JPS62195607A - Splicing method for optical fiber - Google Patents

Splicing method for optical fiber

Info

Publication number
JPS62195607A
JPS62195607A JP3761886A JP3761886A JPS62195607A JP S62195607 A JPS62195607 A JP S62195607A JP 3761886 A JP3761886 A JP 3761886A JP 3761886 A JP3761886 A JP 3761886A JP S62195607 A JPS62195607 A JP S62195607A
Authority
JP
Japan
Prior art keywords
splicing
loss
fiber
optical fibers
spliced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3761886A
Other languages
Japanese (ja)
Inventor
Hiroyuki Taya
浩之 田谷
Takeshi Yamada
剛 山田
Ko Watanabe
渡辺 興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP3761886A priority Critical patent/JPS62195607A/en
Publication of JPS62195607A publication Critical patent/JPS62195607A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To obtain an optical fiber splicing method capable of reducing splicing loss by expanding a fiber melting area near a splicing point to reduce radiation loss. CONSTITUTION:Two pairs of electrode rods 5 are inclinedly arranged and a butting part of two optical fibers 3 to be fused and spliced is arranged on a space surrounded by the rods 5. A high voltage current power supply 7 is used as an electrostatic discharge circuit, two pairs of electrode rods 5 are alternately discharged by rectifiers 6 every half-wave of AC in each pair to expand the fiber fusing range, the butted optical fibers 3 are fused and spliced, and within the period the spliced part is kept at a high temperature, the optical fibers 3 are drawn so as to be thinned. Consequently, the fiber fusing range can be expanded and the length of the part thinned at the drawing of the splicing point can be expanded, so that both the radiation loss and splicing loss can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 9の発明は、光ファイバを融着接続する方法に関し、特
に単一モード光ファイバを簡易に且つ低損失に接続する
ことのできる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention in Industrial Application Field 9 relates to a method for fusion splicing optical fibers, and particularly to a method for splicing single mode optical fibers easily and with low loss.

従来の技術 従来より本発明者らは、光ファイバを簡易に且つ低損失
に融着接続する、引張細径化接続法と、もいうべき接続
方法を提案している(特願昭60−239985号)、
すなわち、それは、第4図に示すように2つのVブロッ
ク1. 1のV溝2,2の各々に光ファイバ3,3を置
いて、それらの端部を調芯せずに突き合わせ、l対の電
極棒5,5によってアーク放電加熱して融着接続し、そ
の後接続部が高温のうちに光ファイバ3,3を引っ張号
、第5図のように接続点付近の直径a°が引っ張る前の
直径aに比べて小さくなるようテーパ状にするという方
法である。引っ張った後では。
2. Description of the Related Art The present inventors have proposed a splicing method that can be called a tensile diameter thinning splicing method for simply and low-loss fusion splicing of optical fibers (Japanese Patent Application No. 239985/1989). issue),
That is, it consists of two V-blocks 1. as shown in FIG. Optical fibers 3, 3 are placed in each of the V-grooves 2, 2 of 1, their ends are butted together without alignment, and fusion spliced by arc discharge heating using 1 pair of electrode rods 5, 5. Thereafter, while the splicing part is still hot, the optical fibers 3, 3 are pulled and tapered so that the diameter a° near the splicing point is smaller than the diameter a before being pulled, as shown in Figure 5. . After pulling.

引っ張る前のコア4の軸ずれ量X(第4図参照)はX・
 (a’/a)となるが、それに比べて光界分布の広が
りを示すスポットサイズの減少の割合は少ないので、接
続損失が改善される。しかし、接続点の直径をあまり小
さくすると放射損失が増大して却って接続損失が大きく
なるので、一定の範囲が存在する。
The amount of axis deviation X of the core 4 before pulling (see Figure 4) is X・
(a'/a), but since the rate of decrease in the spot size, which indicates the spread of the optical field distribution, is smaller than that, the connection loss is improved. However, if the diameter of the connection point is made too small, the radiation loss increases and the connection loss actually increases, so a certain range exists.

実際に偏心率2.3%の単一モード光ファイバをこの引
張細径化接続法により接続し、波長1.3gmのLED
光源を用いて接続点の直径の変化に対する接続損失の変
化を測定してみると第6図のような結果が得られる。こ
の第6図で、横軸は初めの光ファイバの直径aに対する
引っ張って細くしたときの接続点の直径a°の割合であ
り、縦軸は接続損失である。丸印が平均接続損失で、1
00%で0.52 d Bであったものが60%では0
.31 d Bに改善されている。しかし、それ以上a
゛を小さくすると、接続点での放射損失により接続損失
が増加し、30%では0.95dBになる。
Actually, a single mode optical fiber with an eccentricity of 2.3% was connected using this tensile thinning splicing method, and an LED with a wavelength of 1.3 gm was connected.
When the change in connection loss with respect to the change in the diameter of the connection point is measured using a light source, the results shown in FIG. 6 are obtained. In FIG. 6, the horizontal axis is the ratio of the diameter a° of the splicing point when the optical fiber is thinned by stretching to the initial diameter a of the optical fiber, and the vertical axis is the splicing loss. The circle mark is the average connection loss, 1
What was 0.52 dB at 00% becomes 0 at 60%.
.. This has been improved to 31 dB. However, more than a
When ゛ is decreased, the connection loss increases due to radiation loss at the connection point, and at 30% it becomes 0.95 dB.

発明が解決しようとする問題点 ところで、その後の研究により、接続点での放射損失は
、接続点での直径の他に光ファイバの細くなっている部
分の長さく第5図のL参照)にも関係していることが分
ってきた。すなわち、同じ接続点の直径なら細くなって
いる部分が長いほど放射損失は小さくなる。そこで、細
くなっている部分を長くすれば放射損失による影響が除
かれ、より接続点の直径を小さくして接続損失を改善す
ることができるという考えに到達したのである。
Problems to be Solved by the Invention Incidentally, subsequent research has shown that the radiation loss at the connection point is determined not only by the diameter at the connection point but also by the length of the thinner part of the optical fiber (see L in Figure 5). It turns out that they are also related. In other words, if the diameter of the connection point is the same, the longer the tapered part is, the smaller the radiation loss will be. Therefore, they came up with the idea that by making the thinner part longer, the effect of radiation loss can be removed, and the connection loss can be improved by making the diameter of the connection point even smaller.

しかし、従来では、第4図に示すように1対の電極によ
りアーク放電を生じさせて光ファイバを溶融させており
、このファイバを溶融させることのできる領域の長さが
第5図のLに相当し、その領域は電極の形状および電極
間の距離等によって決定されるが、1対の電極ではLを
大きくするにも限界がある。ちなみに、従来の一般的な
融着接続機は1対の電極しか持たず、どれも同じような
溶融領域しか得られない、したがって、従来の融着接続
機を用いた場合は、ファイバ溶融領域を長くして放射損
失を低減することができない。
However, conventionally, as shown in Figure 4, an arc discharge is generated by a pair of electrodes to melt the optical fiber, and the length of the area where the fiber can be melted is L in Figure 5. Correspondingly, the area is determined by the shape of the electrodes, the distance between the electrodes, etc., but there is a limit to increasing L with a pair of electrodes. By the way, conventional general fusion splicers have only one pair of electrodes, and they all produce a similar fusion area. Therefore, when using a conventional fusion splicer, the fiber fusion area is It is not possible to reduce radiation loss by increasing the length.

この発明は、引張細径化接続法において接続点近傍での
ファイバ溶融領域を長くして放射損失を低減することに
より接続損失をより少なくできる光ファイバの接続方法
を提供することを目的とする。
An object of the present invention is to provide an optical fiber splicing method that can further reduce splicing loss by lengthening the fiber melting region near the splicing point in the tensile diameter thinning splicing method to reduce radiation loss.

問題点を解決するための手段 この発明によれば、接続しようとする2つの光ファイバ
の端部を調芯せずに突き合せて融着接続し、その後、こ
の接続部が高温であるうちにその両端を引っ張ることに
より、接続点の直径を、引っ張る前の直径より細くする
ようにして、接続する方法において、上記の融着接続工
程を、たとえば第1図に示すように少なくとも2対の放
電電極棒5を使用したアーク放電によって行なう。
Means for Solving the Problems According to the present invention, the ends of two optical fibers to be connected are brought together without alignment and fusion spliced, and then, while the spliced portion is still hot, In a method of connecting by pulling both ends, the diameter of the connection point is made smaller than the diameter before pulling, the above-mentioned fusion splicing process is performed, for example, by connecting at least two pairs of electrical discharges as shown in FIG. This is carried out by arc discharge using an electrode rod 5.

作    用 たとえば第1図に示すように、突き合わせられた2つの
光ファイバ3.3を融着接続するために、光ファイバ3
.3に並行して配置された2対の電極棒5を使用し、ア
ーク放電加熱すると。
For example, as shown in FIG. 1, in order to fusion splice two butted optical fibers 3.
.. When arc discharge heating is performed using two pairs of electrode rods 5 arranged in parallel to 3.

ファイバ溶融領域が長くなる。たとえば、1対の電極棒
5によるファイバ溶融領域の長さをDとし、隣り合う電
極棒5の間の間隔をDとすれば、ファイバ溶融領域は1
対の場合の2倍の2Dとなる。実際には1つのファイバ
溶融領域内では中心部に比べて端部の方が温度が低いの
で、均一に加熱するため電極棒5の間隔をDより少し小
さくして両射の電極棒による2つの溶融領域が重なるよ
うにするのが望ましい。
The fiber melting region becomes longer. For example, if the length of the fiber melting area by a pair of electrode rods 5 is D, and the distance between adjacent electrode rods 5 is D, then the fiber melting area is 1
It is twice as 2D as in the case of a pair. In reality, the temperature at the ends of one fiber melting region is lower than that at the center, so in order to heat the fiber uniformly, the spacing between the electrode rods 5 is made slightly smaller than D, and the two electrode rods are arranged in a bidirectional manner. It is desirable that the melted regions overlap.

そのため、ファイバ溶融領域が大きくなり、接続点を引
っ張ったときの細くなっている部分の長さを長くでき、
放射損失を減らして、接続損失をより低くすることがで
きる。
Therefore, the fiber melting area becomes larger, and the length of the thinner part when the connection point is pulled can be increased.
Radiation losses can be reduced and splice losses can be made lower.

実施例 第2図において、2対の電極棒5が傾斜して設nされて
おり、それらの間に、融着接続すべき2つの光ファイバ
3.3の突き合わせ部を配置する。ここで、電極棒5は
図のように傾斜させ、対向する1対の電極棒5間の距離
を3.5mmとし、隣り合う2対の電極棒5の(先端の
)間隔は1mmとした。これは次の理由による。すなわ
ち、従来の融着接続機の1対の対向する電極棒の距離は
約1.5mmでこのときのファイバ溶融領域は実験によ
り約0.6mmであることが分っており、この距離を約
3.5mmに広げるとファイバ溶融領域は約1.2mm
になるので、対向するものの間の距離を3.5mmとし
た上で隣り合うもの同士の間隔を1mmとすればよいの
であるが、電極棒5は通常直径が1mmであるから間隔
1mmで並行に配置することができないから上記のよう
に傾けて、2対の隣り合う電極棒5(の先端)の間隔を
1mmとしてファイバ溶融領域が約1.2mmとなるよ
うにしているのである。
Embodiment In FIG. 2, two pairs of electrode rods 5 are arranged at an angle, between which the abutting portions of two optical fibers 3.3 to be fusion spliced are arranged. Here, the electrode rods 5 were tilted as shown in the figure, the distance between a pair of opposing electrode rods 5 was 3.5 mm, and the interval (at the tips) of two adjacent pairs of electrode rods 5 was 1 mm. This is due to the following reason. That is, the distance between a pair of opposing electrode rods in a conventional fusion splicer is approximately 1.5 mm, and the fiber fusion area at this time has been found to be approximately 0.6 mm through experiments. When expanded to 3.5mm, the fiber melting area is approximately 1.2mm.
Therefore, it is sufficient to set the distance between the opposing ones to 3.5 mm and the interval between adjacent ones to 1 mm, but since the electrode rods 5 usually have a diameter of 1 mm, they should be placed in parallel with an interval of 1 mm. Since it is not possible to arrange the electrode rods 5, they are tilted as described above, and the distance between the two pairs of adjacent electrode rods 5 (the tips thereof) is 1 mm, so that the fiber melting area is about 1.2 mm.

そして、放電回路としては、第2図に示すように高圧交
流電源7を用い、整流器6により2対の電極棒5が各対
何に、交流半波ずつ交互に放電するようにしている。こ
れは、1つの電源7から2対の電極棒5の両方に同時に
電圧を供給した場合、どちらかの一方の対が放電を開始
すると電圧が低下して他方が放電しなくなることを防ぐ
ためである。
As a discharge circuit, as shown in FIG. 2, a high-voltage AC power source 7 is used, and a rectifier 6 causes the two pairs of electrode rods 5 to alternately discharge each other in half-wave AC. This is to prevent when one power source 7 supplies voltage to both of the two pairs of electrode rods 5 at the same time, if one of the pairs starts discharging, the voltage will drop and the other will stop discharging. be.

このようにしてファイバ溶融領域を長くし、突き合わせ
られた光ファイバ3.3の融着接続を行なった後、接続
部が高温のうちに光ファイバ3.3を引っ張って細くす
る。この場合の接続損失を第6図の場合と同じ条件で測
定した。すなわち、偏心率2.3%の単一モード光ファ
イバをこの方法により接続し、波長1.3g、mのLE
D光源を用いて接続点の直径の変化に対する接続損失の
変化を測定したところ、第3図のような結果が得られた
。この第3図の横軸および縦軸は第6図のそれと同じで
ある。第6図ではa ’ / aが60%以下で放射損
失により接続損失が増加しているの対して、第3図では
50%付近が最も低損失で平均接続損失は0.22dB
、!−がり、第6図の60%での平均接続損失0.31
 d Bに比較して0.08dB改善されていることが
分る。
After the fiber fusion region has been lengthened in this way and the butted optical fibers 3.3 have been fused and spliced, the optical fibers 3.3 are pulled and thinned while the spliced portion is still hot. The connection loss in this case was measured under the same conditions as in the case of FIG. That is, a single mode optical fiber with an eccentricity of 2.3% is connected using this method, and an LE with a wavelength of 1.3 g and m is connected.
When the change in connection loss with respect to the change in the diameter of the connection point was measured using a D light source, the results shown in FIG. 3 were obtained. The horizontal and vertical axes of FIG. 3 are the same as those of FIG. 6. In Figure 6, when a'/a is 60% or less, the connection loss increases due to radiation loss, whereas in Figure 3, the loss is lowest around 50%, with an average connection loss of 0.22 dB.
,! - Average splice loss at 60% of Figure 6: 0.31
It can be seen that there is an improvement of 0.08 dB compared to dB.

なお、1対の対向電極間の間隔を3.5mmよりももっ
と大きくしたり、電極棒の数を増加したりすることによ
り、ファイバ溶融領域をさらに広げることも可能である
が、対向電極の間隔を広げるとより高圧の電源が必要と
なり、しかも放電状態が不安定となり、一定したファイ
バ溶融領域が得られなくなる。また、電極棒の数を増加
する場合は、各々の電極対を順次放電させるための回路
が必要となり、放電回路が複雑となって、実用上、実現
困難である。
Note that it is possible to further widen the fiber melting area by making the distance between a pair of opposing electrodes larger than 3.5 mm or by increasing the number of electrode rods, but the distance between the opposing electrodes If the area is widened, a higher voltage power source is required, and the discharge state becomes unstable, making it impossible to obtain a constant fiber melting area. In addition, when increasing the number of electrode rods, a circuit for sequentially discharging each electrode pair is required, and the discharging circuit becomes complicated, which is difficult to realize in practice.

発明の効果 この発明によれば、コアの調芯を行なうことなく低損失
の接続を可能とする引張細径化接続法をさらに改善でき
る。すなわち、この接続方法において、アーク放電のた
めの電極を従来の1対から少なくとも2対に増すことに
より、アーク領域を広げファイバ溶融領域を長くして、
光ファイバの細くなる部分の長さを長くすることができ
、放射損失による接続損失の増加を低減することができ
る。
Effects of the Invention According to the present invention, it is possible to further improve the tensile diameter thinning connection method that enables low-loss connection without core alignment. That is, in this connection method, the number of electrodes for arc discharge is increased from the conventional one pair to at least two pairs, thereby widening the arc area and lengthening the fiber melting area.
The length of the tapered portion of the optical fiber can be increased, and an increase in splice loss due to radiation loss can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の概要を示す模式図、第2図はこの発
明の一実施例の模式図、第3図は同実施例における直径
減少率に対する接続損失の測定結果を表わすグラフ、第
4図および第5図は従来例の模式図、第6図は従来例に
おける直径減少率に対する接続損失の測定結果を表わす
グラフである。 l・・・Vブロック    2・・・V溝3・・・光フ
ァイバ    4・・・コア5・・・電極棒     
 6・・・整流器7・・・高圧交流電源
Fig. 1 is a schematic diagram showing an overview of the present invention, Fig. 2 is a schematic diagram of an embodiment of the invention, Fig. 3 is a graph showing measurement results of connection loss versus diameter reduction rate in the same embodiment, and Fig. 4 is a schematic diagram showing an overview of the present invention. 5 and 5 are schematic diagrams of the conventional example, and FIG. 6 is a graph showing the measurement results of splice loss versus diameter reduction rate in the conventional example. l...V block 2...V groove 3...optical fiber 4...core 5...electrode rod
6... Rectifier 7... High voltage AC power supply

Claims (1)

【特許請求の範囲】[Claims] (1)接続すべき2つの光ファイバの端部を調芯せずに
突き合せて少なくとも2対の放電電極内に配置しアーク
放電加熱により融着接続する第1の工程と、接続部が高
温であるうちにその両端に引張力をかけることにより、
接続点の直径を、引張力をかける前の直径の80%〜3
0%に細くする第2の工程とを有することを特徴とする
光ファイバの接続方法。
(1) A first process in which the ends of two optical fibers to be connected are butted together without alignment, placed in at least two pairs of discharge electrodes, and fused and spliced by arc discharge heating, and the connection part is heated to a high temperature. By applying a tensile force to both ends while
The diameter of the connection point is 80% to 3 of the diameter before applying tension.
and a second step of thinning to 0%.
JP3761886A 1986-02-22 1986-02-22 Splicing method for optical fiber Pending JPS62195607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3761886A JPS62195607A (en) 1986-02-22 1986-02-22 Splicing method for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3761886A JPS62195607A (en) 1986-02-22 1986-02-22 Splicing method for optical fiber

Publications (1)

Publication Number Publication Date
JPS62195607A true JPS62195607A (en) 1987-08-28

Family

ID=12502610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3761886A Pending JPS62195607A (en) 1986-02-22 1986-02-22 Splicing method for optical fiber

Country Status (1)

Country Link
JP (1) JPS62195607A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041220A1 (en) * 1995-06-07 1996-12-19 Siemens Aktiengesellschaft Splicing device for welding optical fibres
CN103477261A (en) * 2011-01-19 2013-12-25 3Sae科技公司 Multi-stage fiber processing system and method
CN113820786A (en) * 2021-10-05 2021-12-21 桂林电子科技大学 Four-electrode arc discharge high-temperature optical fiber processing device in large constant-temperature area

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622506B2 (en) * 1978-05-01 1981-05-26
JPS5811912A (en) * 1981-07-16 1983-01-22 Nippon Telegr & Teleph Corp <Ntt> Connecting method for single mode fiber by melt-sticking
JPS5821217A (en) * 1981-07-31 1983-02-08 Nippon Telegr & Teleph Corp <Ntt> Connecting method for optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622506B2 (en) * 1978-05-01 1981-05-26
JPS5811912A (en) * 1981-07-16 1983-01-22 Nippon Telegr & Teleph Corp <Ntt> Connecting method for single mode fiber by melt-sticking
JPS5821217A (en) * 1981-07-31 1983-02-08 Nippon Telegr & Teleph Corp <Ntt> Connecting method for optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041220A1 (en) * 1995-06-07 1996-12-19 Siemens Aktiengesellschaft Splicing device for welding optical fibres
US6120192A (en) * 1995-06-07 2000-09-19 Siemens Aktiengesellschaft Splicing means for welding light waveguides
CN103477261A (en) * 2011-01-19 2013-12-25 3Sae科技公司 Multi-stage fiber processing system and method
CN113820786A (en) * 2021-10-05 2021-12-21 桂林电子科技大学 Four-electrode arc discharge high-temperature optical fiber processing device in large constant-temperature area

Similar Documents

Publication Publication Date Title
AU2548892A (en) Overlapping fusion attenuator
US4765816A (en) Method and apparatus for making optical fiber couplers
JPS62195607A (en) Splicing method for optical fiber
JP2004325990A (en) Fusion splicing method and fusion splice machine for different diameter optical fibers
JPS61120106A (en) Connecting method of single-mode optical fiber
JP2004361846A (en) Method for fusion-splicing glass fiber
JPH0463367B2 (en)
JPS62184403A (en) Fusion splicing method for optical fiber
JPS62223709A (en) Multimode optical fiber coupler and manufacture thereof
US20040071414A1 (en) System, controller and method for fusion splicing at least one pair of optical fibers
JP2860831B2 (en) Batch fusion splicing of multi-core optical fiber
JPS5811912A (en) Connecting method for single mode fiber by melt-sticking
JPH08201642A (en) Method and device for connecting optical fibers and reinforcing structure
JPH08129112A (en) Method for forming adhesive connection between two optical ribbon cables and optical ribbon cable thereof
JPH027006A (en) Discharge fusion splicing method of optical fiber
JP2783392B2 (en) Optical fiber alignment method
JP2776467B2 (en) Fusion splicing method of multi-core optical fiber
JP3344061B2 (en) Optical fiber fusion splicing method
JP2612934B2 (en) Optical fiber fusion splicer
JPH06174961A (en) Method for connecting optical fiber
JPS6155615A (en) Manufacture of light branching and coupling section
JPH02199411A (en) Method and device for removing coating of hermetically coated optical fiber
JP2584651B2 (en) Optical fiber fusion splicing method
JPH05142442A (en) Fusion splicing method for optical fiber
JP2003315598A (en) Method and device for collective fusion splice by discharge