JPS62196779A - Drawing recognizing device - Google Patents
Drawing recognizing deviceInfo
- Publication number
- JPS62196779A JPS62196779A JP61038534A JP3853486A JPS62196779A JP S62196779 A JPS62196779 A JP S62196779A JP 61038534 A JP61038534 A JP 61038534A JP 3853486 A JP3853486 A JP 3853486A JP S62196779 A JPS62196779 A JP S62196779A
- Authority
- JP
- Japan
- Prior art keywords
- symbol
- recognition
- triangular area
- short
- short vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013598 vector Substances 0.000 claims abstract description 20
- 238000010586 diagram Methods 0.000 abstract description 20
- 238000009826 distribution Methods 0.000 abstract description 5
- 238000005070 sampling Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 7
- 238000004904 shortening Methods 0.000 description 4
- 241001655798 Taku Species 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Image Analysis (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、配電図面などの図面上に描かれた電線ある
いは電柱のネットワークを認識するための図面認識装置
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a drawing recognition device for recognizing a network of electric wires or utility poles drawn on a drawing such as a power distribution drawing.
第6図は従来の図面認識装置におけるネットワーク認識
を行うためのハードウェア構成図で、図において、1は
図面の認識を行うCPU、2は高速で画像処理を行う画
像処理装置、3は図面読取装置、4は静電ブロック、5
は大容量ディスク装置、6はグラフィックCRTである
。Figure 6 is a hardware configuration diagram for performing network recognition in a conventional drawing recognition device. In the figure, 1 is a CPU that recognizes drawings, 2 is an image processing device that performs high-speed image processing, and 3 is a drawing reader. Device, 4 is electrostatic block, 5
6 is a large capacity disk device, and 6 is a graphic CRT.
次に動作について説明する。まず、従来のネットワーク
認識装置の処理フローを第7図に示す。Next, the operation will be explained. First, FIG. 7 shows a processing flow of a conventional network recognition device.
ここで認識の対象となる図面は第8図に示すようなノー
ドとブランチから構成されるネットワーク図で、配電線
路図やガス配管図などがあげられる。The drawings to be recognized here are network diagrams composed of nodes and branches as shown in FIG. 8, such as power distribution line diagrams and gas piping diagrams.
このようにシンボル図で描かれた図面を図面読取装置3
によって読み取る(ST−1)。次にCPU1及び高速
画像処理装置によシ、ノードに当るシンボルのX、Y位
置座標及びシンボル種別を認識する(ST−2)。そし
て前記シンボル認識の結果後、認識された全シンボルに
関し、図面1枚の原画データからシンボル座標を特徴と
する特許形の原画データを第9図の拡大図の如く切出す
(ST−3)(第9図)。次に切出された原画(第1O
図(〜)に対し第10図(B)に示す如くシンボルのま
わり(0〜360°)についてl定角度単位でヒストグ
ラム測定をする(ST−4)。次に本測定結果にもとす
き、シンボルから出るネットワーク(ブランチ)の本数
と方向を決定する(ST−5)(第10図(C)参照)
。このようにして求まったシンボルから出るブランチの
本数及び方向を見極め、ある基点から、そのシンボルか
ら出るブランチ方向上で、最も近傍にある相手シンボル
で相手シンボルからも逆方向のブランチ方向が出ている
場合、前記の2点間にネットワーク有と認識する(ST
−6)(第11図)。このようなサーチを全シンボルに
ついて実施し図面−秋分のネットワークを認識する。The drawings drawn as symbol diagrams in this way are read by the drawing reading device 3.
(ST-1). Next, the CPU 1 and the high-speed image processing device recognize the X and Y position coordinates and symbol type of the symbol corresponding to the node (ST-2). After the result of the symbol recognition, patent-type original image data characterized by symbol coordinates is cut out from the original image data of one drawing for all the recognized symbols as shown in the enlarged view of FIG. 9 (ST-3). Figure 9). Next, the original picture cut out (1st O
As shown in FIG. 10(B), a histogram is measured in l constant angle units around the symbol (0 to 360°) (ST-4). Next, based on the actual measurement results, determine the number and direction of networks (branches) coming out of the symbol (ST-5) (see Figure 10 (C))
. The number and direction of branches coming out from the symbol thus determined are determined, and from a certain base point, on the direction of branches coming out from that symbol, the nearest opponent symbol has a branch direction in the opposite direction coming out from the opponent symbol. , it is recognized that there is a network between the above two points (ST
-6) (Figure 11). Such a search is performed for all symbols to recognize the map-autumn equinox network.
〔発明が解決しようとする問題点〕
従来の図面認識装置は以上のように構成されているので
、全シンボルに亘って近傍の画像切出しを行いシンボル
座標回りのヒストグラムを作る必要があり、かつネソ[
・ワーク方向を測定するために大変時間がかかるという
問題点があった。[Problems to be Solved by the Invention] Since the conventional drawing recognition device is configured as described above, it is necessary to cut out nearby images across all symbols and create a histogram around the symbol coordinates. [
- There was a problem that it took a lot of time to measure the direction of the workpiece.
この発明は上記のような問題点を解消するためになされ
たもので、ある基準点のまわりを一定角度で等分した三
角形エリアごとに該エリア内での基準点から出る線分を
短ベクトル化する高速ベクトル化装置を用いることによ
シ、ネットワーク認識を高速化する図面認識装置を得る
ことを目的とする。This invention was made in order to solve the above-mentioned problems, and for each triangular area that is equally divided at a certain angle around a certain reference point, the line segments coming from the reference point within the area are converted into short vectors. The purpose of this invention is to obtain a drawing recognition device that speeds up network recognition by using a high-speed vectorization device.
この発明に係る図面認識装置は、ある基準点のまわりか
ら出る線分を認識するために、基準点まわりを一定角度
で等分した3角形エリアの原画を切出し、その三角形エ
リア内で基準点から外方向へ出る線分を短ベクトル化す
るようにしだものである。The drawing recognition device according to the present invention cuts out an original drawing of a triangular area that is equally divided around the reference point at a certain angle in order to recognize a line segment coming out from around a certain reference point, and then It is designed to convert outward line segments into short vectors.
この発明における図面認識装置は三角形エリア短ベクト
ル化装置によってシンボルが発生するブランチを短ベク
トル化し、短ベクトル群を結合して長ベクトル化して線
分の方向及び本数を決定する。The drawing recognition device according to the present invention uses a triangular area short vectorization device to shorten branches where symbols occur, and then combines the short vectors to make long vectors to determine the direction and number of line segments.
以下、この発明の一実施例を図について説明する。図中
、第6図と同一の部分は同一の符号をもって図示した第
1図において、7は三角形エリア短ベクトル化装置であ
る。また、第3図は三角形エリア短ベクトル化装置の機
能ブロック構成図である。An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, the same parts as in FIG. 6 are shown with the same reference numerals, and 7 is a triangular area shortening vectorization device. Further, FIG. 3 is a functional block diagram of the triangular area shortening vectorization device.
次に動作について説明する。まず、配電図面等の対象図
面を図面読取装置3によって読込む(ST−IA)。次
にCPU1及び画像処理装置2によりシンボル認識を行
う(ST−2A)。本発明では、シンボル認識結果のま
わりでシンボルから出るブランチの本数と方向を認識す
るために、三角形エリア短ベクトル化装置7によりシン
ボルから出るブランチを短ベクトル化する(8T−3A
)。Next, the operation will be explained. First, a target drawing such as a power distribution drawing is read by the drawing reading device 3 (ST-IA). Next, symbol recognition is performed by the CPU 1 and the image processing device 2 (ST-2A). In the present invention, in order to recognize the number and direction of branches emanating from the symbol around the symbol recognition result, the branches emanating from the symbol are converted into short vectors by the triangular area short vectorization device 7 (8T-3A
).
短ベクトル化の処理手順を第4図(A)〜(D) K示
す。シンボル認識結果の座標を中心に等分の角度Ll(
第4図(A))。次に中心から2等辺3角形の底辺に平
行にサンプル平行線をひき(第4図(B))、サンプル
平行線上でL8の如く細線化・点列化しく第4図(C)
)、点列の座標を求める。次にこのサンプリング点列デ
ータにより点列を結び、短ベクトル化L4する(第4図
(C))。次に短ベクトル群を第5図に示すような長ベ
クトル化L5 L、、線分の方向及び本数を決定する(
ST−4A)及び(第5図(A))。次に従来装置と同
様の手法で全シンボルに関してネットワークサーチを行
う(ST−5A)。The processing procedure for shortening vectors is shown in FIGS. 4(A) to 4(D)K. Angle Ll (
Figure 4(A)). Next, draw a sample parallel line from the center parallel to the base of the isosceles triangle (Fig. 4 (B)), and make the sample parallel line thinner and dotted as shown at L8 (Fig. 4 (C)).
), find the coordinates of the point sequence. Next, the point sequence is connected using this sampling point sequence data to shorten the vector L4 (FIG. 4(C)). Next, the short vector group is converted into a long vector L5 L as shown in Fig. 5, and the direction and number of line segments are determined (
ST-4A) and (Fig. 5(A)). Next, a network search is performed for all symbols using the same method as in the conventional device (ST-5A).
本発明によるネットワーク認識手法のフローチャートを
第2図に示す。A flowchart of the network recognition method according to the present invention is shown in FIG.
なお、上記実施例では、配電図面やガス・水道管路図を
対象とするネットワーク認識忙ついての適用例を示した
が、鉄道路線図や通信系統図等のネットワーク認識に適
用しても同様の効果を奏する。In addition, in the above example, an application example of network recognition for electrical distribution drawings and gas/water pipe diagrams was shown, but the same method can be applied to network recognition for railway route maps, communication system diagrams, etc. be effective.
以上のように、この発明によれば、シンボル認識結果後
のシンボルから出る線分の方向と本数をAA :、為J
−1L憾1r−AXI ψII フに+−争A l
−/l−→七慧−設けだので、ネットワーク認識が高速
、かつ高信頼性をもって行える効果がある。As described above, according to the present invention, the direction and number of line segments emanating from a symbol after symbol recognition results are determined by AA:, for J
-1L regret 1r-AXI ψII Funi +- dispute A l
-/l-→Shichikei- setting has the advantage that network recognition can be performed at high speed and with high reliability.
第1図は本発明のネットワーク認識装置のノ・−ドウエ
ア構成図、第2図は第1図のネットワーク認識処理フロ
ーチャート、第3図は第1図の三角形エリア短ベクトル
化装置の機能構成図、第4図は三角形エリア短ベクトル
化の方式説明図、第5図は長ベクトル化説明図、第6図
は従来のネットワーク認識装置のハードウェア構成図、
第7図は第6図の処理フローチャート、第8図はネット
ワーク図のサンプル図、第9図は第6図のネットワーク
認識装置の画像データ切出し図、第10図は従来装置の
シンボルから出るブランチの本数と方向の決定順序図、
第11図はネットワークサーチ方式の説明図である。
図において、1はC1’U、2は画像処理装置、3は図
面読取装置、5は大容量ディスク装置、6はグラフィッ
クCRT、7は三角形エリア短ベクトル化装置である。
第1図
2:画イ象寿理表置
3 : しろσn吉免耳又先気遭Y
4: 青テ宅プロ・7タ
5: 大容量rイス人装置
6: フ゛フフィン、7CRT
7: −月πフェリ7失1′ぐクト)レイし装置第2図
第5図
第6図
第7図
第8図
第9図
第10図
第11図
、J−””’■
手続補正書(自発)
5.7.、6.16
昭和 月 日FIG. 1 is a hardware configuration diagram of the network recognition device of the present invention, FIG. 2 is a network recognition processing flowchart of FIG. 1, and FIG. 3 is a functional configuration diagram of the triangular area shortening vectorization device of FIG. 1. FIG. 4 is an explanatory diagram of a method for converting a triangular area into a short vector, FIG. 5 is an explanatory diagram of a method for converting a triangle area into a long vector, and FIG. 6 is a hardware configuration diagram of a conventional network recognition device.
Fig. 7 is a processing flowchart of Fig. 6, Fig. 8 is a sample diagram of a network diagram, Fig. 9 is a cutout diagram of image data of the network recognition device of Fig. 6, and Fig. 10 is a diagram of a branch coming out of a symbol of a conventional device. Determination order diagram for number and direction,
FIG. 11 is an explanatory diagram of the network search method. In the figure, 1 is C1'U, 2 is an image processing device, 3 is a drawing reading device, 5 is a large capacity disk device, 6 is a graphic CRT, and 7 is a triangular area short vectorization device. Fig. 1 2: Picture illustration 3: Shiro σn Kichimen Mimata Mata Sakien Y 4: Aote Taku Pro 7 Ta 5: Large-capacity r-chair device 6: Five-Fin, 7 CRT 7: -Moon π Ferri 7 Loss 1' Guct) Laying Device Figure 2 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11, J-""'■ Procedural amendment (voluntary) 5 .7. , 6.16 Showa month day
Claims (1)
取装置によつて読取り、該読み取つたデータをCPUか
らの指令により画像処理装置を用いて認識し、大容量デ
イスク装置等に格納すると共に前記認識の結果をグラフ
イツクCRTに表示する図面認識装置において、前記C
PUに三角形エリア短ベクトル装置を接続し、該三角形
エリア短ベクトル装置によつて対象図面の三角エリアを
切出し、該切出された対象図面を短ベクトル化処理後、
前記シンボルから出力されるブランチの本数及び方向を
自動認識するようにしたことを特徴とする図面認識装置
。Network information symbols drawn on the drawing are read by a drawing reading device, the read data is recognized by an image processing device according to instructions from the CPU, and stored in a large-capacity disk device, etc., and the recognition is performed. In the drawing recognition device that displays the results of C on a graphics CRT,
A triangular area short vector device is connected to the PU, the triangular area of the target drawing is cut out by the triangular area short vector device, and the cut out target drawing is processed into short vectors.
A drawing recognition device characterized in that the number and direction of branches output from the symbol are automatically recognized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61038534A JPS62196779A (en) | 1986-02-24 | 1986-02-24 | Drawing recognizing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61038534A JPS62196779A (en) | 1986-02-24 | 1986-02-24 | Drawing recognizing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62196779A true JPS62196779A (en) | 1987-08-31 |
JPH0521270B2 JPH0521270B2 (en) | 1993-03-23 |
Family
ID=12527945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61038534A Granted JPS62196779A (en) | 1986-02-24 | 1986-02-24 | Drawing recognizing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62196779A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5356195A (en) * | 1992-03-18 | 1994-10-18 | Mazda Motor Corporation | Rear spoiler mounting structure for an automatic vehicle and vehicle so equipped |
-
1986
- 1986-02-24 JP JP61038534A patent/JPS62196779A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5356195A (en) * | 1992-03-18 | 1994-10-18 | Mazda Motor Corporation | Rear spoiler mounting structure for an automatic vehicle and vehicle so equipped |
Also Published As
Publication number | Publication date |
---|---|
JPH0521270B2 (en) | 1993-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20190082062A (en) | Method and apparatus for determining a matching relationship between point cloud data | |
CN110838133B (en) | Multi-target tracking method and related equipment | |
CN109974733A (en) | POI display methods, device, terminal and medium for AR navigation | |
CN112232341B (en) | Text detection method, electronic device and computer readable medium | |
JPH01307879A (en) | Pattern recognizing device | |
Huang et al. | Obstacle distance measurement based on binocular vision for high-voltage transmission lines using a cable inspection robot | |
CN114186007A (en) | High-precision map generation method and device, electronic equipment and storage medium | |
CN112509135B (en) | Element labeling method, element labeling device, element labeling equipment, element labeling storage medium and element labeling computer program product | |
CN114596383A (en) | Line special effect processing method and device, electronic equipment, storage medium and product | |
CN109993108A (en) | Gesture error correction method, system and device under a kind of augmented reality environment | |
JPS62196779A (en) | Drawing recognizing device | |
WO2020155908A1 (en) | Method and apparatus for generating information | |
CN110136181B (en) | Method and apparatus for generating information | |
CN112835500A (en) | Transition mode and device for demonstration template | |
CN112733934A (en) | Multi-modal feature fusion road scene semantic segmentation method in complex environment | |
CN112464753A (en) | Method and device for detecting key points in image and terminal equipment | |
CN114157348B (en) | Optical cable fault point positioning method | |
JPS59182348A (en) | Analyzing method of kikuchi or pseudo kikuchi pattern | |
JPH10269267A (en) | Method for extracting mask layout parameter | |
CN113254566B (en) | Automatic identification method and system based on geographic information line crossing points | |
JPH01277781A (en) | Testing apparatus for integrated circuit | |
JPS61221968A (en) | Drawing reader | |
Chiang et al. | Generating named road vector data from raster maps | |
CN118631963A (en) | Image output method and device, electronic equipment and medium | |
CN113989411A (en) | High-precision map intersection vectorization marking method, device, equipment and medium |