JPS6219453B2 - - Google Patents

Info

Publication number
JPS6219453B2
JPS6219453B2 JP53063784A JP6378478A JPS6219453B2 JP S6219453 B2 JPS6219453 B2 JP S6219453B2 JP 53063784 A JP53063784 A JP 53063784A JP 6378478 A JP6378478 A JP 6378478A JP S6219453 B2 JPS6219453 B2 JP S6219453B2
Authority
JP
Japan
Prior art keywords
pps
extrusion molding
viscosity
polyphenylene sulfide
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53063784A
Other languages
Japanese (ja)
Other versions
JPS54155255A (en
Inventor
Shigeyuki Narisawa
Hiroshi Yanase
Fukuo Sugano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP6378478A priority Critical patent/JPS54155255A/en
Priority to NL7904198A priority patent/NL7904198A/en
Priority to FR7913625A priority patent/FR2427350B1/en
Priority to GB7918875A priority patent/GB2021608B/en
Priority to US06/043,907 priority patent/US4274993A/en
Priority to DE19792922072 priority patent/DE2922072A1/en
Publication of JPS54155255A publication Critical patent/JPS54155255A/en
Publication of JPS6219453B2 publication Critical patent/JPS6219453B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は従来不可能とされていたポリフエニレ
ンサルフアイドの押出成形を可能にしたポリフエ
ニレンサルフアイド押出成形材料に関するもので
あり、特に押出成形が不可能であつた性質を改良
し、物性的にも優れた成形品を得ることができる
ポリフエニレンサルフアイドの押出成形用に使用
される成形材料に関するものである。 ポリフエニレンサルフアイドは一般式
The present invention relates to a polyphenylene sulfide extrusion molding material that has made it possible to extrude polyphenylene sulfide, which was previously considered impossible. The present invention relates to a molding material used for extrusion molding of polyphenylene sulfide from which molded products with excellent performance can be obtained. Polyphenylene sulfide has the general formula

【式】で表わされる重合体であり、通 常PPSと略称されている。このPPSは熱可塑性樹
脂と熱硬化性樹脂の両者の性質を合せ持ち、加熱
溶融して熱可塑性樹脂と同様の成形を行いうるの
みならず、加熱架橋させることができ焼付塗料な
どの熱硬化性樹脂的な使用も可能である。PPS成
形品は優れた耐薬品性、広い温度範囲における良
好な機械的性質の保持性、高温における硬さなど
エンジニアリングプラスチツクとして優れた特性
を有している。 PPSは現在世界でフイリツプス・ペトローリア
ム社のみで製造され、“ライトン”という商品名
で販売されている。PPSの製造方法は種々知られ
ているが、現在市販されているPPSはP−ジクロ
ルベンゼンと二硫化ソーダを極性溶剤中で反応さ
せて製造されたものであると言われている。市販
されているPPS成形材料は未架橋品であるV−1
グレード、架橋品であるP−2、P−3、P−4
グレード(架橋度はP−2<P−3<P−4)、
およびペレツト状架橋品であるR−6グレード
(前4品はいずれも粉末状)がある。また、ガラ
ス繊維入りペレツトであるR−4グレードやその
他目的に応じて充填剤、滑剤、その他添加物含有
品が市販されている。用途として、V−1はスラ
リー・スプレー塗装用、含浸用、P−2は流動床
塗装用、P−3は粉末塗装用、P−4は圧縮成形
用、R−6は射出成形用に主として使用される
が、これのみに限定されるものではない。 PPSの架橋は酸素存在下、通常は空気中で未架
橋PPSを加熱することによつて行なわれる。架橋
温度は未架橋PPSの溶融温度である288℃以下、
通常は250℃前後の温度で行なわれる。加熱によ
つて架橋と同時に鎖延長も起り溶融時の粘度が上
昇し最終的には不溶不融性の樹脂となるが、通常
は必要な架橋度に達した時に冷却し、成形可能な
粉末あるいはペレツト状とされる。 従来、PPSの押出成形は不可能であるといわれ
ていた。前記市販PPSの各グレードには押出成形
用のグレードはない。PPSの押出成形が不可能で
ある最大の原因は成形時のPPSの粘度変化にあ
る。即ち、市販の部分架橋PPSを押出成形機内で
溶融し押し出す時、溶融したPPSが急激な粘度上
昇を示ししかもその粘度上昇が一定せず不規則で
あるため、一定量のPPSを押し出すことが不可能
となる。粘度が上昇すると一定押出圧力下の押出
量が減少し、場合によつては押し出し不可能とな
る。粘度上昇に従つて押出圧力を上げる方法も、
その粘度上昇が不規則であることにより使用し難
く、さらに粘度上昇の割合が非常に大きいため従
来の押出成形機では押出圧力を追従させることは
不可能であつた。従つて、従来のPPSを押出成形
機により押し出すことが出来たとしても、押出量
の大きな変化により必要な形状の成形品を得るこ
とは不可能であり、たとえばートを成形したとし
てもその厚さの変化が激しく場合によつては押出
量が0となつて切断するような場合も少くなかつ
た。 押出成形が不可能である第2の理由はPPSの溶
融粘度が非常に低いことである。溶融粘度を上げ
る方法として架橋度を上げる方法があるが、架橋
度を上げる程上記粘度変化の変化割合が大きくな
り、粘度変化の少いかつ粘度の高いPPSは従来知
られていなかつた。第3の理由はPPSの溶融時の
ガス発生にある。この原因はあまり明らかではな
いが、重合時に副生した低分子量PPSがポリマー
中に存在すること及び架橋時に部分的にPPS分子
鎖の切断が起つて低分子量のPPSが生成すること
により、この低分子量PPSの揮発や分解がその主
たる原因であろうと予想される。ガスの成分は主
として有機物であり、少量のSO2などのイオウ化
合物も見い出される。この発生したガスはPPS成
形品中に残存し、その機械的特性や電気的特性を
低下せしめ、さらには金型材料の腐食を引き起す
恐れもある。特に、押出成形によるフイルムや薄
いシートの製造に際しては、このガス発生による
表面に凹部が生成したり穴があく可能性が大き
く、押出成形を可能とするためにはこの問題も解
決することが必要と考えられる。 本発明は押出成形可能なPPS成形材料を得るこ
とを目的とするものであり、特に押出成形におけ
る加熱溶融時に架橋反応を起すことが少く、従つ
て粘度変化の少い改良されたPPS押出成形材料を
得ることを目的とするものである。また、本発明
は比較的粘度が高くかつその状態において粘度変
化の少い部分的に架橋されたPPS押出成形材料を
得ることを目的とし、さらに成形時にガス発生が
少いPPS押出成形材料を得ることを目的とするも
のである。また、本発明は従来押出成形以外の方
法で得られた成形品に比較して機械的性質、電気
的性質の優れた押出成形品を得ることをも目的と
するものである。 本発明者はこれらの目的を達成すべく種々の研
究検討を行つた結果、部分的に架橋されたPPSを
実質的に酸素の存在しない雰囲気下に290℃以上
の温度に加熱処理することにより粘度変化の少い
PPSを得ることができ、かつガス発生が少なくな
るのみならずこの加熱処理条件を調節することに
より比較的高粘度の任意の粘度のPPSを得ること
ができることを見い出した。本発明はこの被処理
PPS単独またはこの被処理PPSを主成分とするか
少くとも一成分として含むPPS押出成形材料であ
る。即ち本発明は、ポリフエニレンサルフアイド
押出成形材料におけるポリフエニレンサルフアイ
ドが、部分的に架橋されたポリフエニレンサルフ
アイドを実質的に酸素の存在しない雰囲気下290
℃以上の温度で加熱処理して得られた被処理ポリ
フエニレンサルフアイドであることを特徴とする
ポリフエニレンサルフアイド押出成形材料であ
る。 本発明の押出成形材料は加熱溶融時の粘度変化
がきわめて小さく、安定な押出成形が可能となる
とともに、ガス発生が少く良好な成形品を得るこ
とが可能である。しかも処理条件によつて任意の
粘度を有する押出成形材料を得ることができる。 本発明における無酸素条件下の加熱処理によつ
て加熱溶融時の架橋反応による粘度変化がきわめ
て小さくなり、かつガス発生が減少する理由は充
分明確にされていない。しかしながら、強いて理
由を付けるとすれば、その一つの理由は酸素の存
在しない雰囲気下で高温に加熱することにより架
橋反応を終結させることにあると思われる。即
ち、酸素存在下のPPSの加熱架橋は、まずPPSに
架橋を起し易い活性点が形成され、次いでその活
性点が架橋を起すことにより進行すると推測され
る。実質的に酸素のない条件下でPPSを加熱する
と、既に存在する活性点によつて架橋が進行する
が、新たな活性点の形成は起らないと思われる。
従つて、たとえば部分架橋PPSを実質的に酸素の
存在しない条件下で加熱すると、既に存在する活
性点によりPPSの架橋が進行しPPSの粘度が上昇
するが次第に活性点が消費尽され、それ以上の架
橋が起らなくなつて粘度上昇が起らなくなる。活
性点が消費尽される結果、新たな架橋が起り難い
ので粘度変化も少なくなる。このような機構は第
1図や参考例〜実施例のPPSの粘度変化などの結
果をよく説明することができる。。本発明によつ
て酸素の存在しない雰囲気下で加熱することによ
り新たに活性点を生成することなく部分架橋PPS
中に存在する活性点の架橋反応を終結させること
ができ、以後の加熱成形時には架橋反応が進行し
ない安定な材料とすることができると推定され
る。従つて、本発明の処理によつて溶融成形時の
粘度を調節することができ、しかもその時の粘度
の変化(上昇)を著るしく低下せしめることが可
能となる。また、ガス発生が減少する理由は発生
するガスの原因となるもの(低分子量PPSなど)
を予め除去してしまうことにあると思われる。事
実、この処理においてPPSの重量減少が見られ
る。 実質的に酸素の存在しない雰囲気とは窒素など
の不活性ガス中かあるいは減圧下を言う。特に発
生するガスを除くためには減圧下が好ましい。勿
論、不活性ガス雰囲気下でも高温下であるので充
分ガスが拡散する。しかし、PPS中に混入して残
るガスを抜き出すためには減圧下の方が効果的で
ある。減圧下の処理の場合を予め空気等を窒素な
どの不活性ガスで置換した後減圧にすることも好
ましい。減圧の場合、酸素が実質的に存在しない
限りその減圧度は特に制限されないが、空気の存
在する雰囲気下から減圧する場合、その圧力は50
mmHg以下、特に10mmHg以下が好ましく、出来得
れば可及的真空下で処理を行うことが好ましい。
この実質的に酸素の存在しない雰囲気を酸素分圧
で表わすと、減圧下あるいは不活性ガス雰囲気下
の酸素分圧は2mmHg以下が好ましい。この酸素
分圧2mmHg以下では微量の酸素による架橋は全
く無視しうる程度に少く、実質上酸素による架橋
は起らないと考えられる。 部分的に架橋されたPPSとは、未架橋PPSを酸
素雰囲気下に加熱して架橋されたPPSである。た
とえば、前記P−2、P−3、P−4、R−6な
どのグレードがその1例であり、R−4グレード
などの充填剤等が配合されたものであつても良
い。しかし、処理の繁雑性を少くし、コストを下
げるためには、未架橋PPSを架橋する処理の際に
続けて本発明における処理を行うことが好まし
い。この場合、本発明における処理に対して適切
な架橋を前段で行うことができ、後述するように
前段架橋処理が本発明における処理に与える影響
もあるからである。また未架橋PPSを酸素の存在
しない雰囲気下で290℃以上に加熱した状態で少
量の酸素を加えてPPSを架橋し、酸素が消費され
た場合はそのまま、酸素が存在する場合はそれを
除いて、さらに加熱を続けることにより本発明に
おける処理を達成することもできる。 本発明における処理温度はPPSの溶融温度以
上、即ち約290℃以上である。通常この温度以上
で部分的に架橋されたPPSは高粘度の液体状態に
ある。PPSの架橋は従来その融点以下の温度で行
なわれていたので、処理状態においてPPSは粉末
状であつた。本発明における処理はPPSが液状で
あるので静置状態は勿論、撹拌下等の流動状態の
下で処理することができる。さらに処理時間の短
縮などを考えると310℃以上が好ましい。温度の
上限はPPSが多量に分解しない限り制限されない
が、好ましくは500℃以下が適当である。 本発明における無酸素条件下の加熱時間は特に
限定されないが、粘度の上昇率が低下してくるま
で加熱を行うことが好ましい。即ち、後記具体例
で示すように、無酸素条件下の加熱において架橋
度の高いPPS程高い粘度上昇率を示し、ある時間
経過するとこの粘度上昇率は次第に低下してく
る。従つて、この粘度上昇率の低下が認められる
まで加熱を行うことが好ましい。また加熱処理温
度を上げるとこの粘度上昇率の低下が認められる
までにより短時間で達する。勿論、本発明におけ
る加熱処理は、この粘度上昇率の低下が認められ
るまで続ける必要がない場合もある。押出成形時
において加熱溶融されている時間は比較的短いの
で、多少の粘度変化が無視できる場合が少くない
からである。たとえば、PPS架橋の程度にもよる
が真空下330℃における処理では10分以上の処理
時間が適当であり、400℃における処理では30秒
以上の処理時間が適当である。 本発明における加熱処理によつて、ガス発生の
原因となる低分子量化合物が除去されるため、本
発明PPS押出成形材料は以後加熱されても重量減
少の程度が低減する。重量減少の低減の程度はい
かなるものであつても良い結果をもたらすが、実
用上明確に有効となるためには例えばPPSのみの
場合(即ち充填物を含まない場合)温度300℃減
圧下(数mmHg)において120分加熱したとき、そ
の重量減少が0.3重量%以下、好ましくは0.1重量
%以下になるように本発明による加熱処理するこ
とが望ましい。これに対し、通常市販の部分架橋
PPSは同一条件による加熱によつて約0.5〜2重
量%の重量減少を示す。 未架橋PPSの酸素存在下の加熱処理時間の長
短、即ちPPSの架橋の程度は本発明における加熱
処理によるPPS成形材料の物性に影響を及ぼす。
その一つは、本発明における加熱処理されたPPS
の見掛粘度である。たとえば、具体的な1例とし
て、未架橋PPSを空気中で240℃で処理する時間
が長い程、真空下で330℃で加熱処理する時の見
掛粘度の上昇率が高く、より高い見掛粘度に達す
る。ただし、真空下の加熱処理の時間がある一定
時間以上になると見掛粘度の上昇率は低下してく
る。第1図に部分的に架橋されたPPSを真空下
(数mmHg)330℃で加熱処理する場合の処理時間
と荷重20Kg/cm2における見掛粘度の変化の関係を
グラフで示した。Aは未架橋PPSの場合、Bは架
橋を空気中240℃で30分行つた架橋PPSの場合、
同様にCは240℃60分処理の場合、Dは240℃120
分の場合、Eは240℃240分の場合、を示したもの
であり、架橋処理時間が長くなる程高い見掛粘度
に達することがわかる。同様に、架橋処理温度お
よび本発明における処理温度および処理時間によ
つて見掛粘度が左右され、処理温度が高い程ある
いは処理時間が長い程高い見掛粘度に達すること
がわかる。さらに、見掛粘度より本発明の被処理
PPSの好ましい態様を考えると、330℃、荷重20
Kg/cm2における見掛粘度は500ポイズ以上、特に
1000ポイズ以上が適当である。勿論、第1図に示
すように架橋程度の低いものあるいは未架橋PPS
の場合は200〜500ポイズのものも使用できる。こ
の場合は、多量の充填剤を含有する押出成形材料
のようなPPS以外の成分がその粘度を上昇させて
いる成形材料に適しており、PPS単独では押出成
形が困難な低粘度のPPSがこの場合に使用され
る。 上記本発明における加熱処理の終了した被処理
PPSは通常冷却され、次いで粉末化される。この
被処理PPS粉末はそのまま押出成形材料として使
用でき、またこの粉末をペレツト化するかあるい
は被処理PPSを粉末化することなく直接ペレツト
化し、ペレツト状押出成形材料とすることができ
る。さらに、粉末あるいはペレツト状の形状以外
の形状の押出成形材料とすることができる。ま
た、本発明の押出成形材料は被処理PPS単独は勿
論、未処理PPSと混合して使用することができ
る。 本発明の押出成形材料はまた被処理PPSの他に
種々の添加剤を含有していてもよい。その代表的
な添加剤はガラス繊維、炭素繊維、アスベスト、
その他の繊維状強化充填剤と炭酸カルシウム、石
英粉、微少ガラス球、ガラス繊維ミルドフアイバ
ー、グラフアイト、その他の粉末状無機質充填剤
である。特にガラス繊維が強化充填剤として多用
される。これら充填剤は被処理PPSに比較的多量
に添加することができ、通常は成形材料に80重量
%程度まで加えることができる。また、強化充填
剤、無機質充填剤以外に種々の添加剤が使用で
き、たとえばフツ素樹脂、モリブデン化合物ある
いはアンチモン化合物などの潤滑剤やポリイミド
などの合成樹脂などがある。本発明の押出成形材
料中の上記被処理PPS以外の成分の含有量は特に
限定されないが、通常80重量%以下が好ましく、
その下限は限定されない。なお、前記のように、
本発明におけるPPSの無酸素化の熱処理は、これ
ら添加剤の存在下に行つてもよい。たとえば、市
販のガラス繊維含有部分架橋PPSペレツト(R−
4グレード)を実質的に酸素の存在しない雰囲気
下に290℃以上の温度で処理し、本発明の押出成
形材料とすることができる。 押出成形条件あるいは押出成形機の種類は特に
限定されない。通常の一般用押出成形機の他電線
被覆押出などの特殊押出も可能である。従来、ペ
レツト状PPS成形材料を製造するために、PPS単
独あるいはそれに充填剤等を加えて押し出しペレ
ツト化することは行なわれていた。しかしなが
ら、これは混練や造粒を目的とするものであつ
て、成形品を得ることを目的とするものではな
い。従つて、ペレツト化も厳密な形状が求められ
ているものではなく、事実充填剤含有ペレツトは
通常の熱可塑性樹脂ペレツトと比較しようもない
程不定形な粒状物にしか成形できない。本発明の
押出成形材料の押出成形とは棒、パイプ、シート
などの定められた寸法精度の最終成形品を得るこ
とを目的とする成形方法である。勿論、押出成形
材料の一種としてペレツト状押出成形材料が要求
される場合は従来と同様の押し出しによるペレツ
ト化が行なわれる。 本発明押出成形材料を押出成形して得られる成
形品の種類は特に限定されない。たとえば、棒、
アングル、チヤンネル、シート、フイルム、パイ
プ、電線被覆などがある。これらは従来の押出成
形以外の方法では得られなかつた成形品を得るこ
とが技術的に困難あるいはコスト的に困難な成形
品が多い。本発明の押出成形材料を押出成形する
ことにより、通常の合成樹脂の押出成形と比較し
て大差ない程度に容易にこれら成形品を得ること
ができる。また、本発明押出成形材料は単に押出
成形が可能となつたこと以外にも、ガス発生が少
いという特徴を有しており、ガス発生による成形
上の不便さを解決したばかりでなく、ガスの残存
などが原因となる成形品の機械的強度や電気的性
質の劣化を解決し、PPS成形品自体の性能を向上
させることが可能となるものである。本発明押出
成形材料より得られる成形品は電気部品、電子部
品、耐蝕機器、耐熱機器、機械部品などPPSの特
性を発揮しうる分野には勿論、その他各種産業分
野に広く使用されうるものである。 以下に本発明を参考例および実施例(比較例を
含む)により具体的に説明するが、本発明はこれ
ら実施例のみに限定されるものではない。 参考例 1 市販の部分架橋PPS粉末(P−4グレード)
〔以下すべてグレードで示すものはフイリツプ
ス・ペトローリアム社製の商品名“ライトン”で
市販されているPPSである〕、、部分架橋ペレツト
(R−6グレード)をそれぞれ真空下(数mmHg)
〔以下「真空下」とは特にことわらない限り、空
気雰囲気下のPPSを数mmHgまで減圧した条件下
をいう〕、330℃で15分間加熱し溶融させた後室温
まで冷却し固化させたところ、内部に気泡を含ま
ない固形PPSを得た。比較のため市販PPSの、P
−4、R−6の各グレード品を未処理のまま空気
中300℃で15分間加熱したところ、ガス発生のた
め内部に多数の気泡が存在する固形PPSしか得ら
れなかつた。 参考例 2 参考例1と同様の方法によつて減圧加熱処理し
たサンプル(処理品、P−4処理品、R−4処理
品)を磁製ルツボに約2g精秤し、減圧下(数mm
Hg)、300℃で120分間加熱し重量減少を測定し
た。結果を下記第1表に示す。比較のため市販グ
レード(P−4、R−6いずれも未処理品)の重
量減少を同一条件で測定した結果も同じ表に示し
た。
It is a polymer represented by the formula and is usually abbreviated as PPS. This PPS has the properties of both a thermoplastic resin and a thermosetting resin, and not only can it be heated and melted to form the same molding as a thermoplastic resin, but it can also be heat-crosslinked and is used as a thermosetting material for baking paints, etc. It can also be used as a resin. PPS molded products have excellent properties as an engineering plastic, including excellent chemical resistance, good retention of mechanical properties over a wide temperature range, and hardness at high temperatures. PPS is currently manufactured only by Philips Petroleum in the world and is sold under the trade name "Ryton." Although various methods for producing PPS are known, the PPS currently on the market is said to be produced by reacting P-dichlorobenzene and sodium disulfide in a polar solvent. The commercially available PPS molding material is V-1, which is an uncrosslinked product.
grade, crosslinked products P-2, P-3, P-4
grade (crosslinking degree is P-2<P-3<P-4),
and R-6 grade, which is a pellet-like crosslinked product (all of the previous four products are in powder form). In addition, R-4 grade pellets containing glass fibers and products containing fillers, lubricants, and other additives are commercially available depending on the purpose. V-1 is mainly used for slurry/spray coating and impregnation, P-2 is for fluidized bed coating, P-3 is for powder coating, P-4 is for compression molding, and R-6 is mainly for injection molding. used, but not limited to. Crosslinking of PPS is carried out by heating uncrosslinked PPS in the presence of oxygen, usually in air. The crosslinking temperature is below 288℃, which is the melting temperature of uncrosslinked PPS.
It is usually carried out at a temperature of around 250°C. When heated, chain extension occurs at the same time as crosslinking, increasing the viscosity when melted, ultimately resulting in an insoluble and infusible resin. However, when the required degree of crosslinking is reached, it is usually cooled to form a moldable powder or moldable powder. It is said to be in pellet form. Previously, it was said that extrusion molding of PPS was impossible. There is no grade for extrusion molding among the commercially available PPS grades. The main reason why extrusion molding of PPS is impossible is due to changes in the viscosity of PPS during molding. In other words, when commercially available partially cross-linked PPS is melted and extruded in an extruder, the viscosity of the molten PPS rapidly increases, and the increase in viscosity is irregular, making it difficult to extrude a constant amount of PPS. It becomes possible. When the viscosity increases, the amount of extrusion under constant extrusion pressure decreases, and in some cases, extrusion becomes impossible. There is also a method of increasing extrusion pressure as the viscosity increases.
It is difficult to use because the increase in viscosity is irregular, and furthermore, the rate of increase in viscosity is so large that it has been impossible to follow the extrusion pressure with a conventional extrusion molding machine. Therefore, even if it is possible to extrude conventional PPS using an extrusion molding machine, it is impossible to obtain a molded product with the required shape due to large changes in the extrusion rate.For example, even if a sheet is molded, its thickness There were many cases in which the extrusion amount became 0 and the product was cut due to the drastic change in the thickness. The second reason why extrusion is not possible is that PPS has a very low melt viscosity. One way to increase the melt viscosity is to increase the degree of crosslinking, but as the degree of crosslinking increases, the rate of change in the viscosity increases, and PPS with a small viscosity change and high viscosity has not been known. The third reason is gas generation when PPS is melted. The cause of this is not very clear, but this low molecular weight PPS is caused by the presence of low molecular weight PPS as a by-product during polymerization, and by the partial scission of PPS molecular chains during crosslinking to produce low molecular weight PPS. It is expected that the main cause of this is the volatilization and decomposition of molecular weight PPS. The components of the gas are mainly organic, with small amounts of sulfur compounds such as SO 2 also found. This generated gas remains in the PPS molded product, deteriorating its mechanical and electrical properties, and may even cause corrosion of the mold material. In particular, when manufacturing films and thin sheets by extrusion molding, there is a high possibility that depressions or holes will form on the surface due to this gas generation, and this problem must also be resolved in order to make extrusion molding possible. it is conceivable that. The purpose of the present invention is to obtain an extrudable PPS molding material, and in particular, an improved PPS extrusion molding material that causes less crosslinking reaction during heating and melting during extrusion molding, and therefore has less viscosity change. The purpose is to obtain. Furthermore, the present invention aims to obtain a partially crosslinked PPS extrusion molding material that has a relatively high viscosity and little change in viscosity in that state, and furthermore, to obtain a PPS extrusion molding material that generates little gas during molding. The purpose is to Another object of the present invention is to obtain an extrusion molded product with superior mechanical properties and electrical properties compared to molded products conventionally obtained by methods other than extrusion molding. As a result of various research studies aimed at achieving these objectives, the inventors of the present invention have determined that the viscosity can be increased by heat-treating partially crosslinked PPS to a temperature of 290°C or higher in an atmosphere substantially free of oxygen. little change
It has been found that not only can PPS be obtained and gas generation is reduced, but also that PPS with a relatively high viscosity of any desired viscosity can be obtained by adjusting the heat treatment conditions. The present invention
It is a PPS extrusion molding material that contains PPS alone or this treated PPS as a main component or as at least one component. That is, in the present invention, the polyphenylene sulfide in the polyphenylene sulfide extrusion molding material is formed by partially crosslinked polyphenylene sulfide in an atmosphere substantially free of oxygen.
This is a polyphenylene sulfide extrusion molding material characterized in that it is a treated polyphenylene sulfide obtained by heat treatment at a temperature of 0.degree. C. or higher. The extrusion molding material of the present invention exhibits extremely small change in viscosity during heating and melting, allowing for stable extrusion molding and producing good molded products with little gas generation. Moreover, an extrusion molding material having an arbitrary viscosity can be obtained depending on the processing conditions. The reason why the heat treatment under anoxic conditions in the present invention makes the change in viscosity due to the crosslinking reaction during heating and melting extremely small and reduces gas generation is not sufficiently clear. However, if there is a compelling reason, one of the reasons seems to be that the crosslinking reaction is terminated by heating to a high temperature in an oxygen-free atmosphere. That is, it is presumed that thermal crosslinking of PPS in the presence of oxygen progresses by first forming active sites in PPS that are likely to cause crosslinking, and then those active sites causing crosslinking. When PPS is heated under substantially oxygen-free conditions, crosslinking occurs through the active sites already present, but no new active sites appear to form.
Therefore, for example, when partially cross-linked PPS is heated in a substantially oxygen-free condition, cross-linking of the PPS proceeds due to the active sites already present and the viscosity of PPS increases, but the active sites are gradually exhausted and no more crosslinking will no longer occur, and no increase in viscosity will occur. As a result of the active sites being exhausted, new crosslinking is less likely to occur, resulting in less viscosity change. Such a mechanism can well explain the results such as the viscosity change of PPS shown in FIG. 1 and Reference Examples to Examples. . According to the present invention, partially cross-linked PPS can be produced without newly generating active sites by heating in an oxygen-free atmosphere.
It is presumed that the crosslinking reaction of the active sites present therein can be terminated, and a stable material can be obtained in which the crosslinking reaction does not proceed during subsequent heat molding. Therefore, by the treatment of the present invention, it is possible to control the viscosity during melt molding, and it is also possible to significantly reduce the change (increase) in viscosity during melt molding. Also, the reason for the decrease in gas generation is the cause of the gas generated (low molecular weight PPS etc.)
This seems to be due to the fact that they are removed in advance. In fact, a weight loss of PPS is observed in this treatment. An atmosphere substantially free of oxygen means an atmosphere in an inert gas such as nitrogen or under reduced pressure. In particular, in order to remove generated gases, it is preferable to perform the reaction under reduced pressure. Of course, even in an inert gas atmosphere, the gas is sufficiently diffused because the temperature is high. However, reduced pressure is more effective in extracting gas that remains mixed in PPS. In the case of processing under reduced pressure, it is also preferable to replace air etc. with an inert gas such as nitrogen in advance and then reduce the pressure. In the case of reduced pressure, the degree of pressure reduction is not particularly limited as long as oxygen is not substantially present, but when reducing pressure from an atmosphere where air is present, the pressure is 50
mmHg or less, particularly 10 mmHg or less is preferable, and it is preferable to perform the treatment under vacuum if possible.
When expressing this substantially oxygen-free atmosphere in terms of oxygen partial pressure, the oxygen partial pressure under reduced pressure or in an inert gas atmosphere is preferably 2 mmHg or less. When the oxygen partial pressure is below 2 mmHg, crosslinking due to trace amounts of oxygen is so small as to be completely ignored, and it is considered that crosslinking due to oxygen does not substantially occur. Partially crosslinked PPS is PPS that is crosslinked by heating uncrosslinked PPS in an oxygen atmosphere. For example, grades such as P-2, P-3, P-4, and R-6 are examples thereof, and fillers such as R-4 grade may also be blended. However, in order to reduce the complexity of the process and reduce costs, it is preferable to carry out the process according to the present invention following the process of crosslinking uncrosslinked PPS. In this case, appropriate crosslinking can be performed in the first stage of the treatment in the present invention, and as will be described later, the first stage crosslinking treatment also has an influence on the treatment in the present invention. In addition, uncrosslinked PPS is heated to 290℃ or higher in an oxygen-free atmosphere, and a small amount of oxygen is added to crosslink PPS. The treatment of the present invention can also be achieved by further continuing heating. The processing temperature in the present invention is higher than the melting temperature of PPS, that is, higher than about 290°C. Normally, above this temperature, partially crosslinked PPS is in a highly viscous liquid state. Since crosslinking of PPS has traditionally been carried out at temperatures below its melting point, PPS is in powder form in the processed state. Since PPS is in a liquid state, the treatment in the present invention can be carried out not only in a stationary state but also in a fluidized state such as under stirring. Furthermore, in consideration of shortening processing time, etc., the temperature is preferably 310°C or higher. The upper limit of the temperature is not limited as long as PPS does not decompose in a large amount, but preferably 500°C or less is appropriate. Although the heating time under anoxic conditions in the present invention is not particularly limited, it is preferable to heat until the rate of increase in viscosity decreases. That is, as shown in specific examples below, PPS with a higher degree of crosslinking exhibits a higher rate of increase in viscosity when heated under anoxic conditions, and this rate of increase in viscosity gradually decreases after a certain period of time. Therefore, it is preferable to carry out heating until a decrease in the rate of increase in viscosity is observed. Furthermore, when the heat treatment temperature is increased, it takes a shorter time for the viscosity increase rate to be observed to decrease. Of course, the heat treatment in the present invention may not need to be continued until a decrease in the rate of increase in viscosity is observed. This is because the heating and melting time during extrusion molding is relatively short, so slight changes in viscosity can often be ignored. For example, depending on the degree of PPS crosslinking, a treatment time of 10 minutes or more is appropriate for treatment at 330°C under vacuum, and a treatment time of 30 seconds or more for treatment at 400°C. Since the heat treatment in the present invention removes low molecular weight compounds that cause gas generation, the degree of weight loss of the PPS extrusion molding material of the present invention is reduced even if it is subsequently heated. Any degree of reduction in weight loss will give good results, but in order to be clearly effective in practical use, for example, in the case of PPS only (i.e., without a filler) at a temperature of 300°C and under reduced pressure (several It is desirable to perform the heat treatment according to the present invention so that the weight loss is 0.3% by weight or less, preferably 0.1% by weight or less when heated for 120 minutes at a temperature (mmHg). In contrast, commercially available partially crosslinked
PPS exhibits a weight loss of about 0.5-2% by weight upon heating under the same conditions. The length of time for heat treatment of uncrosslinked PPS in the presence of oxygen, that is, the degree of crosslinking of PPS, affects the physical properties of the PPS molding material obtained by heat treatment in the present invention.
One of them is the heat-treated PPS in the present invention.
is the apparent viscosity of For example, as a specific example, the longer the uncrosslinked PPS is treated at 240°C in air, the higher the rate of increase in apparent viscosity when heat-treated at 330°C under vacuum, and the higher the apparent viscosity. Viscosity is reached. However, when the time of the heat treatment under vacuum exceeds a certain period of time, the rate of increase in apparent viscosity decreases. FIG. 1 is a graph showing the relationship between the treatment time and the change in apparent viscosity at a load of 20 kg/cm 2 when partially crosslinked PPS is heat treated at 330° C. under vacuum (several mmHg). A is for uncrosslinked PPS, B is for crosslinked PPS that was crosslinked in air at 240°C for 30 minutes,
Similarly, C is treated at 240℃ for 60 minutes, and D is treated at 240℃ for 120 minutes.
In the case of 240 minutes at 240° C., E indicates 240 minutes, and it can be seen that the longer the crosslinking treatment time, the higher the apparent viscosity. Similarly, it can be seen that the apparent viscosity is influenced by the crosslinking treatment temperature and the treatment temperature and treatment time in the present invention, and the higher the treatment temperature or the longer the treatment time, the higher the apparent viscosity. Furthermore, from the apparent viscosity, the treated material of the present invention
Considering the preferred embodiment of PPS, 330℃, load 20
The apparent viscosity at Kg/ cm2 is more than 500 poise, especially
1000 poise or more is appropriate. Of course, as shown in Figure 1, PPS with a low degree of crosslinking or uncrosslinked PPS
In this case, you can also use 200 to 500 poise. In this case, it is suitable for molding materials whose viscosity is increased by components other than PPS, such as extrusion molding materials containing large amounts of fillers, and low-viscosity PPS, which is difficult to extrude with PPS alone, is suitable for this purpose. used in cases. The treated object after the heat treatment in the above-mentioned present invention
PPS is usually cooled and then powdered. This treated PPS powder can be used as an extrusion molding material as it is, or it can be made into pellets by pelletizing the powder or by directly pelletizing the treated PPS without powdering it. Furthermore, the extruded material can be in a form other than powder or pellet form. Furthermore, the extrusion molding material of the present invention can be used not only as a treated PPS alone, but also as a mixture with untreated PPS. The extrusion molding material of the present invention may also contain various additives in addition to the PPS to be treated. Typical additives are glass fiber, carbon fiber, asbestos,
Other fibrous reinforcing fillers include calcium carbonate, quartz powder, micro glass spheres, milled glass fibers, graphite, and other powdered inorganic fillers. In particular, glass fiber is often used as a reinforcing filler. These fillers can be added to the PPS to be treated in relatively large amounts, typically up to about 80% by weight of the molding material. In addition to reinforcing fillers and inorganic fillers, various additives can be used, such as lubricants such as fluororesins, molybdenum compounds or antimony compounds, and synthetic resins such as polyimide. The content of components other than the above-mentioned PPS to be treated in the extrusion molding material of the present invention is not particularly limited, but is usually preferably 80% by weight or less,
The lower limit is not limited. Furthermore, as mentioned above,
The heat treatment for making PPS anoxic in the present invention may be performed in the presence of these additives. For example, commercially available glass fiber-containing partially crosslinked PPS pellets (R-
4 grade) can be treated at a temperature of 290° C. or higher in an atmosphere substantially free of oxygen to form the extrusion molding material of the present invention. The extrusion conditions or the type of extrusion molding machine are not particularly limited. In addition to the usual general extrusion molding machine, special extrusion such as electric wire coating extrusion is also possible. Conventionally, in order to produce pellet-like PPS molding materials, PPS alone or with the addition of fillers and the like has been extruded into pellets. However, this is for the purpose of kneading and granulation, and is not for the purpose of obtaining molded products. Therefore, pelletizing is not required to have a strict shape, and in fact filler-containing pellets can only be formed into irregularly shaped granules that are incomparable to ordinary thermoplastic resin pellets. Extrusion molding of the extrusion molding material of the present invention is a molding method whose purpose is to obtain a final molded product such as a rod, pipe, sheet, etc. with defined dimensional accuracy. Of course, if a pellet-shaped extrusion material is required as a type of extrusion material, pelletization by conventional extrusion may be carried out. The type of molded product obtained by extrusion molding the extrusion molding material of the present invention is not particularly limited. For example, a bar,
There are angles, channels, sheets, films, pipes, wire coverings, etc. Many of these molded products are technically difficult or cost-effective to obtain by methods other than conventional extrusion molding. By extrusion molding the extrusion molding material of the present invention, these molded products can be easily obtained to the extent that it is not much different from extrusion molding of ordinary synthetic resins. Furthermore, the extrusion molding material of the present invention not only enables extrusion molding, but also has the characteristic of generating less gas. This will solve the problem of deterioration in the mechanical strength and electrical properties of molded products caused by residual PPS particles and improve the performance of PPS molded products themselves. Molded products obtained from the extrusion molding material of the present invention can be widely used not only in fields where the characteristics of PPS can be exhibited, such as electrical parts, electronic parts, corrosion-resistant equipment, heat-resistant equipment, and mechanical parts, but also in various other industrial fields. . The present invention will be specifically explained below using reference examples and examples (including comparative examples), but the present invention is not limited only to these examples. Reference example 1 Commercially available partially crosslinked PPS powder (P-4 grade)
[All grades shown below are PPS commercially available under the trade name "Ryton" manufactured by Phillips Petroleum.] Partially cross-linked pellets (R-6 grade) were each heated under vacuum (several mmHg).
[Hereinafter, "under vacuum" refers to conditions in which PPS in an air atmosphere is reduced in pressure to several mmHg unless otherwise specified]. After heating at 330°C for 15 minutes to melt, it was cooled to room temperature and solidified. , a solid PPS without bubbles inside was obtained. For comparison, commercially available PPS, P
When untreated grade products of -4 and R-6 were heated in air at 300°C for 15 minutes, only solid PPS with many bubbles inside due to gas generation was obtained. Reference Example 2 Approximately 2 g of a sample (treated product, P-4 treated product, R-4 treated product) that had been heat-treated under reduced pressure by the same method as Reference Example 1 was weighed into a porcelain crucible, and the sample was heated under reduced pressure (several mm).
Hg), and the weight loss was measured after heating at 300°C for 120 minutes. The results are shown in Table 1 below. For comparison, the weight loss of commercially available grades (both P-4 and R-6 were untreated) was measured under the same conditions, and the results are also shown in the same table.

【表】 参考例 3 市販の未架橋PPS粉末(V−1グレード)を空
気気流中240℃で60分間加熱して架橋処理した
後、真空下330℃で120分加熱処理した。このサン
プルを冷却後粉砕し、高化式フローテスターで
300℃、荷重20Kg/cm2における見掛粘度を測定し
たところ650ポイズであつた。同じサンプルを磁
製ルツボに約10gとり、これをさらに空気気流中
330℃で30分間加熱した後再び上記条件で見掛粘
度を測定したところ、750ポイズとなつており粘
度の上昇は少なかつた。 一方、市販の部分架橋PPS粉末(P−3グレー
ド)の見掛粘度を上記条件で測定したところ720
ポイズであつた。この市販P−3グレード粉末を
磁製ルツボに約10gとり、これを空気気流中330
℃で30分間加熱した後見掛粘度を測定したとこ
ろ、4000ポイズとなつており大巾に粘度が上昇し
た。 参考例 4 本発明による処理によつて粘度変化の少ない、
種々の見掛粘度をもつPPS成形材料が得られるこ
とを示す。市販の未架橋PPS粉末(V−1グレー
ド)を第2表に示す加熱条件によつて架橋処理し
た後、同じ第2表による条件によつて真空加熱処
理した。得られたPPSを粉砕した参考例3と同様
にして空気気流中330℃で30分間加熱した。真空
加熱処理した後の見掛粘度と、さらに空気気流中
で加熱した後の見掛粘度(変化)を測定した結果
を第2表に示した(測定条件参考例3と同じ)。
比較の為本発明による処理をしない部分架橋PPS
を空気気流中で加熱した時の粘度(変化)も同じ
表に示した。
[Table] Reference Example 3 Commercially available uncrosslinked PPS powder (V-1 grade) was crosslinked by heating at 240°C in an air stream for 60 minutes, and then heat-treated at 330°C for 120 minutes under vacuum. This sample was cooled, crushed, and tested using a Koka flow tester.
The apparent viscosity was measured at 300° C. and a load of 20 kg/cm 2 and found to be 650 poise. Approximately 10g of the same sample was placed in a porcelain crucible and placed in an air stream.
After heating at 330° C. for 30 minutes, the apparent viscosity was measured again under the above conditions, and it was 750 poise, indicating that there was little increase in viscosity. On the other hand, the apparent viscosity of commercially available partially crosslinked PPS powder (P-3 grade) was measured under the above conditions and was 720.
It was poise. Approximately 10 g of this commercially available P-3 grade powder was placed in a porcelain crucible, and the powder was placed in an air stream for 330 g.
When the apparent viscosity was measured after heating at ℃ for 30 minutes, it was 4000 poise, indicating that the viscosity had increased significantly. Reference Example 4 Due to the treatment according to the present invention, viscosity change is small.
It is shown that PPS molding materials with various apparent viscosities can be obtained. Commercially available uncrosslinked PPS powder (V-1 grade) was crosslinked under the heating conditions shown in Table 2, and then subjected to vacuum heat treatment under the same conditions shown in Table 2. The obtained PPS was pulverized and heated at 330° C. for 30 minutes in an air stream in the same manner as in Reference Example 3. The results of measuring the apparent viscosity after vacuum heat treatment and the apparent viscosity (change) after further heating in an air stream are shown in Table 2 (measurement conditions are the same as Reference Example 3).
Partially crosslinked PPS without treatment according to the present invention for comparison
The viscosity (change) when heated in an air stream is also shown in the same table.

【表】 実施例 1 市販の未架橋PPS粉末(V−1グレード)を空
気中260℃で120分加熱して架橋処理した後真空下
330℃で120分加熱処理した。このサンプルを室温
まで冷却しスピードミル(明来鉄工社製)で小片
に粉砕した。次にこのサンプルをスクリユー径20
mmφの単軸押出機に投入し、シリンダー温度およ
びダイス温度約320℃、スクリユー回転数毎分30
回転で押出し厚さ60ミクロン、巾15cmのフイルム
を製造した。得られたフイルムは暗褐色半透明で
あり気泡がなくかつ折り曲げても破断しなかつ
た。比較のため市販の部分架橋PPSペレツト(R
−6グレード)を同じ条件下で押出したがPPSよ
り発生したガスの為フイルムに多数の小孔がで
き、さらに押出量のはなはだしい変動が見られ
た。また本比較例のフイルムは柔軟性に乏しく折
り曲げると容易に破断した。 実施例 2 市販の未架橋PPS粉末(V−1グレード)を空
気気流中240℃で60分架橋処理した後真空下360℃
で40分間加熱処理した。このサンプルを冷却後粉
砕しこれにガラス繊維含有率20重量%、石英粉含
有量20重量%となるようにガラス繊維チヨツプド
ストランド(旭フアイバーグラス(株)製CS−03−
MA−497)と石英粉((株)龍森製ヒユーズレツク
スE−1)を加え押出機によりペレツトとした。
一方比較の為市販のPPS粉末(P−4グレード)
を未処理のまま用い本実施例と同じ配合でペレツ
トとした。これらペレツト状成形材料をスクリユ
ー径40mmφの単軸押出機に投入し、シリンダー温
度およびダイス温度約320℃、スクリユー回転数
毎分20〜30回転、押出圧力60Kg/cm2で押出し直径
20mmφの棒状成形品を得た。 本実施例のペレツトを用いた場合成形品表面は
滑らかで内部に気泡のない均一な棒状成形品が得
られた。この成形品は木槌でたたいても容易には
破壊できなかつた。 一方比較ペレツトを用いた成形品は内部にボイ
ドが多数ありまた押出量の変動によつて成形品中
20〜30cm毎に不均一な継目のような部分ができ
た。この押出成形品(長さ約1m)を高さ1mの
所からコンクリート床に落した所4〜5ケに破壊
した。 実施例 3 市販の未架橋PPS粉末(V−1グレード)を空
気気流中260℃で120分架橋処理した後真空下330
℃で120分加熱処理した。このサンプルを冷却後
粉砕しこれにガラス繊維含有率30重量%となる様
にガラス繊維チヨツプドストランド(旭フアイバ
ーグラス(株)製、CS−03−MA−497)を加え、押
出機によりペレツトとした。このペレツトをスク
リユー径40mmφの単軸押出機に投入し、シリンダ
ー温度およびダイス温度約320℃、スクリユー回
転数毎分20〜30回転、押出圧力60Kg/cm2で押出し
厚さ2mm、巾15cmのシート状成形品を成形した。
得られたシートは表面が平滑であり、また表面に
も内部にも気泡のない密なものであつた。このシ
ートより種々の試験片を切し出し物性を測定し
た。結果を第3表に示す。比較のため市販の部分
架橋PPS粉末(P−4グレード)にガラス繊維含
有率30重量%となるようにガラス繊維チヨツプド
ストランドを加え押出機によりペレツトとし、こ
のペレツトを本実施例と同様の条件で押出した。 本比較例の場合はPPSより発生したガスの為シ
ート中に多数のボイドが生成しシート表面も粗
く、また押出量のはなはだしい変動のため不均一
なシートとなつた。 成形品物性を比較する為物性測定用サンプルを
圧縮成形により成形した。市販のPPS粉末(P−
4グレード)を用いて本比較例と同じガラス繊維
含有率30重量%のペレツトをつくり、このペレツ
トを空気気流中330℃で60分間加熱してさらに架
橋させたのち300℃に加熱した平板成形用金型に
入れ圧力100Kg/cm2で10分間加熱加圧した。次に
これを加圧したまま室温まで冷却し、厚さ2mm、
縦20cm、横20cmの平板状成形品を得た。この成形
品より種々の試験片サンプルを切り出し物性を測
定した。結果を第3表にまとめて示す。
[Table] Example 1 Commercially available uncrosslinked PPS powder (V-1 grade) was crosslinked by heating it in air at 260°C for 120 minutes and then crosslinked under vacuum.
Heat treatment was performed at 330°C for 120 minutes. This sample was cooled to room temperature and ground into small pieces using a speed mill (manufactured by Akira Tekko Co., Ltd.). Next, insert this sample into a screw with a screw diameter of 20 mm.
Injected into a mmφ single screw extruder, cylinder temperature and die temperature approximately 320℃, screw rotation speed 30 per minute.
A film with a thickness of 60 microns and a width of 15 cm was produced by extrusion by rotation. The obtained film was dark brown and translucent, had no air bubbles, and did not break even when bent. For comparison, commercially available partially crosslinked PPS pellets (R
-6 grade) was extruded under the same conditions, but many small holes were formed in the film due to the gas generated by PPS, and there was also a significant fluctuation in the extrusion rate. Furthermore, the film of this comparative example had poor flexibility and was easily broken when bent. Example 2 Commercially available uncrosslinked PPS powder (V-1 grade) was crosslinked at 240°C in an air stream for 60 minutes and then heated at 360°C under vacuum.
The mixture was heat-treated for 40 minutes. This sample was cooled and pulverized, and glass fiber chopped strands (CS-03- manufactured by Asahi Fiberglass Co., Ltd., manufactured by Asahi Fiberglass Co., Ltd.)
MA-497) and quartz powder (Fuseurex E-1 manufactured by Tatsumori Co., Ltd.) were added to form pellets using an extruder.
On the other hand, for comparison, commercially available PPS powder (P-4 grade)
was used untreated and made into pellets with the same formulation as in this example. These pellet-shaped molding materials were put into a single-screw extruder with a screw diameter of 40 mmφ, and extruded at a cylinder temperature and die temperature of approximately 320°C, a screw rotation speed of 20 to 30 revolutions per minute, and an extrusion pressure of 60 kg/cm 2 .
A rod-shaped molded product with a diameter of 20 mm was obtained. When the pellets of this example were used, a uniform rod-shaped molded product with a smooth surface and no bubbles inside was obtained. This molded product could not be easily destroyed even by hitting it with a mallet. On the other hand, molded products using comparative pellets had many voids inside, and due to fluctuations in the extrusion rate,
Uneven seam-like areas were formed every 20 to 30 cm. This extrusion molded product (length approximately 1 m) was dropped from a height of 1 m onto a concrete floor and broke into 4 to 5 pieces. Example 3 A commercially available uncrosslinked PPS powder (V-1 grade) was crosslinked at 260°C in an air stream for 120 minutes and then dried under vacuum for 330°C.
Heat treatment was performed at ℃ for 120 minutes. This sample was cooled and crushed, and chopped glass fiber strands (manufactured by Asahi Fiberglass Co., Ltd., CS-03-MA-497) were added to the sample so that the glass fiber content was 30% by weight. Made into pellets. The pellets were put into a single-screw extruder with a screw diameter of 40 mmφ, and a sheet with a thickness of 2 mm and a width of 15 cm was extruded at a cylinder temperature and a die temperature of approximately 320°C, a screw rotation speed of 20 to 30 revolutions per minute, and an extrusion pressure of 60 kg/cm 2. A shaped article was molded.
The obtained sheet had a smooth surface and was dense with no air bubbles on the surface or inside. Various test pieces were cut out from this sheet and their physical properties were measured. The results are shown in Table 3. For comparison, chopped glass fiber strands were added to commercially available partially crosslinked PPS powder (P-4 grade) so that the glass fiber content was 30% by weight, and pellets were formed using an extruder, and the pellets were made into pellets in the same manner as in this example. It was extruded under the following conditions. In the case of this comparative example, many voids were generated in the sheet due to the gas generated from PPS, the sheet surface was rough, and the sheet was non-uniform due to the extreme fluctuation in the extrusion amount. In order to compare the physical properties of molded products, samples for physical property measurement were molded by compression molding. Commercially available PPS powder (P-
4 grade) was used to make pellets with the same glass fiber content of 30% by weight as in this comparative example, and the pellets were heated in an air stream at 330°C for 60 minutes to further crosslink, and then heated to 300°C for flat plate molding. It was placed in a mold and heated and pressurized for 10 minutes at a pressure of 100 kg/cm 2 . Next, this was cooled to room temperature while being pressurized, and the thickness was 2 mm.
A flat molded product measuring 20 cm in length and 20 cm in width was obtained. Various test piece samples were cut out from this molded product and their physical properties were measured. The results are summarized in Table 3.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は架橋処理温度および真空下での加熱時
間と300℃荷重20Kg/cm2における見掛粘度の変化
との関係を示すグラフである。測定点をほぼ結
ぶ、A,B,C,D,Eの各線は空気中240℃に
おける架橋処理時間がそれぞれ0分、30分、60
分、120分、240分であるものを示す。
FIG. 1 is a graph showing the relationship between the crosslinking temperature and heating time under vacuum and the change in apparent viscosity at 300° C. and a load of 20 kg/cm 2 . The lines A, B, C, D, and E, which connect the measurement points, indicate the crosslinking treatment time in air at 240°C for 0 minutes, 30 minutes, and 60 minutes, respectively.
Indicates minutes, 120 minutes, and 240 minutes.

Claims (1)

【特許請求の範囲】 1 ポリフエニレンサルフアイド押出成形材料に
おけるポリフエニレンサルフアイドが、部分的に
架橋されたポリフエニレンサルフアイドであり実
質的に酸素の存在しない雰囲気下290℃以上の温
度で加熱処理して得られた被処理ポリフエニレン
サルフアイドであることを特徴とするポリフエニ
レンサルフアイド押出成形材料。 2 実質的に酸素の存在しない雰囲気が減圧雰囲
気であることを特徴とする特許請求の範囲1の押
出成形材料。 3 実質的に酸素の存在しない雰囲気が酸素分圧
2mmHg以下の減圧雰囲気あるいは不活性ガス雰
囲気であることを特徴とする特許請求の範囲1の
押出成形材料。 4 加熱処理温度が310〜500℃であることを特徴
とする特許請求の範囲1の押出成形材料。 5 部分的に架橋されたポリフエニレンサルフア
イドが未架橋ポリフエニレンサルフアイドをその
溶融温度以下酸素存在下で加熱処理して得られた
ポリフエニレンサルフアイドであることを特徴と
する特許請求の範囲1の押出成形材料。 6 被処理ポリフエニレンサルフアイドが温度
300℃、減圧下において120分加熱されたときその
重量減少が0.3重量%以下であることを特徴とす
る特許請求の範囲1の押出成形材料。
[Claims] 1. The polyphenylene sulfide in the polyphenylene sulfide extrusion molding material is partially crosslinked polyphenylene sulfide, and the temperature is 290°C or higher in an atmosphere substantially free of oxygen. A polyphenylene sulfide extrusion molding material, characterized in that it is a treated polyphenylene sulfide obtained by heat treatment. 2. The extrusion molded material according to claim 1, wherein the atmosphere substantially free of oxygen is a reduced pressure atmosphere. 3. The extrusion molding material according to claim 1, wherein the substantially oxygen-free atmosphere is a reduced pressure atmosphere or an inert gas atmosphere with an oxygen partial pressure of 2 mmHg or less. 4. The extrusion molding material according to claim 1, wherein the heat treatment temperature is 310 to 500°C. 5. A patent claim characterized in that the partially crosslinked polyphenylene sulfide is a polyphenylene sulfide obtained by heat treating uncrosslinked polyphenylene sulfide below its melting temperature in the presence of oxygen. Extruded material in range 1. 6 Temperature of polyphenylene sulfide to be treated
The extrusion molding material according to claim 1, wherein the extrusion molding material has a weight loss of 0.3% by weight or less when heated at 300° C. for 120 minutes under reduced pressure.
JP6378478A 1978-05-30 1978-05-30 Polyphenylene sulfide extrusion molding compound Granted JPS54155255A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6378478A JPS54155255A (en) 1978-05-30 1978-05-30 Polyphenylene sulfide extrusion molding compound
NL7904198A NL7904198A (en) 1978-05-30 1979-05-29 POLYPHENYLENE SULFIDE.
FR7913625A FR2427350B1 (en) 1978-05-30 1979-05-29 MOLDABLE POLY (PHENYLENE SULFIDE)
GB7918875A GB2021608B (en) 1978-05-30 1979-05-30 Mouldable polyphenylenesulphide
US06/043,907 US4274993A (en) 1978-05-30 1979-05-30 Moldable polyphenylenesulfide
DE19792922072 DE2922072A1 (en) 1978-05-30 1979-05-30 MOLDABLE POLYPHENYLENE SULFIDE, METHOD FOR MANUFACTURING AND USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6378478A JPS54155255A (en) 1978-05-30 1978-05-30 Polyphenylene sulfide extrusion molding compound

Publications (2)

Publication Number Publication Date
JPS54155255A JPS54155255A (en) 1979-12-07
JPS6219453B2 true JPS6219453B2 (en) 1987-04-28

Family

ID=13239341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6378478A Granted JPS54155255A (en) 1978-05-30 1978-05-30 Polyphenylene sulfide extrusion molding compound

Country Status (1)

Country Link
JP (1) JPS54155255A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770157A (en) * 1980-10-21 1982-04-30 Dainippon Ink & Chem Inc Glass fiber-reinforced polyarylane sulfide resin composition
US4839411A (en) * 1987-09-22 1989-06-13 Phillips Petroleum Company Solid state curing of poly(arylene sulfide) resins in reduced oxygen atmospheres

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114951A (en) * 1974-07-30 1976-02-05 Kuraray Co

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114951A (en) * 1974-07-30 1976-02-05 Kuraray Co

Also Published As

Publication number Publication date
JPS54155255A (en) 1979-12-07

Similar Documents

Publication Publication Date Title
US4274993A (en) Moldable polyphenylenesulfide
JPS62240359A (en) Polyarylene thioether composition
WO2003022923A1 (en) Fluorine-containing resin composition, method for producing the same, and cable having coating comprising the same
CN102634209B (en) Preparation method of polyphenylene sulfide modified composite aggregate
WO2003022922A1 (en) Fluororesin composition, process for producing the same, and cable coated with the same
JPS6237656B2 (en)
JPS6219453B2 (en)
CA1301399C (en) Process for partially curing polyarylene sulfides
US3998767A (en) Fast curing of arylene sulfide polymer using hexamethoxymethylmelamine
US6103818A (en) Resin composition and heat-resistant, returnable IC tray obtained by molding the same
CN108410093A (en) A kind of high strength glass fiber modified polyvinyl chloride material and preparation method thereof
JPS6023702B2 (en) Fluororesin composition with improved moldability
US5008316A (en) Internal lubricant for glass reinforced polyarylene sulfide
EP0330488A1 (en) Internal lubricant for glass reinforced polyarylene sulfide
JPS61285256A (en) Polyphenylene sulfide resin composition
JPH0558374B2 (en)
JP2936596B2 (en) Polyphenylene sulfide resin composition
JPH0471105B2 (en)
PL243595B1 (en) Method of producing modified poly(phenylene sulfide)
JP3139024B2 (en) Method for producing polyarylene sulfide pellets
CN105238047A (en) High-performance cold and heat resistant PPS, PTFE and MC nylon alloy
KR0174067B1 (en) Conductive Polysulfone Resin Composition
JPS60147471A (en) Polyphenylene sulfide resin composition of high weatherability
CN116731480A (en) PBT alloy material with high glow wire ignition temperature and preparation method thereof
JPH02265965A (en) Polyamide resin composition