JPS62195542A - Detecting method for metallic impurity in optical fiber - Google Patents

Detecting method for metallic impurity in optical fiber

Info

Publication number
JPS62195542A
JPS62195542A JP3724186A JP3724186A JPS62195542A JP S62195542 A JPS62195542 A JP S62195542A JP 3724186 A JP3724186 A JP 3724186A JP 3724186 A JP3724186 A JP 3724186A JP S62195542 A JPS62195542 A JP S62195542A
Authority
JP
Japan
Prior art keywords
optical fiber
wavelength
light
fiber
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3724186A
Other languages
Japanese (ja)
Inventor
Yasutake Oishi
泰丈 大石
Hideo Hattori
秀男 服部
Shigeki Sakaguchi
茂樹 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3724186A priority Critical patent/JPS62195542A/en
Publication of JPS62195542A publication Critical patent/JPS62195542A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate and detect fluorescent spectra and to facilitate detection when an optical fiber contains plural metallic impurities by varying the wavelength of light incident on the optical fiber. CONSTITUTION:The output light (wavelength: 477nm) of an argon ion laser 1 which is modulated by a chopper 2 and made homogeneous is converged by a lens 3 and incident on a fluorine fiber 4, and its projection light is guided to and diffused spectrally by a monochrometer 5; and the wavelength of a separated light component passed through a photoelectron multiplier tube 6, a preamplifier 7, and a lock-in amplifier 8 and that of a separated light component sent out by the meter 5 are recorded on an X-Y recorder 9 to measure the intensity of a fluorescent spectrum. Further, the light which has the same wavelength and is made homogeneous is made incident on an optical fiber which contains a known amount of metallic ions generating the same spectrum as said spectrum and the spectrum from its projection end is measured, thereby finding the amount of metallic impurities in the optical fiber from the intensity ratio of both fluorescent spectra.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバ中の金属不純物を、該光ファイバ
を破壊することなく、簡便に検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for easily detecting metal impurities in an optical fiber without destroying the optical fiber.

(従来の技術) 従来より、物質中に含まれる微量不純物を分析するには
、種々の方法があるが、なかでも原子吸光分析法、発光
分光分析法、放射化分析法などが、微量不純物分析法と
して比較的よく用いられている。
(Prior art) There have been various methods for analyzing trace impurities contained in substances.Among these, atomic absorption spectrometry, emission spectrometry, and activation analysis have been used to analyze trace impurities. It is relatively commonly used as a method.

これら分析方法の検出濃度限界は、不純物が含まれる母
体中の元素の影響を受けることもあるので、個々の例に
ついて決まるべきものであるが、一般に原子吸光分析法
、発光分光分析法でlng程度であり、放射化分析法で
0.01ng程度である。
The detection concentration limits of these analytical methods may be affected by the elements in the matrix containing impurities, so they should be determined for each individual case, but in general, they are around 1ng for atomic absorption spectrometry and emission spectrometry. It is about 0.01 ng by activation analysis method.

また測定に当たっては試料に特殊処理を施す必要がある
。例えば原子吸光分析法は試料をフレーム中に導入する
ため、試料を溶液とすることが一般に必要であり、被測
定試料に合った溶媒を選ばなくてはならない。また放射
化分析法は、極低濃度の不純物を検出するためのすぐれ
た手法であるが、例えば中性子放射化分析法では、試料
を原子炉内に導入して中性子を照射しなければならず、
原子炉設備を利用できる特殊環境を有していないと利用
できないので、一般的な測定手法とは言えない。
Furthermore, during measurement, it is necessary to perform special treatment on the sample. For example, in atomic absorption spectrometry, the sample is introduced into a frame, so it is generally necessary to prepare the sample as a solution, and a solvent suitable for the sample to be measured must be selected. In addition, activation analysis is an excellent method for detecting impurities at extremely low concentrations, but for example, in neutron activation analysis, a sample must be introduced into a nuclear reactor and irradiated with neutrons.
Since it cannot be used unless there is a special environment in which nuclear reactor equipment can be used, it cannot be said to be a general measurement method.

以上のように従来の微量不純物分析法では、手順が煩雑
であり、ファイバ中に存在する数種類の不純物を簡易に
測定することはできない。
As described above, the conventional trace impurity analysis method involves complicated procedures and cannot easily measure several types of impurities present in a fiber.

(発明が解決しようとする問題点) 本発明は、光ファイバ中に含まれ、伝送損失の要因源と
なる微量の金属不純物を、該光ファイバを破壊すること
なく簡易に検出する方法を提供することにある。
(Problems to be Solved by the Invention) The present invention provides a method for easily detecting minute amounts of metal impurities contained in an optical fiber and causing transmission loss without destroying the optical fiber. There is a particular thing.

(問題点を解決するための手段) 本発明は光ファイバの一端から所定の波長の単色化した
光を入射し、該光ファイバの他端から出射される螢光ス
ペクトルを測定し、また該螢光スペクトルを生じる金属
イオンを既知量含んだ光ファイバに前記と同じ波長の単
色化した光を入射して出射端からの螢光スペクトルを測
定し、両螢光スペクトルの強度比から、光ファイバ中の
金属不純物量を求める。
(Means for Solving the Problems) The present invention involves inputting monochromatic light of a predetermined wavelength from one end of an optical fiber, measuring the fluorescence spectrum emitted from the other end of the optical fiber, and measuring the fluorescence spectrum emitted from the other end of the optical fiber. Monochromatic light of the same wavelength as above is input into an optical fiber containing a known amount of metal ions that produce a light spectrum, and the fluorescence spectrum from the output end is measured. From the intensity ratio of both fluorescence spectra, it is determined that the inside of the optical fiber is Find the amount of metal impurities.

本発明は、光ファイバに励起光を入射させ、光ファイバ
中に含まれる金属不純物による螢光強度を光ファイバの
長手方法で積分し、螢光強度を得るので、前記励起光の
光路長を長くすることにより、螢光強度を大きくするこ
とができ、従来の螢光分光測定法よりも微量の金属不純
物を検出できる。
In the present invention, excitation light is input into an optical fiber, and the fluorescence intensity due to metal impurities contained in the optical fiber is integrated in the longitudinal direction of the optical fiber to obtain the fluorescence intensity, so that the optical path length of the excitation light is increased. By doing so, the fluorescence intensity can be increased, and trace amounts of metal impurities can be detected compared to conventional fluorescence spectroscopy.

バルク試料を用いて、励起光強度■。の光で励起したと
き全螢光強度Iは !=2.3φI0εCd         −−−(1
)で与えられる。ここで、φは螢光量子収率、εは試料
化合物の励起光波長のモル吸光係数、Cは試料中の螢光
体のモル濃度、dは試料の光路長であり、吸光度(εC
d)が0.01以下を仮定している。
■ Excitation light intensity using bulk samples. When excited with light, the total fluorescence intensity I is! =2.3φI0εCd ---(1
) is given by Here, φ is the fluorescence quantum yield, ε is the molar extinction coefficient of the excitation light wavelength of the sample compound, C is the molar concentration of the fluorophore in the sample, d is the optical path length of the sample, and the absorbance (εC
d) is assumed to be 0.01 or less.

一方、ファイバの一端に波長λ1の励起光を入射させた
ときに、他端から出射する波長λ2の螢光強度は、次式
で与えられる。
On the other hand, when excitation light with a wavelength λ1 is incident on one end of the fiber, the intensity of the fluorescent light with a wavelength λ2 emitted from the other end is given by the following equation.

ここで、β。はファイバの長さ、φは螢光量子収率、I
oは波長λ、の励起光強度、ωは全螢光中ファイバ中に
導波される螢光の割合、α1は波長λ1でのファイバの
損失、ε1は螢光体による波長λ1における吸収損失、
α2は波長λ2でのファイバの損失である。
Here, β. is the length of the fiber, φ is the fluorescence quantum yield, I
o is the excitation light intensity at wavelength λ, ω is the proportion of fluorescent light guided into the fiber out of the total fluorescent light, α1 is the fiber loss at wavelength λ1, ε1 is the absorption loss at wavelength λ1 by the phosphor,
α2 is the fiber loss at wavelength λ2.

第2図は(2)式で与えられる螢光強度のファイバの長
さく10)に対する依存性を表わした図である。ただし
αt =200 dB/ 1un1CXz =100 
dll/ kmとした。
FIG. 2 is a diagram showing the dependence of the fluorescence intensity given by equation (2) on the fiber length 10). However, αt = 200 dB/ 1un1CXz = 100
dll/km.

(2)式で表わされる螢光強度は、波長λ1、波長λ2
でのファイバの損失によって変化するが、現存のフン化
物光ファイバの可視領域での伝送損失である100〜2
00 dB/ km程度を仮定すると、螢光強度の最大
値は励起光強度および螢光体濃度を同一としたとき、測
定値が(11式で与えられる市販の螢光分光光度計で測
定される1cI11厚のバルクガラスの螢光強度より1
00倍程度大きくなる。
The fluorescence intensity expressed by equation (2) is the wavelength λ1, the wavelength λ2
The transmission loss in the visible range of existing fluoride optical fibers varies from 100 to 2, depending on the fiber loss at
Assuming about 00 dB/km, the maximum value of the fluorescence intensity is determined by the measurement value (measured with a commercially available fluorescence spectrophotometer given by equation 11) when the excitation light intensity and the fluorophore concentration are the same. 1 from the fluorescence intensity of 1cI11 thick bulk glass
It becomes about 00 times larger.

したがって前述のように、従来の螢光分光測定法よりも
微量の金属不純物を検出できる。
Therefore, as mentioned above, it is possible to detect trace amounts of metal impurities than conventional fluorescence spectroscopy.

第1図は本発明の一実施例図であって、ファイバの螢光
スペクトル測定系の概略を示し、1はアルゴンイオンレ
ーザ、2はチョッパ、3はレンズ、4はフッ化物ファイ
バ、5はモノクロメータ、6は光電子増倍管、7はプリ
アンプ、8はロックインアンプ、9はx−yレコーダ、
10はケーブル、11は光電子増倍管用電源、12は半
導体光検出器、13は光分波器、14は励起光のみを透
過するバンドパスフィルタである。
FIG. 1 is a diagram showing an embodiment of the present invention, and shows an outline of a fiber fluorescence spectrum measurement system, in which 1 is an argon ion laser, 2 is a chopper, 3 is a lens, 4 is a fluoride fiber, and 5 is a monochromatic fiber. meter, 6 is a photomultiplier tube, 7 is a preamplifier, 8 is a lock-in amplifier, 9 is an x-y recorder,
10 is a cable, 11 is a power supply for a photomultiplier tube, 12 is a semiconductor photodetector, 13 is an optical demultiplexer, and 14 is a bandpass filter that transmits only excitation light.

チョッパ2で変調されたアルゴンイオンレーザ1の出力
光(波長477nm )をレンズ3で絞り、フッ化物光
ファイバ4内に入射させ、フッ化物ファイバ4の他端で
の出射光をモノクロメータ5に導いて分光し、光電子増
倍管6で分光された光を受けた。分光された光の検出に
は、ロックイン法を用い、プリアンプ7とロックインア
ンプ8を通った光電子増倍管6の出力と、モノクロメー
タ5から送られる分光された光の波長とをx−yレコー
ダ9で記録した。
The output light (wavelength: 477 nm) of the argon ion laser 1 modulated by the chopper 2 is focused by the lens 3 and input into the fluoride optical fiber 4, and the output light from the other end of the fluoride fiber 4 is guided to the monochromator 5. The photomultiplier tube 6 receives the separated light. A lock-in method is used to detect the spectroscopic light, and the output of the photomultiplier tube 6 that has passed through the preamplifier 7 and lock-in amplifier 8 and the wavelength of the spectroscopic light sent from the monochromator 5 are x- Recorded using y recorder 9.

第3図は、ガラス組成ZrF4−BaFz−GdF*−
A 42 F3からなる2m長のフッ化物ファイバを用
いたときの螢光スペクトルを示す。これはPr”イオン
のf−f遷移による螢光であり、フッ化物ファイバ中に
Pr3+イオンが含まれていることが確認できた。
Figure 3 shows the glass composition ZrF4-BaFz-GdF*-
The fluorescence spectrum is shown when a 2 m long fluoride fiber made of A 42 F3 is used. This is fluorescence due to ff transition of Pr'' ions, and it was confirmed that Pr3+ ions were contained in the fluoride fiber.

Pr”イオン不純物量を定量化するために、p r 3
 +イオンをそれぞれ5 p91g+ 10ppm、 
370ppm添加したファイバを作製し、その螢光強度
を測定した。螢光強度を測定する場合、第1図における
モノクロメータ5の代わりに、第4図に示すように0.
635μ−の光を透過するバンドパスフィルタ14′を
おいて測定した。バンドパスフィルタを用いることによ
り、モノクロメータを用いる場合より、螢光強度は簡便
に、かつ再現性良く求めることができた。
In order to quantify the amount of impurity Pr” ion, p r 3
+ ions each 5 p91g + 10ppm,
A fiber doped with 370 ppm was prepared and its fluorescence intensity was measured. When measuring the fluorescence intensity, the monochromator 5 shown in FIG. 4 is replaced with a 0.0.
The measurement was performed using a bandpass filter 14' that transmits 635 μm of light. By using a bandpass filter, the fluorescence intensity could be determined more easily and with better reproducibility than when using a monochromator.

第5図かられかるように、Pr”イオンの濃度が5〜3
70ppmにおいて、0.635μ糟帯の螢光強度とP
r”イオン濃度は比例関係にあり、上記濃度域の螢光強
度と試料ファイバの螢光強度とを比較することにより、
試料ファイバ中のPr”°不純物量を求めることができ
る。
As can be seen from Figure 5, the concentration of Pr'' ions is 5 to 3.
At 70 ppm, the fluorescence intensity of 0.635 μ mound and P
The r'' ion concentration is in a proportional relationship, and by comparing the fluorescence intensity in the above concentration range and the fluorescence intensity of the sample fiber,
The amount of Pr''° impurities in the sample fiber can be determined.

その結果、フッ化物ファイバ中に2sppbのPr”不
純物が含まれていることがわかった。
As a result, it was found that 2 spppb of Pr'' impurities were contained in the fluoride fiber.

なお前記強度測定に際しては、ファイバの出射光強度を
半導体検出器12でモニターし、また入射光波長λ1お
よび螢光波長λ2におけるファイバの損失値で強度補正
した。
In the above intensity measurement, the intensity of the light emitted from the fiber was monitored by the semiconductor detector 12, and the intensity was corrected by the loss value of the fiber at the incident light wavelength λ1 and the fluorescent light wavelength λ2.

(発明の効果) 以上説明したように、本発明の検出方法によれば、検出
に当たり、検出対象であるファイバに何らかの処理を施
す必要がなく、また複数の金属不純物がファイバに含ま
れる場合にも、励起波長を変えることにより、それぞれ
の螢光スペクトルを分離して検出することも可能であり
、極めて簡便に微量の金属不純物を検出することができ
る。
(Effects of the Invention) As explained above, according to the detection method of the present invention, there is no need to perform any processing on the fiber that is the detection target, and even when the fiber contains multiple metal impurities. By changing the excitation wavelength, it is also possible to separate and detect each fluorescence spectrum, and trace amounts of metal impurities can be detected extremely easily.

また励起光強度を太き(することおよびファイバの長さ
を実施例に用いたファイバの長さ2mより長くすること
により、10−3PPb程度の不純物量も容易に検出で
きるという利点がある。
Further, by increasing the excitation light intensity and making the fiber length longer than the 2 m length of the fiber used in the example, there is an advantage that impurity amounts of about 10 -3 PPb can be easily detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例図、 第2図は螢光強度とファイバの長さの関係を示す図、 第3図はフッ化物ファイバの一例の螢光スペクトルを示
す図、 第4図はバンドパスフィルタを用いた螢光強度測定系の
ファイバ出射端における光学系を示す図、第5図はPr
”イオンと螢光強度の関係を示す図である。 1・・・アルゴンレーザ  2・・・チョッパ3・・・
レンズ      4・・・フン化物ファイバ5・・・
モノクロメータ  6・・・光電子増倍管7・・・プリ
アンプ    8・・・ロックインアンプ9・・・x−
yレコーダ  10・・・ケーブル11・・・光電子増
倍管用電源12・・・半導体光検出器13・・・光分波
器 14・・・励起光のみを透過するバンドパスフィルタ1
4′・・・波長0.635μmの光を透過するバンドパ
スフィルタ特許出願人 日本電信電話株式会社 第3図 5iE&(り1fnン 第4図 14’−480,63’fytqnf>ltllLmt
Xt(l”/’X7tjLJI第5図
Figure 1 is a diagram showing an example of the present invention; Figure 2 is a diagram showing the relationship between fluorescence intensity and fiber length; Figure 3 is a diagram showing a fluorescence spectrum of an example of a fluoride fiber; Figure 4 Figure 5 shows the optical system at the fiber output end of the fluorescence intensity measurement system using a bandpass filter.
"It is a diagram showing the relationship between ions and fluorescence intensity. 1... Argon laser 2... Chopper 3...
Lens 4...Fluoride fiber 5...
Monochromator 6...Photomultiplier tube 7...Preamplifier 8...Lock-in amplifier 9...x-
y recorder 10...cable 11...power supply for photomultiplier tube 12...semiconductor photodetector 13...optical demultiplexer 14...bandpass filter 1 that transmits only excitation light
4'... Bandpass filter that transmits light with a wavelength of 0.635 μm Patent applicant Nippon Telegraph and Telephone Corporation Fig. 3 5iE&(R1fn Fig. 4 14'-480, 63'fytqnf>ltllLmt
Xt(l”/'X7tjLJIFigure 5

Claims (1)

【特許請求の範囲】[Claims] 1、光ファイバの一端から、所定の波長の単色化した光
を入射し、該光ファイバの他端から出射される螢光スペ
クトルを測定し、また該螢光スペクトルを生じる金属イ
オンを既知量含んだ光ファイバに前記と同じ波長の単色
化した光を入射して出射端からの螢光スペクトルを測定
し、両螢光スペクトルの強度比から、光ファイバ中の金
属不純物量を求めることを特徴とする光ファイバ中の金
属不純物の検出方法。
1. Inject monochromatic light of a predetermined wavelength from one end of an optical fiber, measure the fluorescence spectrum emitted from the other end of the optical fiber, and measure the fluorescence spectrum that contains a known amount of metal ions that produce the fluorescence spectrum. The method is characterized by injecting monochromatic light of the same wavelength into the optical fiber, measuring the fluorescence spectrum from the output end, and determining the amount of metal impurities in the optical fiber from the intensity ratio of both fluorescence spectra. A method for detecting metal impurities in optical fibers.
JP3724186A 1986-02-24 1986-02-24 Detecting method for metallic impurity in optical fiber Pending JPS62195542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3724186A JPS62195542A (en) 1986-02-24 1986-02-24 Detecting method for metallic impurity in optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3724186A JPS62195542A (en) 1986-02-24 1986-02-24 Detecting method for metallic impurity in optical fiber

Publications (1)

Publication Number Publication Date
JPS62195542A true JPS62195542A (en) 1987-08-28

Family

ID=12492121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3724186A Pending JPS62195542A (en) 1986-02-24 1986-02-24 Detecting method for metallic impurity in optical fiber

Country Status (1)

Country Link
JP (1) JPS62195542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454044C (en) * 2007-02-01 2009-01-21 河南中光学集团有限公司 Light source even optical fibre low-waste conduction projector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454044C (en) * 2007-02-01 2009-01-21 河南中光学集团有限公司 Light source even optical fibre low-waste conduction projector

Similar Documents

Publication Publication Date Title
Knebl et al. Fiber enhanced Raman gas spectroscopy
McCreery Raman spectroscopy for chemical analysis
US5404218A (en) Fiber optic probe for light scattering measurements
US10557790B2 (en) Carbon isotope analysis device and carbon isotope analysis method
US5986756A (en) Spectroscopic probe with leak detection
Glazier et al. Phosphate-selective polymer membrane electrode
EP0383912B1 (en) Method and apparatus for optically measuring concentration of material
KR101281105B1 (en) The method of quantitative analysis for uranium in an aqueous solution
US6141095A (en) Apparatus for measuring and applying instrumentation correction to produce a standard Raman spectrum
Sutherland et al. Simultaneous measurement of absorption and circular dichroism in a synchrotron spectrometer
JP2807777B2 (en) Optical absorption spectrum measuring device using slab optical waveguide
US4733084A (en) Method of detection and quantitative determination of sulfur and sulfur monitor using the method
Wolfbeis et al. Optical fibre titrations. Part 3. Construction and performance of a fluorimetric acid-base titrator with a blue LED as a light source
JPS62195542A (en) Detecting method for metallic impurity in optical fiber
Milanovich et al. Process, product, and waste-stream monitoring with fiber optics
Milanovich Detecting chloroorganics in groundwater
Jordan et al. Assay measurement of gaseous UF6 using femtosecond laser-induced breakdown spectroscopy in the 424.4 nm spectral region
JPH0915145A (en) Multiplex measurement analyzer
JP3448135B2 (en) Optical axis moving type fluorescence photometer and measurement method
Salin et al. Design and Performance of a Time Multiplex Multiple Slit Multielement Flameless Atomic Absorption Spectrometer
Chester et al. Evaluation of the analytical capabilities of frequency modulated sources in multielement non-dispersive flame atomic fluorescence spectrometry
JPH11108829A (en) Method and device for online analysis of molten metal
US3503686A (en) Atomic absorption spectrophotometer
JPH0319503B2 (en)
US7180589B2 (en) Luminescence measuring device with pre-filter effect suppression