JPS62197333A - Production of high-strength optical fiber - Google Patents
Production of high-strength optical fiberInfo
- Publication number
- JPS62197333A JPS62197333A JP61039277A JP3927786A JPS62197333A JP S62197333 A JPS62197333 A JP S62197333A JP 61039277 A JP61039277 A JP 61039277A JP 3927786 A JP3927786 A JP 3927786A JP S62197333 A JPS62197333 A JP S62197333A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- sheath layer
- sheath
- optical fiber
- silicone resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 230000005540 biological transmission Effects 0.000 claims abstract description 15
- 229920002050 silicone resin Polymers 0.000 claims abstract description 15
- 238000004132 cross linking Methods 0.000 claims abstract description 13
- 230000001050 lubricating effect Effects 0.000 claims abstract description 12
- 229920006122 polyamide resin Polymers 0.000 claims abstract description 11
- 239000000178 monomer Substances 0.000 claims abstract description 3
- 238000010894 electron beam technology Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- 238000005253 cladding Methods 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 5
- 239000011345 viscous material Substances 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 239000000314 lubricant Substances 0.000 claims description 3
- 239000011342 resin composition Substances 0.000 claims description 2
- 229920002545 silicone oil Polymers 0.000 abstract description 6
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 abstract 1
- 229920002292 Nylon 6 Polymers 0.000 abstract 1
- 238000007765 extrusion coating Methods 0.000 abstract 1
- 239000004677 Nylon Substances 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- 229920001778 nylon Polymers 0.000 description 9
- 230000005855 radiation Effects 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000004519 grease Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011346 highly viscous material Substances 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、耐熱性、耐外力性能、機械強度に優れた元フ
ァイバの製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a base fiber that has excellent heat resistance, external force resistance, and mechanical strength.
現在実用に供されている光ファイバの構造として、第4
図に示すように、中心部のコア1の外周に順次クラッド
層2、シリコン樹脂/*3、ナイロン樹脂等からなる第
1シース/11+4′からなるものが知られている。The fourth structure of optical fibers currently in practical use is
As shown in the figure, one is known that consists of a cladding layer 2, a first sheath /11+4' made of silicone resin /*3, nylon resin, etc. on the outer periphery of a core 1 at the center.
また、光ファイバを引張シ、圧縮、曲け、応力等の外力
のかかる筒温還境下で使用する場合には、元ファイバを
補強する目的で上記構造において、第1シース層のナイ
ロンシースの高温での熱変形性及び機械的強度を向上さ
せるために、放射線による照射架橋によシホリマー自身
を架橋させる方法がある。In addition, when using the optical fiber in a cylinder temperature-relaxation environment where external forces such as tension, compression, bending, stress, etc. are applied, the nylon sheath of the first sheath layer is In order to improve thermal deformability and mechanical strength at high temperatures, there is a method of crosslinking the sifolimer itself by irradiation crosslinking with radiation.
しかしながら、上記した放射線による照射架橋では、第
1シース層の熱変形性及び機械強度は向上するものの、
元ファイバの伝送損失が増加するという、1大な欠点が
あった。However, in the above-mentioned radiation crosslinking, although the thermal deformability and mechanical strength of the first sheath layer are improved,
One major drawback was that the transmission loss of the original fiber increased.
この原因としては、下記の二点が考えられる。The following two points are considered to be the cause of this.
第一に、放射線がコア・クラッドを透過することである
。例えば第2図に示す、r@照射における照射線量と元
ファイバの伝送ロスの関係を示すグラフの例から明らか
なように、わずか20 radという低湘射1M量で伝
送ロスの増大が起こっている。この為、ra等の透過力
の大きな放射線は使用できない。First, radiation passes through the core cladding. For example, as is clear from the graph shown in Figure 2, which shows the relationship between the irradiation dose and the transmission loss of the original fiber in r@ irradiation, an increase in transmission loss occurs with a 1M radiation dose as low as 20 rad. . For this reason, radiation having a large penetrating power such as RA cannot be used.
第二に、ナイロンシース等の第1シース層が収縮し、内
部応力がコア・クラッドに作用し、マイクロベンドが生
じることである。Second, the first sheath layer, such as a nylon sheath, contracts and internal stress acts on the core cladding, causing microbends.
これに対し、放射線がコア・クランドを透過しないよう
に電子線の加速電圧を調整することが考えられるが、上
記の従来構造で抜機に裕度がないため不可能であった。On the other hand, it is conceivable to adjust the accelerating voltage of the electron beam so that the radiation does not pass through the core/cland, but this has not been possible due to the lack of margin in the cutting machine with the above-mentioned conventional structure.
本発明の目的は、以上のような従来広の欠点を解消し、
伝送損失増大をもたらさずに、シースの高温での熱変形
性及び機櫨的強度を向上できる高強度光ファイバの製造
方法を提供することにある。The purpose of the present invention is to eliminate the above-mentioned drawbacks of the conventional technology,
An object of the present invention is to provide a method for manufacturing a high-strength optical fiber that can improve the thermal deformability and mechanical strength of a sheath at high temperatures without increasing transmission loss.
本発明社コアとクラッド及びシリコン樹脂層を有し、該
シリコン樹脂層上に設けた第1のシース層と、駄第1の
シース海上に潤滑層を介して設けた第2のシース急から
成ることを特徴と −する元ファイバにνいて、第2
のシース〜として、多官能性七ツマ−を含むポリアミド
伽脂組成物を用い、しかる後、最大透過厚さが上記シリ
コン樹脂層、第1シース層、潤滑層及び第2シース層の
合計厚さより小さい電子線を用いて該第2シース/kを
架橋せしめたことを%徽とする高強度光ファイバの製造
方法に関する。The invention comprises a core, a cladding, and a silicone resin layer, a first sheath layer provided on the silicone resin layer, and a second sheath layer provided above the first sheath via a lubricating layer. The second
As the sheath, a polyamide resin composition containing a polyfunctional 7-mer is used, and then the maximum permeation thickness is greater than the total thickness of the silicone resin layer, the first sheath layer, the lubricating layer, and the second sheath layer. The present invention relates to a method of manufacturing a high-strength optical fiber in which the second sheath/k is crosslinked using a small electron beam.
本発明の%Khましい実施態様としては、潤滑〜が粘度
500 cps以上の粘性体からなる上記方法、第2シ
ース層が架橋後弾性″4150〜4500 *g/ll
m2を有するものである上記方法、および第2のシース
層として用いたポリアミド樹脂が、重合体中の繰返し単
位に含まれる炭素原子の数が4以上、12以下の重合体
である上記方法が挙げられる。A preferred embodiment of the present invention includes the above method in which the lubrication is made of a viscous material with a viscosity of 500 cps or more, and the second sheath layer has an elasticity after crosslinking of 4150 to 4500 *g/ll.
m2, and the above method in which the polyamide resin used as the second sheath layer is a polymer in which the number of carbon atoms contained in the repeating unit in the polymer is 4 or more and 12 or less. It will be done.
第1図は本発明による光ファイバの1例の横断面図でろ
って、1はコア、2はクランド、3はシリコン樹脂層、
4は第1のシース層、5は11!?’1層、6は第2の
シース層である。すなわち本発明は第4図の従来構造の
光ファイバの、シース層を2層とし、その層間に空隙′
t−設けることによシ、放射線照射架橋時のシース層の
収縮する代を与えるものである。該空隙の設定には、収
縮したシース層がナベ多光ファイバ中に内部応力が発生
することのないように、第1のシース層外周にシリコン
オイル等を塗布して潤滑1を°形成する。FIG. 1 is a cross-sectional view of one example of an optical fiber according to the present invention, in which 1 is a core, 2 is a gland, 3 is a silicone resin layer,
4 is the first sheath layer, 5 is 11! ? '1 layer, 6 is the second sheath layer. That is, the present invention has two sheath layers in the optical fiber having the conventional structure shown in FIG.
The provision of T-gives a margin for shrinkage of the sheath layer during crosslinking by radiation irradiation. To set the gap, lubrication 1 is formed by applying silicone oil or the like to the outer periphery of the first sheath layer so that the contracted sheath layer does not generate internal stress in the pan-optical fiber.
本発明において、コア1、クランド2及びシリコン樹脂
層3には、従来の元ファイバにおいて用いられた公知の
構成材料が用いられ特に限定されるところはなく、例え
ばコア、クラッドには石英系ガラス等のガラス材料を、
シリコン樹脂層にはシリコン極脂を用いる。In the present invention, the core 1, the crund 2, and the silicone resin layer 3 are made of known constituent materials used in conventional original fibers, and are not particularly limited. For example, the core and the cladding may be made of quartz glass, etc. glass material,
Silicone extra fat is used for the silicone resin layer.
第1のシース層4としては、例えばポリエチレン、ポリ
プロピレン、ポリ塩化ビニル、ナイロン、ポリエステル
、ポリウレタン等の熱可塑性プラスチックスを用いるこ
とができる。As the first sheath layer 4, thermoplastics such as polyethylene, polypropylene, polyvinyl chloride, nylon, polyester, polyurethane, etc. can be used.
第2のシース層6としては、ポリアミド樹脂を用いるこ
とが好ましく、例えばナイロン6.66.610.61
2.12といった、ポリマー繰返し単位に含まれる炭素
数が4以上12゛以下のものが挙けられる。架橋助剤と
して使用する多官能性モノマーとしては、トリアリルシ
アヌレート、トリアリルインシアヌーレート、トリメチ
ロールプロパントリメタクリレート、トリメチロールプ
ロパントリアクリレートからなる群よシ選ばれ虎ものが
挙げられる。As the second sheath layer 6, it is preferable to use polyamide resin, such as nylon 6.66.610.61.
2.12, in which the number of carbon atoms contained in the polymer repeating unit is 4 or more and 12 or less. Examples of the polyfunctional monomer used as a crosslinking auxiliary agent include those selected from the group consisting of triallyl cyanurate, triallyl in cyanurate, trimethylolpropane trimethacrylate, and trimethylolpropane triacrylate.
第2のシース層江上記ポリアミド樹脂を用いるのは、柔
軟性、加工性が良好で、押出機aKよる光のロスが少な
く、耐摩耗性に優れているからである。The reason why the above polyamide resin is used for the second sheath layer is that it has good flexibility and processability, has little light loss due to the extruder aK, and has excellent abrasion resistance.
これ等の材料は、照射架橋後引張弾性率が150〜45
00k)/寵2の範囲内のものが特に好ましい。その理
由は、1satti/w’未満では横方向からの衝撃に
対しては緩衝効果があるので特定の箇所で使用する場合
においてその耐外力性能を生かすことができるものの引
張応力、圧縮応力、曲げ応力に対しては光なものとは言
えないため、使用箇所が限られる。These materials have a tensile modulus of 150 to 45 after irradiation crosslinking.
Particularly preferred are those within the range of 00k)/min2. The reason for this is that if it is less than 1 satti/w', it has a buffering effect against lateral impact, so when used in a specific location, it is possible to take advantage of its external force resistance, but it is not subject to tensile stress, compressive stress, bending stress. Since it cannot be said to be a light object, the places where it can be used are limited.
45 Q Ok) / fI2t−越えると耐引張応力
、圧縮応力、曲げ応力に優れるものの、特に引張シ弾性
率が4500 kg/m2以上の場合は元ファイバの柔
軟性が損なわれる。従って柔軟性が必要としない場合で
は、弾性率4500 kl// wm2の第2のシース
層を設けた光ファイバが使用できる。If the tensile modulus exceeds 45 Q Ok) / fI2t-, the tensile stress resistance, compressive stress, and bending stress are excellent, but especially when the tensile modulus is 4500 kg/m2 or more, the flexibility of the original fiber is impaired. Therefore, if flexibility is not required, an optical fiber provided with a second sheath layer with an elastic modulus of 4500 kl//wm2 can be used.
第1のシース層4と第2のシース層6との間に設けられ
た潤滑層5としては、鉱油系オイル及びグリース、シリ
コーン系オイル及びグ+7−ス、弗素系オイル及びグリ
ース等の有機質及びこれ等有機質に個体潤滑剤例えばク
ラファイト、モリブテン粉等を添加したもので、前記第
1、第2のシース層を劣化させない粘性体を用いること
ができる。特に潤滑層に用いられる粘性体の粘度か50
0 cp 以上のとき、第1のシース層と第2のシース
層との間隔が適度に保持され、且つ塗布した潤滑剤が流
出しないため好ましい。The lubricating layer 5 provided between the first sheath layer 4 and the second sheath layer 6 may include organic materials such as mineral oil and grease, silicone oil and grease, and fluorine oil and grease. A solid lubricant such as graphite or molybdenum powder is added to these organic materials, and a viscous material that does not deteriorate the first and second sheath layers can be used. In particular, the viscosity of the viscous material used for the lubricating layer is 50
When it is 0 cp or more, the distance between the first sheath layer and the second sheath layer is maintained appropriately, and the applied lubricant does not flow out, which is preferable.
特に好ましい潤滑層としてはシリコーンオイルが挙けら
れる。A particularly preferred lubricating layer is silicone oil.
但し、第1のシース層に常温からコアに影響を与えない
温度(約1ooc)で塗布出来ないような高粘性体は好
ましくない。However, it is not preferable to use a highly viscous material that cannot be applied to the first sheath layer at a temperature ranging from room temperature to a temperature that does not affect the core (approximately 1 OOC).
粘性体の粘度決定は第2シース層に加わる外力(外圧)
とシース間隙とシース層の弾性率によって決定される。The viscosity of a viscous body is determined by the external force (external pressure) applied to the second sheath layer.
is determined by the sheath gap and the elastic modulus of the sheath layer.
外力(外圧)が大きい場合は第2シース層の弾性率を高
く、シース間隙を大きく、高粘性体を充填しシース間の
摩擦係数を出来るだけ小さくするのが好ましい。例えば
第1のシース層と第2のシース層との間隙が0.5Bで
粘性体が1000 cp の時は摩擦係数が0.2以下
となって第2のシース層Kかかった外力が600kJL
/−以上の場合であっても、コアに影響を与える程度ま
でには第1のシース層に伝達しないので特に好ましい。When the external force (external pressure) is large, it is preferable to increase the elastic modulus of the second sheath layer, increase the gap between the sheaths, fill the sheath with a highly viscous material, and reduce the coefficient of friction between the sheaths as much as possible. For example, when the gap between the first sheath layer and the second sheath layer is 0.5B and the viscous material is 1000 cp, the friction coefficient is 0.2 or less and the external force applied to the second sheath layer K is 600 kJL.
Even in the case of /- or more, it is particularly preferable because it does not transmit to the first sheath layer to the extent that it affects the core.
ポリアミド樹脂の第2のシース層に照射する電子線加速
器の加速電圧を変えた場合における、該ポリアミド樹脂
の架橋度をめられすゲル分率(溶剤不溶解分)と透過厚
みとの関係を第5図に示す。第3図のグラフにおいて、
イは360KaV、oは290 KaV 、 ハは25
0 KaVの加速電圧の場合である。The relationship between the gel fraction (solvent-insoluble content) and the transmission thickness, which determines the degree of crosslinking of the polyamide resin when the acceleration voltage of the electron beam accelerator that irradiates the second sheath layer of the polyamide resin, is changed. It is shown in Figure 5. In the graph of Figure 3,
A is 360 KaV, o is 290 KaV, and H is 25
This is the case with an accelerating voltage of 0 KaV.
第5図から、本発明におけるシリコーン樹脂層、第1の
シース層、潤滑層、第2のシース層の合計〔これは通常
の光ファイバにおける外部被aK相当する〕厚さ、a、
7〜Q、95 n+aK、よシも小さい最大透過厚の電
子線で照射され、電子線加速、電圧としては290〜5
60 KeV未満であればよいことがわかる。From FIG. 5, the total thickness of the silicone resin layer, first sheath layer, lubricating layer, and second sheath layer in the present invention [this corresponds to the outer covering aK of a normal optical fiber], a,
7-Q, 95 n+aK, irradiated with an electron beam with a much smaller maximum penetration thickness, electron beam acceleration, voltage 290-5
It can be seen that it is sufficient if it is less than 60 KeV.
実施例
直径50μl1lc1:7ア、外径125μmのクラッ
ドのファイバにさらに外径400μm となるようシリ
コン樹脂層を形成した。第1のシース層として、12ナ
イロン檎脂を外径0.9.、となるように押出被株した
。次に、該第1シース層外周にシリコンオイルNを外径
1.0寵となるようKl!布した後、第2のシース層と
して、トリアリルインシアヌレートを5[L部添加した
12ナイロン樹脂を、外径2.Otaとなるよう押出被
接した。EXAMPLE A silicone resin layer was further formed on a clad fiber having a diameter of 50 .mu.l, 1:7 a and an outer diameter of 125 .mu.m so as to have an outer diameter of 400 .mu.m. As the first sheath layer, 12 nylon resin was used with an outer diameter of 0.9. The shares were extruded to become . Next, apply silicone oil N to the outer periphery of the first sheath layer so that the outer diameter is 1.0 cm! After coating, a second sheath layer was made of 12 nylon resin to which 5 L parts of triallyl in cyanurate was added, with an outer diameter of 2. It was extruded and bonded so that it became Ota.
しかる後、加速電圧560 KaVの低電圧加速器を用
いて10Mrad’ll子線を照射し、第2シース層の
ナイロン層を架橋せしめた。この光ファイバの伝送ロス
を測定した結果、3dB/−と従来の非照射のyt、7
アイバと同程度の値を示した。更に250Cの恒温槽に
10分間、該光)アイパを放置した所、第2シース層は
、溶融や割れも無く、はとんど室温と変化なかった。Thereafter, a 10 Mrad'll cosonant beam was irradiated using a low voltage accelerator with an accelerating voltage of 560 KaV to crosslink the nylon layer of the second sheath layer. As a result of measuring the transmission loss of this optical fiber, it was 3 dB/-, yt of conventional non-irradiation, 7
It showed a value similar to that of Aiba. Furthermore, when the optical eyelid was left in a constant temperature bath at 250 C for 10 minutes, the second sheath layer did not melt or crack, and the temperature remained almost unchanged from room temperature.
比較例
実施例と同じ構造を有する光ファイバを、加速電圧j
MeVで10 Mrad 照射し二次被積層を加橋せ
しめたものと、未照射光ファイバにつき、実施例と同様
に、元、の伝送ロス測定と2500の恒温槽に10分間
放置し、第2シース層の状態を見た。その結果、I M
eVで照射し六ものは、250Cの恒温槽に入れても実
施例と同じく第2シース層に特に変化は見られなかった
ものの、伝送ロスは500 (IB/ムと著しく増加し
、元7アイパとしては使用出来ないことがわかつ六。Comparative Example An optical fiber having the same structure as the example was heated at an accelerating voltage j
The optical fibers were irradiated with 10 Mrad at MeV to cross-link the secondary laminated layer, and the unirradiated optical fibers were measured in the same way as in the example, and the original transmission loss was measured. I looked at the state of the layers. As a result, I M
Although no particular change was observed in the second sheath layer of the six samples irradiated with eV and placed in a constant temperature oven at 250C, as in the example, the transmission loss significantly increased to 500 IB/mu, compared to the original 7 IB/mu. It turns out that it cannot be used as a.
一方、未照射の−yt、7アイバでは、伝送ロスは5c
lB/l[sと低い値を示したが、250Cの恒温槽に
10分間放置した所、第2シースN7IIが溶融してし
まい、これも使用出来ないことがわかった。On the other hand, for unirradiated -yt, 7 eyeballs, the transmission loss is 5c
Although it showed a low value of 1B/l[s, it was found that the second sheath N7II melted when it was left in a constant temperature bath at 250C for 10 minutes, making it unusable as well.
この様に本発明になる方法により、伝送ロスも増加せず
、かつ耐熱性に優れた光ファイバを製造することができ
九。As described above, by the method of the present invention, it is possible to manufacture an optical fiber that does not increase transmission loss and has excellent heat resistance.
以上説明した本発明の効果は次のとおシである。 The effects of the present invention explained above are as follows.
リ シース層が電子線照射により収縮しても、潤滑層の
シリコンオイルですべるため、ファイバに内部応力が発
生しない。Even if the sheath layer shrinks due to electron beam irradiation, it slips due to the silicone oil in the lubricating layer, so no internal stress is generated in the fiber.
2)シたがって、電子線の照射架橋によっても元ファイ
バの伝送損失増大はなく、高温での熱変形性及び耐外力
強度が向上する。2) Therefore, the transmission loss of the original fiber does not increase even by electron beam irradiation crosslinking, and the thermal deformability and external force resistance at high temperatures are improved.
5〕 従来の熱架4iliKよる方法に比べ、電子線照
射架橋では線違約107117Illinと10倍の線
速か可能となシ、製造コストを低下できる。5] Compared to the conventional method using a thermal rack, electron beam irradiation crosslinking allows a line speed of about 107,117 Illin, which is 10 times faster, and can reduce manufacturing costs.
4)従来の非架橋二重ナイロンシースに比べ、゛ 本
発明のように架橋したものの機械強度は約1.5倍と高
強度である。従って、従来の非架橋のものと同程度の強
度のものにする場合に鉱、シース層が薄くてもよい。4) Compared to the conventional non-crosslinked double nylon sheath, the mechanical strength of the crosslinked one according to the present invention is approximately 1.5 times higher. Therefore, the ore and sheath layers may be thin in order to have the same strength as conventional non-crosslinked ones.
第1図は、本発明による元ファイバの径方向断面図、第
2図は、rlN照射における、照射線量と光ファイバの
伝送ロスとの関係を示すグラフ、第5図は、電子線加速
器の加速電圧をかえた場合の、架橋ポリアミド樹脂にお
けるゲル分率と透過厚みとの関係を示すグラフ、第4図
は、従来の光7アイパの径方向断面図である。Fig. 1 is a radial cross-sectional view of the original fiber according to the present invention, Fig. 2 is a graph showing the relationship between the irradiation dose and the transmission loss of the optical fiber in rlN irradiation, and Fig. 5 is the acceleration of the electron beam accelerator. FIG. 4 is a graph showing the relationship between the gel fraction and the transmission thickness in crosslinked polyamide resin when the voltage is changed, and is a radial cross-sectional view of a conventional Hikari 7 Eyeper.
Claims (4)
リコン樹脂層上に設けた第1のシース層と、該第1のシ
ース層上に潤滑層を介して設けた第2シース層から成る
ことを特徴とす る光フアイバにおいて、第2のシース層として、多官能
性モノマーを含むポリアミド樹脂組成物を用い、しかる
後、最大透過厚さが上記シリコン樹脂層、第1シース層
、潤滑層及び第2シース層の合計厚さより小さい電子線
を用いて該第2シース層を架橋せしめたことを特徴とす
る高強度光フアイバの製造方法。(1) It has a core, a cladding, and a silicone resin layer, and consists of a first sheath layer provided on the silicone resin layer, and a second sheath layer provided on the first sheath layer with a lubricant layer interposed therebetween. In the optical fiber, a polyamide resin composition containing a polyfunctional monomer is used as the second sheath layer, and then the maximum transmission thickness is the same as that of the silicone resin layer, the first sheath layer, the lubricating layer and A method for producing a high-strength optical fiber, characterized in that the second sheath layer is crosslinked using an electron beam smaller than the total thickness of the second sheath layer.
許請求の範囲第(1)項記載の高強度光フアイバの製造
方法。(2) A method for manufacturing a high-strength optical fiber according to claim (1), wherein the lubricating layer is made of a viscous material having a viscosity of 500 cp or more.
kg/mm^2を有する特許請求の範囲第(1)項記載
の高強度光フアイバの製造方法。(3) The second sheath layer has an elastic modulus of 150 to 4500 after crosslinking
kg/mm^2.
重合体中の繰返し単位に含まれる炭素原子の数が4以上
12以下の重合体から成る特許請求の範囲第(1)項記
載の高強度光フアイバの製造方法。(4) The polyamide resin used as the second sheath layer is
The method for producing a high-strength optical fiber according to claim 1, which comprises a polymer in which the number of carbon atoms contained in repeating units in the polymer is 4 or more and 12 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61039277A JPS62197333A (en) | 1986-02-26 | 1986-02-26 | Production of high-strength optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61039277A JPS62197333A (en) | 1986-02-26 | 1986-02-26 | Production of high-strength optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62197333A true JPS62197333A (en) | 1987-09-01 |
Family
ID=12548671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61039277A Pending JPS62197333A (en) | 1986-02-26 | 1986-02-26 | Production of high-strength optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62197333A (en) |
-
1986
- 1986-02-26 JP JP61039277A patent/JPS62197333A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69105728T2 (en) | INSULATED FIBER OPTIC FIBER CABLE WITH A CUSHION LAYER. | |
US8525031B2 (en) | Low cost, high performance flexible reinforcement for communications cable | |
US4645298A (en) | Optical fiber cable | |
EP0752603A1 (en) | Improvements in or relating to a buffer material for optical signal transmission media | |
US8126303B2 (en) | Low cost, high performance, low profile flexible reinforcement for communications cable | |
JPH0527842B2 (en) | ||
US4575188A (en) | Heat resistant plastic optical fiber | |
CA2296361A1 (en) | Optical fibre cable having high tracking resistance | |
CA1280306C (en) | Telecommunications cable containing optical fibres | |
JPS62197333A (en) | Production of high-strength optical fiber | |
US5058987A (en) | Coated optical fiber | |
US4540597A (en) | Process for producing optical fiber for optical transmission | |
JPS60151257A (en) | Manufacture of optical fiber | |
CA1338263C (en) | Optical waveguides | |
CA1255864A (en) | Process for producing plastic optical fibers | |
AU601487B2 (en) | Optical cable | |
JPS6042254A (en) | Manufacture of optical fiber | |
EP0307218A1 (en) | Protected fibre optic waveguide | |
GB2135073A (en) | Plastics packaging glass optical fibres | |
JPH01161208A (en) | Optical fiber cord | |
JPH01206307A (en) | Optical fiber | |
JPS5898704A (en) | Optical fiber core | |
JPS60151258A (en) | Manufacture of optical fiber | |
JPS61170711A (en) | Optical fiber core | |
JP3670386B2 (en) | Plastic optical fiber strand and plastic optical fiber cable using the strand |