JPS62196610A - Production of flat optical cable - Google Patents

Production of flat optical cable

Info

Publication number
JPS62196610A
JPS62196610A JP61038738A JP3873886A JPS62196610A JP S62196610 A JPS62196610 A JP S62196610A JP 61038738 A JP61038738 A JP 61038738A JP 3873886 A JP3873886 A JP 3873886A JP S62196610 A JPS62196610 A JP S62196610A
Authority
JP
Japan
Prior art keywords
optical fiber
cable
optical
extrusion molding
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61038738A
Other languages
Japanese (ja)
Inventor
Sakae Yoshizawa
吉澤 栄
Eiji Kikuchi
菊池 英治
Kazuya Sasaki
和哉 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61038738A priority Critical patent/JPS62196610A/en
Publication of JPS62196610A publication Critical patent/JPS62196610A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a diaphragm between optical fiber cores from being broken owing to the united extrusion molding of a sheath and the dimension of a shape from being disturbed by previously preparing a thread-lie member having the shape of the section of the diaphragm between optical fiber cores, and arraying an optical fiber core sandwiching the thread-lie member. CONSTITUTION:The thread-like diaphragm 6 previously produced by extrusion molding or the like is wound around a feeding reel, the optical fiber cores 1 are entered into aggregate dies 7 together with tension members 2 and the tension members 2 are uniformly arrayed around each core. Side pressure members 3 are led into an aggregate die 8 together with the diaphragm 6, the cores 1 and the tension members 2 and these members are aligned with the prescribed positional relation on the back of the aggregate die 8. The aligned members are led into a die of an extrusion molding machine 9 and sheathed to complete an optical under carpet cable 11. Consequently, it is unnecessary to charge the diaphragm area with molding resin at the time of sheath extrusion molding and increase resin pressure for extrusion molding, so that the prescribed shape dimension of respective parts of the cable can be obtained.

Description

【発明の詳細な説明】 〔概要〕 平形光ケーブルの形状寸法の安定化、高精度化のため、
光ファイバ心線間の隔壁を予め製造した後に、これと心
線及びその他の構成品と共に集合してシースがけするこ
とにより、平形光ケーブルの形状寸法を安定かつ高精度
化させるものである。
[Detailed Description of the Invention] [Summary] In order to stabilize the shape and dimensions of a flat optical cable and improve precision,
After the partition walls between the optical fiber cores are manufactured in advance, they are assembled together with the core wires and other components and sheathed, thereby making the shape and dimensions of the flat optical cable stable and highly accurate.

〔産業上の利用分野〕[Industrial application field]

本発明は、平形光ケーブルに係り、とくに光ファイバ心
線め周囲に引張伸び車の小さい合成繊維部材と、押圧力
から光ファイバを保護する鋼線を並設し、縦裂き可能な
切込みを設けた平形光ケーブルの製造方法に関するう 近年、工場、オフィスを中心としてFA、OA。
The present invention relates to a flat optical cable, in particular, a synthetic fiber member with a small tension wheel and a steel wire that protects the optical fiber from pressing force are arranged in parallel around the optical fiber core, and a notch that can be vertically split is provided. Regarding the manufacturing method of flat optical cables, in recent years, FA and OA are mainly used in factories and offices.

CAD、CAM、FMS、POS等の名称で呼ばれてい
る様々な自動化、省力化が押し進められている。
Various types of automation and labor saving are being promoted, which are called CAD, CAM, FMS, POS, etc.

これらの技術はいずれも情報通信、いい換ればデーター
ハイウェイ、ローカルエリアネットワーク。
All of these technologies are information communications, or in other words, data highways and local area networks.

公衆通信等のネットワーク技術が基礎にあり最近は通信
容量の大きさ、高速化に対応するため光ファイバを用い
た光データ−ハイウェイ、光ローカルエリアネットワー
クと称する光通信システムの利用が多(なされるように
なってきた。
It is based on network technology such as public communications, and recently optical communication systems called optical data highways and optical local area networks using optical fibers have been increasingly used to cope with larger communication capacities and faster speeds. It's starting to look like this.

光通信が使用される背景の1つに増大するケーブル量を
光通信の1つの特徴である大容量性を利用して少数化し
ようとする試みがある。特にオフィス等においては、環
坤の美観、端末機のレイアウド変更、壁・柱への工作物
の取付けが容易に許されないこと([にテナントビルの
場合)、あるいはケーブル管路やラックが既設ケーブル
で満杯であること等への対応が求められている。これら
の要求に対し現在、最も進んだ技術はオフィス内の床に
50cm角程度0タイルカーペットを敷きつめ、その下
に厚さ数關程度の平形光ケーブルを配線する工法がある
。このためタイルカーペットの下に布設しても、タイル
表面が出張らないような薄く強い平形光ケーブルが必要
とされる。さらにカーペットの下に布線される平形光ケ
ーブルは、複数本の光ファイバ心線と複数本の鋼線を並
列にして、合成繊維等の絶縁被覆されており、単心コー
ドに分割する作業が困難であるので、装置への接続はマ
ルチコネクタを必要であり、引張り、押圧力に弱く、カ
ーペットの下に布線すると損傷する恐れがあるので、引
張り、押圧力に強く分割の容品な平形光ケーブルの開発
が強く要望されている。
One of the reasons behind the use of optical communications is an attempt to reduce the increasing amount of cables by utilizing the large capacity, which is one of the characteristics of optical communications. Particularly in offices, etc., the aesthetics of the environment, changes in the layout of terminal equipment, installation of structures on walls and pillars are not easily permitted (in the case of tenant buildings), or cable conduits and racks are connected to existing cables. There is a need to take measures to deal with the fact that the facilities are full. In order to meet these demands, the most advanced technology currently available is a method in which a 50 cm square carpet is laid on the floor of an office, and a flat optical cable several inches thick is routed underneath. For this reason, there is a need for a thin and strong flat optical cable that will not protrude from the tile surface even when laid under a tile carpet. Furthermore, flat optical cables that are laid under carpets are made of multiple optical fiber cores and multiple steel wires arranged in parallel and covered with insulation such as synthetic fibers, making it difficult to separate them into single-core cords. Therefore, a multi-connector is required to connect to the device, and it is weak against tension and pressure forces, and there is a risk of damage if it is laid under a carpet. Therefore, a flat optical cable that is resistant to tension and pressure forces and can be split easily is used. There is a strong demand for the development of

〔従来の技術〕[Conventional technology]

第4図は、従来の平形光ケーブルの模式的断面図で、(
atは光ファイバ2本と鋼線2本を密着並列にした構造
、(b)は光ファイバ2本と鋼線1本を離して並列にし
た構造、(c>は光ファイバ2本と鋼線2本を離して並
列にした構造である。
Figure 4 is a schematic cross-sectional view of a conventional flat optical cable.
at is a structure in which two optical fibers and two steel wires are closely connected in parallel, (b) is a structure in which two optical fibers and one steel wire are separated and arranged in parallel, and (c> is a structure in which two optical fibers and a steel wire are arranged in parallel. It has a structure in which two wires are separated and placed in parallel.

第4図(a)は、光ファイバ心線45を2本と、鋼lj
[46を2本を、光ファイバ心線45を中央に密着し、
その両側に鋼線46を並列に密着した状態で、合成樹脂
たとえば塩化ビニール等からなる外被47(シース)で
被覆成型したものである。
FIG. 4(a) shows two optical fiber cores 45 and a steel lj
[Place the two 46 and the optical fiber core 45 in the center,
Steel wires 46 are closely attached to both sides in parallel, and a sheath 47 (sheath) made of synthetic resin, for example, vinyl chloride, etc. is molded to cover the wires.

第4図(b)は、光ファイバ心線45を2本と、鋼線4
6を1本を、該鋼線46を中央にして、若干の間隔をお
いた両端に光ファイバ心線45を並列に並べた状態で合
成樹脂たとえば塩化ビニール等からなる外被47(シー
ス)で被覆成型したものであ4 第4図(clは、光ファイバ心線45を2本と、鋼@4
6を2本を、光ファイバ心線45を中央に若干の間隔を
おいて並列に配置し、その両側に鋼線46を若干の間隔
をおいて並列に並べた状態で、合成樹脂たとえば塩化ビ
ニール等からなる外被47で被覆成型したものである。
FIG. 4(b) shows two optical fiber core wires 45 and a steel wire 4.
6 is placed in a sheath 47 (sheath) made of synthetic resin, such as vinyl chloride, with the steel wire 46 in the center and optical fiber cores 45 arranged in parallel at both ends with a slight interval between them. It is coated and molded 4 Figure 4 (cl is two optical fiber cores 45 and steel @ 4
6 are arranged in parallel with an optical fiber core 45 in the center with a slight spacing between them, and with steel wires 46 arranged in parallel with a slight spacing on both sides, they are made of synthetic resin such as vinyl chloride. It is coated and molded with an outer cover 47 made of, etc.

第5図は第4図(c)の詳細断面図である。これは光7
アイバ心線lとテンションメンバ2(芳香族アラミド繊
維等の抗張力繊維)及び上下方向からの力が直接心線に
及ぶのな防ぐ側圧メンバ3(鋼線等)を集合した後、シ
ース4を施した構造になっている。
FIG. 5 is a detailed sectional view of FIG. 4(c). This is light 7
After assembling the Aiva core wire l, tension member 2 (tensile strength fiber such as aromatic aramid fiber), and lateral pressure member 3 (steel wire, etc.) that prevents vertical forces from directly reaching the core wire, sheath 4 is applied. It has a similar structure.

第6図は、従来の平形光ケーブルの実施例を説明する斜
視図である。
FIG. 6 is a perspective view illustrating an example of a conventional flat optical cable.

図は、第5図で説明した平形光ケーブル1′を光伝送装
置8′に接続する場合は、まづオフィスのカーペットの
下に布線された平形光ケーブル1の端部K、マルチコネ
クタ2′を付設し、−万の端部に単心コネクタ4′を付
設した複数の単心光コード3′の他の端部にマルチコネ
クタ2″を接続して、このマルチコネクタ2 を平形光
ケーブル1の端部に付設した!ルナコネクタ2′に接続
したるのち、単心コネクタ4′を光伝送装置8′に接続
する構造である。
The figure shows that when connecting the flat optical cable 1' explained in FIG. A multi-connector 2'' is connected to the other end of a plurality of single-fiber optical cords 3' with a single-fiber connector 4' attached to one end, and the multi-connector 2 is connected to the end of the flat optical cable 1. This structure is such that the single-core connector 4' is connected to the optical transmission device 8' after being connected to the ! Luna connector 2' attached to the unit.

上記従来の平形光ケーブルにあっては、この平形光ケー
ブルを装置への接続には、一対のマルチコネクタが必要
であるので接続作業に工数を要し高価になるとともに、
引張り、押圧力に弱く、カーペットの下に布線すると損
傷する恐れがあるという問題点があった。
The conventional flat optical cable described above requires a pair of multi-connectors to connect the flat optical cable to a device, which requires a lot of man-hours and is expensive.
There was a problem that the wires were weak against tension and pressure and could be damaged if placed under the carpet.

このような問題点を解決するた嶋、本出願人は特願昭6
0−147923号において、単心の光ファイバ心線に
分割可能な平形光クープルを提案している。
In order to solve these problems, the present applicant filed a patent application in 1983.
No. 0-147923 proposes a flat optical couple that can be divided into single optical fibers.

第7図は、上記平形光ケーブルを説明する図で、同図(
a)は平形ケーブルの正面図、(b)は平形ケーブルを
引き裂いた斜視図、(C)は光ファイバ心線の斜視図で
、第5図と同等の部分については同一符号を付している
FIG. 7 is a diagram for explaining the above-mentioned flat optical cable.
(a) is a front view of the flat cable, (b) is a perspective view of the flat cable torn apart, and (C) is a perspective view of the optical fiber core. Parts equivalent to those in Figure 5 are given the same reference numerals. .

第1図(atは、光7アイパ心線lの外周に引張り伸び
藁の小さい芳香族ポリアミド繊維(商品名クブy−>等
の合成繊維部材9(テンシ、ンメンバ2VC相当)を配
設した2本の光りファイバ心線lを、中央に所定の間隔
をおいて並列に配置し、その両側に押圧力(荷重)より
光ファイバ心線1の損傷を保護する鋼線(n圧メンバ)
3を所定の間隔をおいて並列に並べた状態で、合成樹脂
たとえば塩化ビニール等からなる外被4で被覆成型しそ
の厚さは約2waaである。そして光ファイバ心線1お
よび鋼線3間の外被4の上下面の対しする位置に、縦裂
き可能な切込み10を設けたものである。
Figure 1 (at is 2) in which a synthetic fiber member 9 (equivalent to Tenshi, Nmenba 2VC) such as aromatic polyamide fiber with small tensile stretch (product name: KUBU Y->) is arranged around the outer periphery of Hikari 7 AIPA core wire 1. The optical fiber cores 1 are arranged in parallel at a predetermined distance in the center, and steel wires (n-pressure members) protect the optical fiber cores 1 from damage from pressing force (load) on both sides.
3 are lined up in parallel at a predetermined interval and are covered with a jacket 4 made of synthetic resin, such as vinyl chloride, and the thickness is about 2 waa. Cuts 10 are provided at opposing positions on the upper and lower surfaces of the jacket 4 between the optical fiber core 1 and the steel wire 3 to allow vertical tearing.

第7図(&)で説明した平形光ケーブルを、切込み10
に沿って引裂けば中央の2本の光ファイバ心線1が、第
7図(b)の如く単心光コードもどき10′として分割
される。
Cut the flat optical cable explained in Figure 7 (&) with a cut of 10
By tearing along the two central optical fibers 1, the two central optical fibers 1 are divided into single-core optical cord-like 10' as shown in FIG. 7(b).

第7図(e)は、光ファイバ心線1の構成図で、光ファ
イバ51に緩衝層としての1次コート52を被覆し、こ
の1次コート52の上に2次コート53を施して、その
外径が約0.9111−である。
FIG. 7(e) is a block diagram of the optical fiber core 1, in which the optical fiber 51 is coated with a primary coat 52 as a buffer layer, and a secondary coat 53 is applied on the primary coat 52. Its outer diameter is approximately 0.9111-.

第8図は、この平形光ケーブルの適用例を説明する平面
図で、第7図と同等の部分については同一符号を付して
いる。
FIG. 8 is a plan view illustrating an example of application of this flat optical cable, in which the same parts as in FIG. 7 are given the same reference numerals.

図において、平形光ケーブルを、切込み10に沿って引
裂けば中央の2本の光ファイバ心線1が、単心光コード
もどき10′として分割され、この単心光コードもどき
10’にそれぞれ単心コネクタ16′を付設して、図示
しない光伝送製電に接続すればよい。この場合鋼線30
部分は必要に応じ切断する、 なお、光ファイバ心線1を2本に限らず2本以上複「本
であっても構わない。
In the figure, when the flat optical cable is torn along the notch 10, the two central optical fiber cores 1 are divided into single-fiber optical cord-like 10', and each single-fiber optical fiber 10' has a single core. A connector 16' may be attached to connect to an optical transmission electrical equipment (not shown). In this case steel wire 30
The optical fiber core 1 is not limited to two, but may be two or more.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第7図の平形光ケーブルにおいてシース押出し成形を行
なうと、第9図に示すように心線lと心線1との間の隔
壁が狭いために、樹脂がまわり込まず、壁が破れる(図
中5の部分)。又樹脂がまわり込むようにするため樹脂
圧力を大きくすると、第10図に示す如く隔壁以外のシ
ース部分が厚くなり所定の寸法、形状が得にくいという
製造上の問題点がある。なお隔壁の庫さを大きくすれば
前記の問題は生じないが心線位置がケーブル中心からい
っそ離れるために1ケーブルを平面内で曲げたとき、心
線に加わる圧縮力(ケーブル中心より内側の心線)、引
張力(ケーブル中心より外側の心線)がさらに増加し、
高品質な伝送特性が得られなかったり、最悪の場合心線
が断線してしまう可能性がある。このような理由により
、心線の隔壁の寸法はケーブルを分割後、光コード形状
が保てるための必要最小限の寸法(厚み)におさえる必
要があり、かつ隔壁が破れることなく、所定の形状寸法
が得られるケーブル製造法が必要となる。
When sheath extrusion molding is performed on the flat optical cable shown in Figure 7, the partition wall between the core wires 1 and 1 is narrow as shown in Figure 9, so the resin does not go around and the wall is torn (see Figure 9). part 5). Furthermore, if the resin pressure is increased to allow the resin to go around, the sheath portion other than the partition wall becomes thicker, as shown in FIG. 10, and there is a manufacturing problem in that it is difficult to obtain a predetermined size and shape. Note that if the bulkhead is made larger, the above problem will not occur, but in order to move the core wire further away from the cable center, when one cable is bent in a plane, the compressive force applied to the core wire (the center core inside the cable center) wire), the tensile force (core wires outside the cable center) further increases,
High-quality transmission characteristics may not be obtained, or in the worst case, the core wire may break. For these reasons, it is necessary to keep the dimensions (thickness) of the bulkheads of the core wires to the minimum required size (thickness) to maintain the optical code shape after the cable is split, and to maintain the specified shape and dimensions without tearing the bulkheads. There is a need for a cable manufacturing method that yields the following.

〔問題点を解決するための手段〕 上記問題点を解決するため、本発明では光ファイバ心線
間の隔壁の断面形状を有する糸状部材を予め用意し、こ
の糸状部材を挾んで光7アイパ心線を配列して、その後
シースにより一体形成するものである。
[Means for Solving the Problems] In order to solve the above problems, in the present invention, a filamentous member having the cross-sectional shape of the partition between the optical fibers is prepared in advance, and the filamentous member is sandwiched between the optical fiber cores and The wires are arranged and then integrally formed with a sheath.

〔作用〕[Effect]

光ケーブルの心線間の隔壁部分に相当する糸状部材を予
め用意しているため、シース押出し成形時に、この隔壁
領域を成形樹脂により充填する必要がなくなるため壁が
破れることなく、又押出し成形の樹脂圧も高める必要が
ないので、ケーブル各部の形状寸法も所定のものが得ら
れる。
Since the filament-like member corresponding to the partition wall between the core wires of the optical cable is prepared in advance, there is no need to fill this partition area with molding resin during sheath extrusion molding, so the wall does not tear, and the extrusion molding resin Since there is no need to increase the pressure, the shapes and dimensions of each part of the cable can be kept as specified.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照しつつ欽明する。第
1図は本発明の実施例である。図中6が予め押出成形等
により製造された糸状の隔壁であり、材質はシースと同
一もしくは同等のプラスチックスである。この隔壁6の
斜視図を第2図に示す。隔壁6は供給リールに巻かれて
いる。1,1は光ファイバ心線であり、テンションメン
バ(抗張力線維)2と共に集合ダイス7に入り、心線の
周囲に均等にテンシ曹ンメンバが配列される。
Embodiments of the present invention will be explained below with reference to the drawings. FIG. 1 shows an embodiment of the invention. In the figure, reference numeral 6 denotes a filament-like partition wall manufactured in advance by extrusion molding or the like, and the material is the same or equivalent plastic as that of the sheath. A perspective view of this partition wall 6 is shown in FIG. The bulkhead 6 is wound onto a supply reel. Reference numerals 1 and 1 denote optical fiber cores, which enter a gathering die 7 together with tension members (tensile strength fibers) 2, and tension members are arranged evenly around the core.

集合ダイス8には、前記の隔壁6.心線1.テンション
メンバ2の他に伸圧メンバ3が導かれ、集合ダイス8の
後においては、これらの部材は所定の位置関係を保った
状慎で整列される。この整列された部材は9の押出成形
機のダイスに入り、シースが施され、光アンダーカーペ
ットケーブル11が完成する。実際にはこの後図示して
いないが冷却槽を通過し、乾燥されて巻取られる。隔壁
2 T 心線1−1 ’ e テンシ嘗ンメンバ2.@
圧メンバ3の供給ドラムには適度な(数十〜数百グラム
)のバックテンシ璽ンが与えられている。図1は2心の
製造列ヲ示しているが、3心以上のケーブルにお〜・て
も心線の供給リールの間に隔壁の供給リールを配置する
ことにより本発明を実施できることは言うまでもない。
The cluster die 8 has the aforementioned partition wall 6. Core wire 1. In addition to the tension member 2, an expansion member 3 is guided, and after the assembled die 8, these members are aligned in a predetermined positional relationship. The aligned members enter a die of an extrusion molding machine 9, are sheathed, and the optical undercarpet cable 11 is completed. Although not shown in the drawings, it actually passes through a cooling tank, is dried, and is wound up. Partition wall 2 T Core wire 1-1' e Tension member 2. @
The supply drum of the pressure member 3 is provided with a moderate back tension (several tens to hundreds of grams). Although FIG. 1 shows a two-core production line, it goes without saying that the present invention can be carried out in cables with three or more cores by arranging bulkhead supply reels between the core supply reels. .

予め製造される隔壁の断面形状は第3図(al〜(cl
 K示すように完成ケーブルにおいてその占める位置、
領域に応じて第2図(at〜(c)の如く様々な形状の
バリエージ璽ンが考えられる。さらKは完成したケーブ
ルを各々の光コード(心線)単位に分割し易いよ5に第
2図(d)k示すよ5に隔壁の内部に長手方向に連続し
た空隙12をもたせても良い。隔壁はシースと同一の材
質である場合、シース押出し成形後、シースと完全に融
着することになり、又異なった材質を使用した場合にも
、実質的にシースと固着するので、隔壁部を含めて一体
でシースを押出し成形したケーブルと比べてもその機能
、取扱い性に差異はない。
The cross-sectional shape of the partition wall manufactured in advance is shown in FIG.
The position it occupies in the completed cable as shown in K,
Depending on the area, various shapes of variegation cables can be considered as shown in Figures 2 (at to (c)).Fifth, K is a cable that facilitates dividing the completed cable into individual optical cords (core wires). As shown in Fig. 2(d)k, a longitudinally continuous gap 12 may be provided inside the partition wall.If the partition wall is made of the same material as the sheath, it will be completely fused to the sheath after the sheath is extruded. In addition, even if a different material is used, it will essentially adhere to the sheath, so there is no difference in function and handling compared to a cable whose sheath is extruded, including the bulkhead. .

変形例、応用例としては、図示しないが心線と側圧メン
バとの隔壁部分にも予め製造された隔壁を使用すること
が考えられる。これは特に心線と側圧メンバの間隔が狭
い場合に特に有効である。
As a modification or application, although not shown, it is conceivable to use a pre-manufactured partition wall also for the partition wall portion between the core wire and the side pressure member. This is particularly effective when the distance between the core wire and the lateral pressure member is narrow.

〔発明の効果〕 本発明によれば、シースの一体押出し成形に起因する心
線間隔壁の破れや、形状寸法の乱れが防止されるため、
光アンダーカーペットケーブルに適した薄形で極めて寸
法安定性が高く、かつ高品質な伝送特性を有するケーブ
ルが提供できる。さ−らに押出し成形の金型製作に当り
、極めて精密な寸法精度を要求される隔壁部(特に隔壁
部とそれ以外の部分の寸法関係が樹脂圧により影響を受
けるため)を省いて設計9.製作できるので、大巾な工
数削減、コストダウンが可能となる。
[Effects of the Invention] According to the present invention, breakage of the fiber separation wall and disturbance of shape and dimensions due to integral extrusion of the sheath are prevented.
It is possible to provide a thin cable that is suitable for an optical undercarpet cable, has extremely high dimensional stability, and has high quality transmission characteristics. Furthermore, when manufacturing extrusion molds, the design was designed by omitting the partition wall, which requires extremely precise dimensional accuracy (particularly because the dimensional relationship between the partition wall and other parts is affected by resin pressure). .. Since it can be manufactured, it is possible to significantly reduce man-hours and costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、 第2図(al〜(c)は隔壁相当の糸状部材の説明図、
第3図(at〜(c)は平形光ケーブルの完成体、第4
図〜第8図は従来の平形光ケーブルを説明するための図
、 第9図は従来方法において製造した欠陥例、第10図は
従来方法において製造した欠陥例である。 図中、1は光ファイバ心線(it 0.4〜〆0.9鯖
程ff)、2はテンシ璽ンメンバ(芳香族アラミド繊維
のような抗張力t/a維)、3は側圧メンバ(鋼線など
)、4はシースである。 め8 図 t”1lait鷹i           arxaF
l構’e        敞ri*+ll構z(iL)
              (b)        
    (C)従来の平形光ケーブルのrMr面図 第 6 図
Fig. 1 is a detailed explanatory diagram of the present invention, Fig. 2 (al to (c) is an explanatory diagram of a thread-like member equivalent to a partition wall,
Figure 3 (at to (c)) shows the completed flat optical cable;
8 are diagrams for explaining conventional flat optical cables, FIG. 9 is an example of a defect produced using the conventional method, and FIG. 10 is an example of a defect produced using the conventional method. In the figure, 1 is an optical fiber core (it 0.4 to 0.9 ff), 2 is a tensile strength member (tensile strength T/A fiber such as aromatic aramid fiber), and 3 is a lateral pressure member (steel). wire, etc.), 4 is a sheath. 8 figure t”1lait hawk i arxaF
l structure'e 敞ri*+ll structurez (iL)
(b)
(C) rMr side view of conventional flat optical cable Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)光ファイバ心線間の隔壁の断面形状を有した糸状
部材を予め用意し、該糸状部材を挾んで光ファイバ線を
整列集合させ、その後外被を形成して一体成形すること
を特徴とする平形光ケーブルの製造方法。
(1) A thread-like member having the cross-sectional shape of a partition between optical fiber cores is prepared in advance, the thread-like member is sandwiched to align and gather the optical fibers, and then an outer jacket is formed and integrally molded. A method for manufacturing a flat optical cable.
(2)前記糸状部材は、前記外被と同等の材質であり、
かつ該外被と該糸状部材とが融着されていることを特徴
とする特許請求の範囲第1項記載の平形光ケーブルの製
造方法。
(2) The thread-like member is made of the same material as the outer cover,
2. The method of manufacturing a flat optical cable according to claim 1, wherein the outer sheath and the filamentous member are fused together.
JP61038738A 1986-02-24 1986-02-24 Production of flat optical cable Pending JPS62196610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61038738A JPS62196610A (en) 1986-02-24 1986-02-24 Production of flat optical cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61038738A JPS62196610A (en) 1986-02-24 1986-02-24 Production of flat optical cable

Publications (1)

Publication Number Publication Date
JPS62196610A true JPS62196610A (en) 1987-08-31

Family

ID=12533660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61038738A Pending JPS62196610A (en) 1986-02-24 1986-02-24 Production of flat optical cable

Country Status (1)

Country Link
JP (1) JPS62196610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250405A (en) * 1990-07-25 1992-09-07 American Teleph & Telegr Co <Att> Aerial cable
JP2013097247A (en) * 2011-11-02 2013-05-20 Furukawa Electric Co Ltd:The Optical fiber cable, optical fiber cable branching method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250405A (en) * 1990-07-25 1992-09-07 American Teleph & Telegr Co <Att> Aerial cable
JP2013097247A (en) * 2011-11-02 2013-05-20 Furukawa Electric Co Ltd:The Optical fiber cable, optical fiber cable branching method

Similar Documents

Publication Publication Date Title
US7454107B2 (en) Fiber optic cables suitable for automated preconnectorization
CN1328264A (en) Improved cable managing system
CN105759383A (en) Multilayer skeleton slot optical cable and manufacturing method thereof
WO2013006984A1 (en) Fiber optic drop cable and method for using the same in field installation
CN113711320A (en) Indoor and outdoor dual-purpose communication optical cable and cable
CN117111239A (en) Layer stranded type ribbon optical cable and cable with hexagonal prism parts
EP0245752B1 (en) Fiber identification in an optical fiber overhead cable
JPS62196610A (en) Production of flat optical cable
US6415084B1 (en) Complex cables for under-floor wiring
JPS6294807A (en) Two-core optical fiber cable
JP2012088428A (en) Optical fiber cable and method for manufacturing the same
CN211603645U (en) High-density optical cable and cable easy to form
JP3242509B2 (en) How to lay an optical cable
JP2004252003A (en) Optical cable
JPH08292348A (en) Optical fiber cable
JP3853599B2 (en) Manufacturing method of optical fiber sheet with optical connector
JP2003329910A (en) Method of manufacturing ribbon-laminated optical fiber cable, and wire dividing plate used for the method
JPH1184184A (en) Optical cable
JP2013041784A (en) Optical/metal composite drop cable
JP2013186362A (en) Optical element assembly cable
CN111239946A (en) High-density optical cable and cable easy to form and manufacturing method
JPS628111A (en) Plane type optical cable
JP2003315641A (en) Method of manufacturing ribbon-laminated optical fiber drop cable and apparatus therefor
JP2005077703A (en) Optical drop cable
JPH073366Y2 (en) Self-supporting optical cable