弧〔 〕の構造部分は全て同じでなくてもよ
い。〕 で表わされる化合物よりなるエポキシ樹脂用硬化
剤をその要旨とするものである。 すなわち、この硬化剤は、耐熱性に富むエポキ
シ樹脂硬化物を生成しうるため、耐熱性の優れた
プリント配線基板の製造を実現しうるようになる
のである。 つぎに、この発明を詳しく説明する。 前記の式において、Rとしては、下記のような
ものがあげられる。 ただし、Rを示す上記の式は、いずれも結合手
を示していないが、結合手の数は、エポキシ樹脂
用硬化剤を示す前記の式のcの値(2〜5の範囲
内の数)でおのずと定まるのである。また、Rを
示す上記の式において、環の部分にアルキル基、
ハロゲン原子および水酸基の少なくとも一つが置
換基として入つていてもよいのである。 また、前記の式において、R′およびR″として
は、水素またはアルキル基があげられる。 つぎに、この発明のエポキシ樹脂用硬化剤の製
法の一例について説明する。すなわち、例えば、
アミン類とN−(p−ヒドロキシフエニル)マレ
イミドとを所定のモル比率に混合したのち、溶融
付加反応を行わせることにより製造される。な
お、N−(p−ヒドロキシフエニル)マレイミド
は、無水マレイン酸とp−アミノフエノールとを
用いてアミド−酸化合物をつくり、ついでこれを
閉環させるという公知の方法により合成されるの
である。 この発明の硬化剤が作用するエポキシ樹脂とし
ては、分子内に少なくとも2個のエポキシ基を有
する化合物であれば特に限定するものではない。
しかし、一般的には、エポキシ当量100〜4000の
通常のエポキシ樹脂が用いられる。そのようなエ
ポキシ樹脂として、例えば、ビスフエノール系エ
ポキシ樹脂、肪環式エポキシ樹脂、ノボラツク系
エポキシ樹脂、ポリフエノール系エポキシ樹脂、
含窒素エポキシ樹脂およびそれらのハロゲン化物
があげられる。 この発明の硬化剤を上記のようなエポキシ樹脂
に作用させる場合、その使用量は、通常、(エポ
キシ樹脂のエポキシ基)/(硬化剤の活性水素)
のモル比が0.5〜2.0になるように選ばれる。最も
好ましいのは、0.8〜1.2である。このように硬化
剤の使用量を選ぶことにより、極めて大きな耐熱
性をもつエポキシ樹脂硬化物が得られるようにな
るのである。 つぎに、実施例について比較例と併せて説明す
る。 実施例 1 p−フエニレンジアミン63.0g(0.583モル)
とN−(p−ヒドロキシフエニル)マレイミド
220.5g(1.17モル)とを乳鉢にとつて充分混合
した。つぎに、この混合物を、4つ口フラスコ中
に投入し、フラスコ内を窒素で置換し、続いて乾
燥した窒素を送り込みながらフラスコを砂浴上で
ゆつくりと加熱した。そして、加熱しながら内容
物を完全溶融させ、ついで撹拌して180〜190℃の
温度を65分間保つたのち内容物を取り出して冷却
し反応を終了した。つぎに、得られたものを300
gのジメチルホルムアミドに溶解し、これを大過
剰のメタノール中に投入した。そして、生成した
沈澱をろ過してメタノール洗浄したのち乾燥し
た。その結果、黄色粉末状の硬化剤(A)を得た。こ
の硬化剤(A)は、高速液体クロマトグラフ測定の結
果、平均分子量483であり、未反応原料を殆ど含
んでいなかつた。 なお、前記反応における主反応の式はつぎのと
おりである。 硬化剤(A)の化学構造の確認をつぎのようにして
行つた。 得られた粉末状硬化剤(A)をd−DMSO(ジメチ
ルスルホキシド)に溶解して20%溶液とし、これ
をNMR測定機(日本電子社製のJNM−FX−
60Q、条件:40℃、5000回積算)により測定し
た。その結果、126.8ppmに吸収がないことか
ら、−CH=CH−結合の消滅が認められ、また、
30.5ppm、67.0ppmにほぼ1:1の比率で新たな
吸収が生じたことにより、−CH(−CH2)−N−
結合の生成が認められた。 このことおよび前記平均分子量の値を考え合わ
せることにより、硬化剤(A)の化学構造が前記反応
式()の生成物であることを確認した。 実施例 2 p−フエニレンジアミンの量を41.5gに減少す
るとともに、N−(p−ヒドロキシフエニル)マ
レイミドの量を217.9gに減少した。それ以外は
実施例1と同様にして硬化剤(B)を製造した。得ら
れた硬化剤(B)の平均分子量は672であつた。 なお、主反応の式はつぎのとおりである。 硬化剤(B)の化学構造の確認を実施例1と同様に
して行つた。 その結果、126.8ppmに吸収がないことから、−
CH=CH−結合の消滅が認められ、また、
30.5ppm、67.0ppmにほぼ1:1の比率で新たな
吸収が生じたことにより、−CH(−CH2)−N−
結合の生成が認められた。 このことおよび前記平均分子量の値を考え合わ
せることにより、硬化剤(B)の化学構造が前記反応
式()の生成物であることを確認した。 実施例 3 p−フエニレンジアミンに代えて、4・4′−ジ
アミノジフエニルメタンを71.1g使用するととも
に、N−(p−ヒドロキシフエニル)マレイミド
の量を135.9gに減少した。それ以外は実施例1
と同様にして硬化剤(C)を製造した。得られた硬化
剤(C)の平均分子量は573であつた。 なお、主反応の式はつぎのとおりである。 硬化剤(C)の化学構造の確認を実施例1と同様に
して行つた。 その結果、126.8ppmに吸収がないことから、−
CH=CH−結合の消滅が認められ、また、
30.5ppm、67.0ppmにほぼ1:1の比率で新たな
吸収が生じたことにより、−CH(−CH2)−N−
結合の生成が認められた。 このことおよび前記平均分子量の値を考え合わ
せることにより、硬化剤(C)の化学構造が前記反応
式()の生成物であることを確認した。 比較例 1 4・4′−ジアミノジフエニルスルホンをそのま
ま比較例1とした。 比較例 2 4・4′−ジアミノジフエニルスルホン(硬化
剤)とN−(p−ヒドロキシフエニル)マレイミ
ド(添加剤)との混合物を比較例2とした。 つぎに、以上の実施例および比較例の硬化剤を
次表に示すエポキシ樹脂100gに対して同表に示
す量だけ添加し、ついでジメチルホルムアミドを
用いて均一に溶解混合した。つぎに、これを減圧
乾燥して溶剤を蒸発させたのち、得られた固形物
を170℃で2時間、ついで200℃で3時間加熱して
エポキシ樹脂硬化物を得た。得られたエポキシ樹
脂硬化物のガラス転移温度を次表に示した。実施
例の硬化剤を用いたエポキシ樹脂硬化物のガラス
転移温度は比較例のものを用いたものに比べて著
しく高く、耐熱性に富んでいることがわかる。
The present invention relates to a curing agent for epoxy resin. Conventionally, polyfunctional aromatic amines, carboxylic acids, and the like have been used as curing agents for epoxy resins.
However, with such a curing agent, it was not possible to sufficiently increase the heat resistance of the resulting cured epoxy resin product. Therefore, printed wiring boards using such cured epoxy resins have insufficient heat resistance, and do not fully meet the demands for improved heat resistance of boards due to increased packaging density and higher density wiring patterns. The reality is that there is not. This invention was made in view of these circumstances, and is based on the following general formula: [However, in the above formula, R is a divalent to pentavalent group containing at least one aromatic ring or heterocycle in the structure, R' and R'' are hydrogen or an alkyl group, and c is a group of R. 2 to 5 corresponding to the bond
Indicates the number of , a and b are 1, b is 1 and a
When is 2, b indicates 0, and both a and b include at least one combination of 1. Furthermore, the phenol nucleus within the parentheses ( ) may contain at least one of an alkyl group, a hydroxyl group, and a halogen atom as a substituent, and the structural parts of multiple curly brackets [ ] do not have to all be the same. good. ] The gist thereof is a curing agent for epoxy resin comprising a compound represented by the following. In other words, since this curing agent can produce a cured epoxy resin with high heat resistance, it becomes possible to manufacture a printed wiring board with excellent heat resistance. Next, this invention will be explained in detail. In the above formula, examples of R include the following. However, none of the above formulas indicating R indicate a bond, but the number of bonds is the value of c (a number within the range of 2 to 5) in the above formula indicating a curing agent for epoxy resin. It is determined automatically. In addition, in the above formula representing R, an alkyl group in the ring part,
At least one of a halogen atom and a hydroxyl group may be included as a substituent. Furthermore, in the above formula, R' and R'' may be hydrogen or an alkyl group. Next, an example of the method for producing the curing agent for epoxy resin of the present invention will be explained. That is, for example,
It is produced by mixing amines and N-(p-hydroxyphenyl)maleimide in a predetermined molar ratio and then performing a melt addition reaction. Note that N-(p-hydroxyphenyl)maleimide is synthesized by a known method of preparing an amide-acid compound using maleic anhydride and p-aminophenol and then ring-closing the compound. The epoxy resin on which the curing agent of the present invention acts is not particularly limited as long as it is a compound having at least two epoxy groups in the molecule.
However, in general, ordinary epoxy resins having an epoxy equivalent weight of 100 to 4000 are used. Examples of such epoxy resins include bisphenol epoxy resins, alicyclic epoxy resins, novolak epoxy resins, polyphenol epoxy resins,
Examples include nitrogen-containing epoxy resins and their halides. When the curing agent of this invention is made to act on the above-mentioned epoxy resin, the amount used is usually (epoxy group of epoxy resin)/(active hydrogen of curing agent).
is selected such that the molar ratio of is 0.5 to 2.0. Most preferred is 0.8-1.2. By selecting the amount of curing agent used in this way, it is possible to obtain a cured epoxy resin product with extremely high heat resistance. Next, examples will be described together with comparative examples. Example 1 p-phenylenediamine 63.0g (0.583mol)
and N-(p-hydroxyphenyl)maleimide
220.5 g (1.17 moles) were placed in a mortar and thoroughly mixed. Next, this mixture was put into a four-necked flask, the inside of the flask was purged with nitrogen, and then the flask was slowly heated on a sand bath while supplying dry nitrogen. Then, the contents were completely melted while heating, then stirred and maintained at a temperature of 180 to 190°C for 65 minutes, and then the contents were taken out and cooled to complete the reaction. Next, add 300
g of dimethylformamide and poured into a large excess of methanol. Then, the generated precipitate was filtered, washed with methanol, and then dried. As a result, a yellow powdery curing agent (A) was obtained. As a result of high performance liquid chromatography measurement, this curing agent (A) had an average molecular weight of 483 and contained almost no unreacted raw materials. The formula of the main reaction in the above reaction is as follows. The chemical structure of the curing agent (A) was confirmed as follows. The obtained powdered curing agent (A) was dissolved in d-DMSO (dimethyl sulfoxide) to make a 20% solution, and this was measured using an NMR analyzer (JNM-FX- manufactured by JEOL Ltd.).
60Q, conditions: 40°C, 5000 integrations). As a result, there was no absorption at 126.8 ppm, indicating the disappearance of the -CH=CH- bond, and
-CH(-CH 2 )-N-
Formation of bonds was observed. By considering this and the above average molecular weight value, it was confirmed that the chemical structure of the curing agent (A) was a product of the above reaction formula (). Example 2 The amount of p-phenylenediamine was reduced to 41.5 g and the amount of N-(p-hydroxyphenyl)maleimide was reduced to 217.9 g. A curing agent (B) was produced in the same manner as in Example 1 except for the above. The average molecular weight of the obtained curing agent (B) was 672. The formula of the main reaction is as follows. The chemical structure of the curing agent (B) was confirmed in the same manner as in Example 1. As a result, since there is no absorption at 126.8ppm, −
The disappearance of CH=CH− bond was observed, and
-CH(-CH 2 )-N-
Formation of bonds was observed. By considering this and the above average molecular weight value, it was confirmed that the chemical structure of the curing agent (B) was a product of the above reaction formula (). Example 3 In place of p-phenylene diamine, 71.1 g of 4,4'-diaminodiphenylmethane was used, and the amount of N-(p-hydroxyphenyl)maleimide was reduced to 135.9 g. Other than that, Example 1
A curing agent (C) was produced in the same manner as above. The average molecular weight of the obtained curing agent (C) was 573. The formula of the main reaction is as follows. The chemical structure of the curing agent (C) was confirmed in the same manner as in Example 1. As a result, since there is no absorption at 126.8ppm, −
The disappearance of CH=CH− bond was observed, and
New absorption occurred at approximately 1:1 ratio at 30.5ppm and 67.0ppm, resulting in -CH( -CH2 )-N-
Formation of bonds was observed. By considering this and the above average molecular weight value, it was confirmed that the chemical structure of the curing agent (C) was a product of the above reaction formula (). Comparative Example 1 4,4'-diaminodiphenyl sulfone was used as Comparative Example 1 as it was. Comparative Example 2 Comparative Example 2 was a mixture of 4,4'-diaminodiphenyl sulfone (curing agent) and N-(p-hydroxyphenyl)maleimide (additive). Next, the curing agents of the above Examples and Comparative Examples were added to 100 g of the epoxy resin shown in the following table in the amount shown in the same table, and then uniformly dissolved and mixed using dimethylformamide. Next, this was dried under reduced pressure to evaporate the solvent, and then the obtained solid was heated at 170°C for 2 hours and then at 200°C for 3 hours to obtain a cured epoxy resin. The glass transition temperature of the obtained cured epoxy resin is shown in the table below. It can be seen that the glass transition temperature of the cured epoxy resin using the curing agent of the example is significantly higher than that of the cured product of the comparative example, indicating that the cured epoxy resin has excellent heat resistance.

【表】 なお、ガラス転移温度はつぎのようにして測定
した。エポキシ樹脂硬化物を5×5×30mmの寸法
に切断して熱膨張計に掛け、室温から300℃まで
の温度範囲を2.5℃/分の昇温速度で加熱し、膨
張曲線の変曲点より求めた。
[Table] The glass transition temperature was measured as follows. Cut the cured epoxy resin into pieces of 5 x 5 x 30 mm, put it on a dilatometer, heat it at a rate of 2.5°C/min in the temperature range from room temperature to 300°C, and then start from the inflection point of the expansion curve. I asked for it.

Claims (1)

【特許請求の範囲】 1 下記の一般式 〔ただし、上記の式において、Rは構造中に少な
くとも一つの芳香環または複素環を含む2価以上
5価以下の基、R′およびR″は水素またはアルキ
ル基を示し、cは基Rの結合手に対応する2〜5
の数を示し、a、bはaが1のときはbが1でa
が2のときはbが0を示し、かつ、aとbの両方
ともが1の組み合わせを少なくとも一つ含む。ま
た、小括弧( )内のフエノール核にはアルキル
基、水酸基およびハロゲン原子の少なくとも一つ
が置換基として入つていてもよく、複数個の中括
弧〔 〕の構造部分は全て同じでなくてもよ
い。〕 で表される化合物よりなるエポキシ樹脂用硬化
剤。
[Claims] 1. The following general formula [However, in the above formula, R is a divalent to pentavalent group containing at least one aromatic ring or heterocycle in the structure, R' and R'' are hydrogen or an alkyl group, and c is a group of R. 2 to 5 corresponding to the bond
Indicates the number of , a and b are 1, b is 1 and a
When is 2, b indicates 0, and both a and b include at least one combination of 1. Furthermore, the phenol nucleus within the parentheses ( ) may contain at least one of an alkyl group, a hydroxyl group, and a halogen atom as a substituent, and the structural parts of multiple curly brackets [ ] do not have to all be the same. good. ] A curing agent for epoxy resin consisting of a compound represented by:
JP169680A 1980-01-09 1980-01-09 Curing agent for epoxy resin Granted JPS5698228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP169680A JPS5698228A (en) 1980-01-09 1980-01-09 Curing agent for epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP169680A JPS5698228A (en) 1980-01-09 1980-01-09 Curing agent for epoxy resin

Publications (2)

Publication Number Publication Date
JPS5698228A JPS5698228A (en) 1981-08-07
JPS6219769B2 true JPS6219769B2 (en) 1987-05-01

Family

ID=11508690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP169680A Granted JPS5698228A (en) 1980-01-09 1980-01-09 Curing agent for epoxy resin

Country Status (1)

Country Link
JP (1) JPS5698228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133753U (en) * 1988-03-03 1989-09-12

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124A (en) * 1980-05-31 1982-01-05 Matsushita Electric Works Ltd Curing agent for epoxy resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133753U (en) * 1988-03-03 1989-09-12

Also Published As

Publication number Publication date
JPS5698228A (en) 1981-08-07

Similar Documents

Publication Publication Date Title
DE2354654C3 (en) Thermosetting mixtures
JPS6248687B2 (en)
JPH07506836A (en) Bismaleimide compound
US4728742A (en) Substituted, unsaturated, bicyclic imides containing hydroxyl groups, and polymers thereof
JPS6312898B2 (en)
JPS6219769B2 (en)
JPS6247893B2 (en)
JPS6136773B2 (en)
EP0348345B1 (en) Solution stable polyimide resin systems
JPH069752A (en) Epoxy resin composition and cured product thereof
JPH0730021B2 (en) Polymaleimide compound
JPS6216208B2 (en)
US5693822A (en) Epoxy resins based on diaminobisimide compounds
JPH01123831A (en) Heat-resistant resin composition
JPS5933359A (en) Preparation of cyanic ester resin molding material
JPS6381161A (en) Heat-resistant resin composition
JP2792209B2 (en) Flexible bisimide compound
JPH0343287B2 (en)
JPS6232207B2 (en)
JPS6140322A (en) Production of curable polyaminobisimide resin
JPS6023424A (en) Heat-resistant resin composition
JPS62177033A (en) Production of heat-resistant laminate
JPH0559933B2 (en)
KR820002316B1 (en) Bisimide ether compounds compositions there of and method of producing same
JPH0343421A (en) Heat-resistant resin composition