JPS62192712A - Plastic optical cable - Google Patents

Plastic optical cable

Info

Publication number
JPS62192712A
JPS62192712A JP61033707A JP3370786A JPS62192712A JP S62192712 A JPS62192712 A JP S62192712A JP 61033707 A JP61033707 A JP 61033707A JP 3370786 A JP3370786 A JP 3370786A JP S62192712 A JPS62192712 A JP S62192712A
Authority
JP
Japan
Prior art keywords
optical fiber
resin
resin layer
org
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61033707A
Other languages
Japanese (ja)
Inventor
Tatsuo Watanabe
渡辺 立男
Kazuhiko Saito
和彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61033707A priority Critical patent/JPS62192712A/en
Publication of JPS62192712A publication Critical patent/JPS62192712A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled fiber having a heat-resistance until near the glass transition point of a thermoplastic resin, and having a less tendency for suffering a mechanical injury by coating an org. optical fiber with a UV curable type resin, and by coating the obtd. optical fiber with a specific resin. CONSTITUTION:The titled cable is constituted of a core component 1 of the org. optical fiber, a shell component 2 of the org. optical fiber, the 1st coating resin layer 3 composed of the UV curable resin, and the 2nd coating resin layer 4. The characteristic of the titled cable lies in providing the 1st coating resin layer 3 composed of the UV curable resin, and the 2nd coating resin layer 4 composed of the resin having a larger glass transition point or a Vicat softening point than that of the core component polymer constituting the org. optical fiber, in order, as the resin layer coated on the org. optical fiber. Thus, the cable having the heat-resistance until the glass transition point of the core component 1 and having a sufficient resisting property against the mechanical injuring and a lateral pressure is obtd. The titled cable having an improved handling and practical properties is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機械的損傷を防止した実用性に富むプラスチ
ック光ケーブルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a highly practical plastic optical cable that prevents mechanical damage.

〔従来の技術〕[Conventional technology]

従来、有機重合体から作成された光学繊維(以下、有機
光学繊維という)は、ガラス系光学繊維に比較して、熱
的および機械的に損傷を受は易いという欠点があり、光
ケーブルなどとして実際に使用するに際しては、該有機
光学繊維の損傷を防止のために樹脂で被覆されるのが普
通である。
Conventionally, optical fibers made from organic polymers (hereinafter referred to as organic optical fibers) have the disadvantage that they are more easily damaged thermally and mechanically than glass-based optical fibers, and have not been used in practical applications such as optical cables. When used in organic optical fibers, the organic optical fibers are usually coated with a resin to prevent damage.

特開昭60−194413号公報によれば、上記有機光
学繊維の耐熱性、特に耐湿熱性を改良するために、有機
光学繊維の素線の上にショア硬度が65以上の紫外線硬
化樹脂を被覆した後、紫外線を照射して該樹脂を硬化さ
せることによって得られた有機光学繊維の素線が記載さ
れている。
According to JP-A No. 60-194413, in order to improve the heat resistance, especially the heat and humidity resistance, of the organic optical fiber, the strands of the organic optical fiber were coated with an ultraviolet curing resin having a Shore hardness of 65 or more. Thereafter, a strand of organic optical fiber obtained by curing the resin by irradiating with ultraviolet rays is described.

この有機光学繊維素線は、該繊維の芯成分であるポリメ
チルメタクリレートが加熱によって収縮し、光学繊維と
しての光伝送損失が増加する欠点を改良する効果はある
が、該素線を構成する有機光学繊維の芯成分のガラス転
移点付近まで加熱された場合の光伝送を置火の低下を防
止し得るという耐熱性を具備するには至らない。
This organic optical fiber strand has the effect of improving the disadvantage that polymethyl methacrylate, which is the core component of the fiber, shrinks when heated, increasing optical transmission loss as an optical fiber. It does not have enough heat resistance to prevent a decrease in light transmission when the core component of the optical fiber is heated to near the glass transition point.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

本発明の目的は、有機光学繊維の耐熱性、特に該繊維の
芯成分を構成する熱可塑性樹脂のガラス転移点付近まで
の耐熱性を有し、しかも機械的な損傷を受は難い光伝送
特性に優れたプラスチック光ケーブルを提供するにある
The purpose of the present invention is to provide an organic optical fiber with heat resistance, particularly heat resistance up to near the glass transition point of the thermoplastic resin that constitutes the core component of the fiber, and optical transmission properties that are resistant to mechanical damage. To provide superior plastic optical cables.

〔問題点を解決するための手段〕[Means for solving problems]

このような本発明の目的は、を線光学繊維を紫外線硬化
型樹脂で被覆し、その上に有機光学。
The object of the present invention is to coat a linear optical fiber with an ultraviolet curable resin and coat it with an organic optical fiber.

繊維を構成する芯成分重合体のガラス転移温度よりも大
きいビカット軟化点を有する樹脂を被覆してなるプラス
チック光ケーブルによって達成することができる。
This can be achieved by using a plastic optical cable coated with a resin having a Vicat softening point higher than the glass transition temperature of the core component polymer constituting the fiber.

本発明のプラスチック光ケーブルを構成する有機光学繊
維としては、公知の有機光学繊維であればよく、特に限
定されるものではない0代表的な有機光学繊維の例とし
ては、芯成分ポリマがポリメチルメタクリレート、鞘成
分ポリマがフッ化ビニリデンとテトラフルオロエチレン
の共重合体、フッ化アクリレート系共重合体から選ばれ
たポリマーである有機光学繊維を挙げることができる。
The organic optical fiber constituting the plastic optical cable of the present invention may be any known organic optical fiber, and is not particularly limited. As a representative example of an organic optical fiber, the core component polymer may be polymethyl methacrylate. Examples include organic optical fibers in which the sheath component polymer is a polymer selected from vinylidene fluoride and tetrafluoroethylene copolymers and fluorinated acrylate copolymers.

図は本発明になるプラスチック光ケーブルのg様を示す
断面図を示す。
The figure shows a sectional view of the plastic optical cable according to the present invention.

1は有機光学繊維の芯成分、2は有機光学繊維の鞘成分
、3は紫外線硬化型樹脂からなる1次被覆樹脂層、4は
2次被覆樹脂層である。
1 is a core component of the organic optical fiber, 2 is a sheath component of the organic optical fiber, 3 is a primary coating resin layer made of an ultraviolet curable resin, and 4 is a secondary coating resin layer.

本発明の特徴はこれらの有機光学繊維の上を被覆する樹
脂層として、まず紫外線硬化型樹脂からなる1次被覆樹
脂層を設け、さらに該有機光学繊維を構成する芯成分ポ
リマよりも大きいガラス転移点またはビカット軟化点を
有する樹脂を2次被覆樹脂層として設けた点にある。
The feature of the present invention is that a primary coating resin layer made of an ultraviolet curable resin is provided as a resin layer covering the top of these organic optical fibers, and the glass transition is larger than that of the core component polymer constituting the organic optical fibers. The main point is that a resin having a Vicat softening point or a Vicat softening point is provided as a secondary coating resin layer.

本発明に用いる紫外線硬化型樹脂の例としては、高分子
鎖の主鎖または側鎖にラジカル重合性の2重結合を有す
る不飽和ポリエステル系、エポキシアクリレート系、ウ
レタンアクリレート系、ポリエーテルアクリレート系、
ポリエステルアクリレート系、アクリル系、不飽和ポリ
ブタジェン系、メラミンアクリレート系樹脂および長側
鎖ビニル化合物などと光重合開始剤を主成分として含有
する樹脂組成物に紫外線を照射して硬化させた樹脂を挙
げることができる。
Examples of the ultraviolet curable resin used in the present invention include unsaturated polyester-based resins having a radically polymerizable double bond in the main chain or side chain of the polymer chain, epoxy acrylate-based resins, urethane acrylate-based resins, polyether acrylate-based resins,
List of resins that are cured by irradiating ultraviolet rays to resin compositions containing as main components polyester acrylate, acrylic, unsaturated polybutadiene, melamine acrylate resins, long side chain vinyl compounds, etc. and photopolymerization initiators. I can do it.

好ましくは紫外線硬化型樹脂の屈折率が有機光学繊維を
構成する鞘成分重合体の屈折率よりも大きい樹脂、たと
えば該芯成分重合体がポリメチルメタクリレートの場合
は、ハロゲン化された成分を含有しない前記の各種樹脂
であればよい。
Preferably, the UV-curable resin has a higher refractive index than the refractive index of the sheath component polymer constituting the organic optical fiber, for example, when the core component polymer is polymethyl methacrylate, the resin does not contain a halogenated component. Any of the various resins mentioned above may be used.

すなわち、紫外線硬化型樹脂の屈折率が芯成分重合体の
それよりも小さいと、漏光の再入射による伝送帯域の減
少が懸念されるというデメリットがあり、好ましくない
That is, if the refractive index of the ultraviolet curable resin is lower than that of the core component polymer, there is a disadvantage that the transmission band may be reduced due to the re-incidence of leaked light, which is not preferable.

ここで、紫外線硬化型樹脂からなる1次被覆樹脂層の厚
さは5〜150μ、好ましくは10〜10071の範囲
内がよく、この範囲外になると、実質的に有機光学繊維
の熱的挙動を規制できず、耐熱性が達成できないために
好ましくない。
Here, the thickness of the primary coating resin layer made of ultraviolet curable resin is preferably within the range of 5 to 150 μm, preferably 10 to 10,071 μm; outside this range, the thermal behavior of the organic optical fiber will be substantially affected. It is undesirable because it cannot be regulated and heat resistance cannot be achieved.

なお、上記紫外線硬化型樹脂の光重合開始剤としては、
ベンゾイン系、アゾ系、ジフェニルスルフィド系、有機
過酸化物系、fm色素系、鉄・フタロシャニン系などが
あり、紫外線源としては、螢光ケミカルランプ、高圧水
銀灯などがある。
In addition, as a photopolymerization initiator for the above ultraviolet curable resin,
There are benzoin-based, azo-based, diphenyl sulfide-based, organic peroxide-based, FM dye-based, iron/phthalocyanine-based, etc. UV sources include fluorescent chemical lamps, high-pressure mercury lamps, etc.

次に本発明のプラスチック光ケーブルの2次被覆樹脂層
を形成する樹脂としては、高密度ポリエチレン、ポリエ
ステルエラストマー、エチレン・プロピレン共重合体、
ボリプ、ロビレン、ポリカーボネート、ポリブチレンテ
レフタレートなどがあり、この2次被覆樹脂層を形成す
る樹脂は、有機光学繊維を構成する芯成分重合体よりも
大きいガラス転移温度またはビカット軟化点を有する必
要がある。
Next, examples of the resin forming the secondary coating resin layer of the plastic optical cable of the present invention include high-density polyethylene, polyester elastomer, ethylene-propylene copolymer,
Polypropylene, Robylene, polycarbonate, polybutylene terephthalate, etc. are used, and the resin forming this secondary coating resin layer must have a glass transition temperature or Vicat softening point higher than that of the core component polymer that makes up the organic optical fiber. .

すなわち、この2次被覆樹脂層を形成する樹脂のガラス
転移温度またはビカット軟化点が有機光学繊維の芯成分
重合体のそれよりも低いと、プラスチック光ケーブルを
有機光学繊維を構成する芯成分のガラス転移温度付近ま
で加熱しても、有機光学繊維の光伝送特性が維持される
耐熱性を付与することが困難になり、かつプラスチック
光ケーブルの圧力(側圧)に耐える特性が不充分になる
ために好ましくない。
In other words, if the glass transition temperature or Vicat softening point of the resin forming this secondary coating resin layer is lower than that of the core component polymer of the organic optical fiber, the plastic optical cable may be Even if heated to temperatures close to that temperature, it becomes difficult to provide heat resistance that maintains the optical transmission properties of organic optical fibers, and the properties to withstand the pressure (lateral pressure) of plastic optical cables become insufficient, which is undesirable. .

この2次被覆樹脂層の厚さは、特に限定されるものでは
ないが、好ましくは1次および2次被覆樹脂層の厚さの
和として、250〜1000μの範囲内になるように被
覆するのがよい。
The thickness of this secondary coating resin layer is not particularly limited, but preferably the sum of the thicknesses of the primary and secondary coating resin layers is in the range of 250 to 1000μ. Good.

このような本発明のプラスチック光ケーブルの製造法と
しては、有機光学繊維に上記紫外線硬化型樹脂組成物を
コーティングし、紫外線照射して被覆樹脂を硬化させ、
しかる後前記2次被覆樹脂をコーティングする公知の方
法が適用される。
The method for manufacturing such a plastic optical cable of the present invention includes coating an organic optical fiber with the ultraviolet curable resin composition, curing the coating resin by irradiating it with ultraviolet rays,
Thereafter, a known method for coating the secondary coating resin is applied.

さらに具体的には、前記有機光学繊維に上記紫外線硬化
性の樹脂組成物を所定N塗布した後、この塗布繊維を円
周上に複数本配置した水銀灯の内部に所定の速度で走行
させ、芯成分重合体周囲に塗布した紫外線硬化型樹脂を
紫外線によって硬化させる手段が採用される。
More specifically, after applying a predetermined N of the ultraviolet curable resin composition to the organic optical fiber, the coated fiber is run at a predetermined speed inside a mercury lamp in which a plurality of fibers are arranged on the circumference. A method is employed in which an ultraviolet curable resin applied around the component polymer is cured by ultraviolet rays.

かくして得られた本発明のプラスチック光ケーブルには
、さらにその上に樹脂を被覆し、プラスチック光ケーブ
ルの外部からの機械的および熱的損傷に対する抵抗性を
付与することができる。
The thus obtained plastic optical cable of the present invention can be further coated with a resin to impart resistance to external mechanical and thermal damage to the plastic optical cable.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、次のような優れた技術的効果を奏する
According to the present invention, the following excellent technical effects are achieved.

(11有機光学繊維を構成する芯成分のガラス転移点近
くまでの耐熱性を有するプラスチック光ケーブルを提供
することができるので実用性を大きく向上させる。
(11) It is possible to provide a plastic optical cable that has heat resistance close to the glass transition point of the core component constituting the organic optical fiber, greatly improving its practicality.

(2)機械的損傷のみならず、側圧に対して充分な抵抗
力を示すので、ケーブルとしての取扱い性、実用性を大
きく改良する。
(2) Since it exhibits sufficient resistance not only to mechanical damage but also to lateral pressure, it greatly improves the handling and practicality of the cable.

などである。etc.

〔実施例〕〔Example〕

以下、実施例により本発明のプラスチック光ケーブルお
よびその効果をさらに詳細に説明する。
EXAMPLES Hereinafter, the plastic optical cable of the present invention and its effects will be explained in more detail with reference to Examples.

なお、ガラス転移点、ビカット軟化点、耐熱性、耐側圧
性、光伝送特性は、次の測定法によって測定した値であ
る。
Note that the glass transition point, Vicat softening point, heat resistance, lateral pressure resistance, and optical transmission characteristics are values measured by the following measuring method.

ガラス転移点:DSC法による。Glass transition point: Based on DSC method.

ビカソト軟化点: JIS K7206による。ただし
荷重1000 gとする。
Vikasoto Softening Point: According to JIS K7206. However, the load is 1000 g.

耐熱性:熱風恒温槽内に30mの光ケーブルをカセ状で
静置し、槽外に引出した一端か ら660nn+発光ダイオード光を入射し、他端を光パ
ワーメータへ接続して、加 温前の光パワーを基準として光パワー の変化を測定した。なお発光ダイオー トノハワー変化はリファレンスパワー チェックで補正した。
Heat resistance: A 30m optical cable is placed in a skein shape in a hot air thermostat, and 660nm+ light emitting diode light is input from one end pulled out outside the tank, and the other end is connected to an optical power meter to measure the light before heating. Changes in optical power were measured using power as a reference. Note that the light-emitting diode autopower change was corrected by reference power check.

耐側圧性ニ一端から660nn+発光ダイオード光を入
射し、他端を光パワーメータへ接続 した3m長の光ケーブルの中央部を鋼 板上に置き、光ケーブルの上に5cm長の鋼板を乗せて
150 kgの荷重をかけ、無加重時の光パワーを基準
にして光パ ワーの変化を測定した。
Lateral Pressure Resistance The central part of a 3 m long optical cable, in which 660 nn+ light emitting diode light is input from one end and the other end is connected to an optical power meter, is placed on a steel plate, a 5 cm long steel plate is placed on top of the optical cable, and a 150 kg A load was applied, and the change in optical power was measured based on the optical power when no load was applied.

光伝送特性:サンプル長50m、リファレンス長2mの
カットバック法による。
Optical transmission characteristics: Based on the cutback method with a sample length of 50 m and a reference length of 2 m.

実施例1 ポリメチルメタクリレートを芯成分とし、フッ化アクリ
レートを主成分とする樹脂を鞘成分とする有機光学繊維
に紫外線硬化型樹脂組成物として、ウレタンアクリレー
トを主成分とする樹脂組成物を塗布し、紫外線硬化型樹
脂層の厚さが50μである1次被覆樹脂層を形成した。
Example 1 A resin composition containing urethane acrylate as a main component was applied as an ultraviolet curable resin composition to an organic optical fiber having polymethyl methacrylate as a core component and a resin containing fluorinated acrylate as a main component as a sheath component. A primary coating resin layer having an ultraviolet curable resin layer having a thickness of 50 μm was formed.

しかる後、エチレン・プロピレン共重合樹脂を550μ
の厚さに被覆して2次被覆樹脂層を形成し、プラスチッ
ク光ケーブルを作成した。
After that, 550μ of ethylene/propylene copolymer resin was applied.
A secondary coating resin layer was formed by coating the plastic optical cable to a thickness of .

このプラスチック光ケーブルの光伝送特性、耐熱性、耐
側圧性などを測定した結果、光伝送特性: 215dB
/km (測定波長660nm)耐 熱 性:115℃
で7日間変化なし。
As a result of measuring the optical transmission characteristics, heat resistance, lateral pressure resistance, etc. of this plastic optical cable, optical transmission characteristics: 215 dB
/km (measurement wavelength 660nm) Heat resistance: 115℃
There was no change for 7 days.

耐側圧性 :0.1dB であった。Side pressure resistance: 0.1dB Met.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明になるプラスチック光ケーブルの一態様を示
す断面図である。 ■・・・有機光学繊維の芯成分、2・・・有機光学繊維
の鞘成分、3・・・1次被覆樹脂層、4・・・2次被覆
樹脂層。
The figure is a sectional view showing one embodiment of the plastic optical cable according to the present invention. (2) Core component of organic optical fiber, 2... Sheath component of organic optical fiber, 3... Primary coating resin layer, 4... Secondary coating resin layer.

Claims (2)

【特許請求の範囲】[Claims] (1)有機光学繊維を紫外線硬化型樹脂で被覆し、その
上に有機光学繊維を構成する芯成分重合体のガラス転移
温度よりも大きいビカット軟化点を有する樹脂を被覆し
てなるプラスチック光ケーブル。
(1) A plastic optical cable comprising an organic optical fiber coated with an ultraviolet curable resin and a resin having a Vicat softening point higher than the glass transition temperature of the core component polymer constituting the organic optical fiber.
(2)特許請求の範囲第1項において、紫外線硬化型樹
脂の屈折率が有機光学繊維を構成する鞘成分重合体の屈
折率よりも大であるプラスチック光ケーブル。
(2) The plastic optical cable according to claim 1, wherein the refractive index of the ultraviolet curable resin is greater than the refractive index of the sheath component polymer constituting the organic optical fiber.
JP61033707A 1986-02-20 1986-02-20 Plastic optical cable Pending JPS62192712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61033707A JPS62192712A (en) 1986-02-20 1986-02-20 Plastic optical cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61033707A JPS62192712A (en) 1986-02-20 1986-02-20 Plastic optical cable

Publications (1)

Publication Number Publication Date
JPS62192712A true JPS62192712A (en) 1987-08-24

Family

ID=12393885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61033707A Pending JPS62192712A (en) 1986-02-20 1986-02-20 Plastic optical cable

Country Status (1)

Country Link
JP (1) JPS62192712A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248607A (en) * 1988-08-11 1990-02-19 Sumitomo Electric Ind Ltd Optical fiber unit
EP1757963A1 (en) * 2005-08-24 2007-02-28 Nexans Perfluorinated GRIN optical fibre and methods of fabrication thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248607A (en) * 1988-08-11 1990-02-19 Sumitomo Electric Ind Ltd Optical fiber unit
EP1757963A1 (en) * 2005-08-24 2007-02-28 Nexans Perfluorinated GRIN optical fibre and methods of fabrication thereof
FR2890182A1 (en) * 2005-08-24 2007-03-02 Nexans Sa INDEX GRADIENT OPTICAL PERFORATED FIBER AND PROCESS FOR PRODUCING SUCH A FIBER

Similar Documents

Publication Publication Date Title
US7403687B2 (en) Reinforced tight-buffered optical fiber and cables made with same
CA2704241C (en) Process for manufacturing an optical fiber and an optical fiber so obtained
US4575188A (en) Heat resistant plastic optical fiber
AU619637B2 (en) Optical fiber
EP1842088A1 (en) Method and apparatus for producing plastic optical fiber
GB2026716A (en) A Glass Optical Fiber Coated with Organopolysiloxane Layers
WO2001051977A2 (en) Optical fiber cable and optical fiber cable with plug
JPS62192712A (en) Plastic optical cable
TW201219873A (en) Plastic optical fiber unit and plastic optical fiber cable using same
US6122431A (en) Optical transmission member
CN111448170B (en) Improved method of applying ink layers to optical fibers
US6834147B2 (en) Thin conductor ribbon
KR20040045347A (en) Plastic optical fiber preform
WO2001040841A1 (en) Optical fiber cord and optical fiber cord with plug
JPS62192702A (en) Plastic optical fiber
JPH0610692B2 (en) Plastic fiber optic fiber
JP4353494B2 (en) Optical fiber cable with plug, optical fiber cable, and optical fiber
US11275206B2 (en) Optical fiber coatings
JPS5898704A (en) Optical fiber core
JPS61185708A (en) Plastic optical fiber cable
JPH079497B2 (en) Optical fiber core
JPS6377006A (en) Plastic optical fiber
JP4320659B2 (en) Plastic optical fiber cord and manufacturing method thereof
JPS59228606A (en) Glass fiber for light transmission
JPH0784130A (en) Optical fiber cable