JPS62192283A - Grooving method for ceramics substrate - Google Patents

Grooving method for ceramics substrate

Info

Publication number
JPS62192283A
JPS62192283A JP61030726A JP3072686A JPS62192283A JP S62192283 A JPS62192283 A JP S62192283A JP 61030726 A JP61030726 A JP 61030726A JP 3072686 A JP3072686 A JP 3072686A JP S62192283 A JPS62192283 A JP S62192283A
Authority
JP
Japan
Prior art keywords
ceramic substrate
laser light
processing
work liquid
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61030726A
Other languages
Japanese (ja)
Inventor
Noboru Morita
昇 森田
Shuichi Ishida
修一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61030726A priority Critical patent/JPS62192283A/en
Publication of JPS62192283A publication Critical patent/JPS62192283A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent that a fusion solidified layer is formed on the groove part by laser light projection and to eliminate the reduction in the insulation resistance value by performing a grooving by projecting a Q switch pulse laser light on the ceramic substrate dipped in a work liquid. CONSTITUTION:The laser light L projected from the output mirror 16 of a laser oscillator 5 is led to a sample base 6 from a transmission window 1 via a Y axis scanning mirror 19, X axis scanning mirror 20, condensing lens 21, etc. Since the sample base 6 is provided in the chamber 3 filled up by the work liquid 4, the grooving is performed with the laser light L being projected through the work liquid 4 on the semiconductor wafer substrate 25 of the above of the sample base 6. For the work liquid 4 either one of water, eq. solutions of potassium hydroxide, sodium hydroxide, hydrofluoric acid, sulfuric acid and ammonia is used to circulate between the chamber 3 and liquid tank 7. In this way the groove part having no fusion solidified layer is formed and the reduction in the insulation resistance value can be eliminated.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はセラミックス基板の溝加工方法に係り、特にレ
ーザ光照射による加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for processing grooves on a ceramic substrate, and particularly to a processing method using laser beam irradiation.

(従来の技術) AJ、0. 、 AJO,/Bed、 BeOなどノセ
ラミックス基板の溝加工(スクライビング加工)はダイ
モンドダイサーによって行われているが、溝入れ工具で
ある砥石の交換の不便を解消するために非接触加工が行
えるレーザ加工に一部置き換えられている。
(Prior art) AJ, 0. , AJO, /Bed, BeO, etc. Groove processing (scribing processing) on ceramic substrates is performed using a diamond dicer, but in order to eliminate the inconvenience of replacing the grindstone used as a grooving tool, laser processing can perform non-contact processing. has been partially replaced by

この溝入れのためのレーザ加工は大気中にて行われてい
るが、第3図に示すように溝部(W)に溶融凝固層(M
)が形成されたり、また亀裂が発生してしまう問題があ
った。上記の溶融凝固層はたとえば、基板が窒化アルミ
ニウム(AJN)の場合にはAJとAf、O8の混在し
た不定形物質からなり導電性を有している。このような
溶融凝固層の絶縁抵抗値は5X107Q/m@度であり
、基板本来の絶縁抵抗値5 X 10”07mを著しく
下回り、半導体装置として重要な高い絶縁性が得られな
かった。
Laser processing for this grooving is performed in the atmosphere, but as shown in Figure 3, the molten solidified layer (M
) and cracks may occur. For example, when the substrate is aluminum nitride (AJN), the above-mentioned molten solidified layer is made of an amorphous material in which AJ, Af, and O8 are mixed and has conductivity. The insulation resistance value of such a molten solidified layer was 5×10 7 Q/m@degree, which was significantly lower than the original insulation resistance value of the substrate 5×10”0 7 m, and high insulation, which is important for a semiconductor device, could not be obtained.

(発明が解決しようとする問題点) 本発明は上記したようにレーザ照射による除去物の再凝
固がもたらす悪影響を解消する加工力(問題点を解決す
るための手段と作用)加工液中に浸漬したセラミックス
基板にQスイッチパルスレーザ光を照射するようにした
ものである。
(Problems to be Solved by the Invention) As described above, the present invention provides a processing force (means and action for solving the problem) that eliminates the adverse effects caused by the re-solidification of the material removed by laser irradiation.Immersion in a processing liquid A Q-switched pulsed laser beam is irradiated onto a ceramic substrate.

(実施例) 以下、実施例を示す図面に基いて本発明を説明する。(Example) EMBODIMENT OF THE INVENTION Hereinafter, this invention will be explained based on drawing which shows an Example.

第1図は本発明を実施するための装置の一例で。FIG. 1 shows an example of a device for carrying out the present invention.

透過窓(1)を備え、XYテーブル(2)上にこの透過
窓(1)を上方にして設けられたチャンバ(3)と、こ
のチャンバ(3)内に蓄えられた加工g(4)と、透過
窓(1)を通してチャンバ(3)内にレーザ光(L)を
送るレーザ発振器(5)とを主要素にして構成されてい
る。チャンバ(3)内には透過窓(1)に対間して試料
台(6)が設けられている。またこのチャンバ(3)は
加工液(4)を貯溜している液槽(7)に循環用の供給
管(8)と排出管(9)とを介して接続され、液槽(6
)内に設けられているポンプ叫によって加工液(4)が
チャンバ(3)と液槽(月間を循環するようになってい
る。上記加工液(4)は5wt%の水酸化カリウム(K
OH)水溶液が主に使われるが、これ以外に水、水酸化
ナトリウム(NaOH) 。
A chamber (3) equipped with a transmission window (1) and provided on an XY table (2) with the transmission window (1) facing upward; and processing g (4) stored in this chamber (3). , and a laser oscillator (5) that sends laser light (L) into the chamber (3) through the transmission window (1). A sample stage (6) is provided in the chamber (3) between the transmission window (1). Further, this chamber (3) is connected to a liquid tank (7) storing a machining liquid (4) via a circulation supply pipe (8) and a discharge pipe (9).
) The processing fluid (4) is circulated between the chamber (3) and the liquid tank (monthly) by a pump installed in the chamber (3).The processing fluid (4) contains 5wt% potassium hydroxide (K
(OH) aqueous solution is mainly used, but in addition to this, water and sodium hydroxide (NaOH) are also used.

濃酸(HF)、硫酸(H,S 0番)、アンモニア(H
NOB)等の適当な濃度の水溶液が適用される。一方、
レーザ発振器(5)は]Na : YAG結晶からなる
ロッド圓と、このロッドを励起する励起ランプα2とを
楕円反射面を形成した集光反射1(13)内に収め、上
記ロッド(10)の両側にQスイッチとして音響光学素
子(acoustoptical modulator
 ) (14a)、 (14b)を設け、さらにそれら
の両側に全反射鏡0■、出力鏡a6)からなる光共振器
をロッドα1)と同軸にして設けた構成になっている。
Concentrated acid (HF), sulfuric acid (H, S No. 0), ammonia (H
An aqueous solution of an appropriate concentration such as NOB) is applied. on the other hand,
The laser oscillator (5) includes a rod circle made of Na:YAG crystal and an excitation lamp α2 that excites this rod in a condensing reflection 1 (13) formed with an elliptical reflective surface, and An acousto-optical element (acoustoptical modulator) as a Q-switch is placed on both sides.
) (14a) and (14b) are provided, and an optical resonator consisting of a total reflection mirror 02 and an output mirror a6) is provided coaxially with the rod α1) on both sides thereof.

レーザ発振器(5)の出力鏡αQから出射したレーザ光
(L)はアパーチャ(7)1反射鏡Q8)、Y軸走査ミ
ラー(ILX軸走査ミラー(イ)および集光レンズt2
1)を介し透過窓(1)から試料台(6)へ導かれるよ
うになっている。なお、レーザ発振器(5)は音響光学
素子(14a)、 (14b)のQスイッチ作用により
200nSオーダのパルス幅と5 KHzのパルス繰り
返し数をもつCWレーザ光を出射するようになっている
。また。
The laser beam (L) emitted from the output mirror αQ of the laser oscillator (5) passes through the aperture (7) 1 reflecting mirror Q8), the Y-axis scanning mirror (ILX-axis scanning mirror (A), and the condenser lens t2).
1) from the transmission window (1) to the sample stage (6). The laser oscillator (5) is configured to emit a CW laser beam having a pulse width of the order of 200 nS and a pulse repetition rate of 5 KHz due to the Q-switching action of the acousto-optic elements (14a) and (14b). Also.

X軸走査ミラー(20と集光レンズ(21)との間には
ダイクロイックミラー四が位置合せ用の顕微鏡(ハ)に
対し資料台(6■こおける加工部分の光を反射するよう
に設けられている。さらに、XYテーブル(2)および
Y軸走査ミラーα9とX軸走査ミラー(2Cjとはこれ
らの走査の制御を行う制御装置(財)に接続されている
Between the X-axis scanning mirror (20) and the condenser lens (21), a dichroic mirror (4) is installed to reflect the light from the processed part on the document table (6) to the microscope (C) for positioning. Furthermore, the XY table (2), the Y-axis scanning mirror α9, and the X-axis scanning mirror (2Cj) are connected to a control device (incorporated) that controls the scanning of these mirrors.

上記において、資料台(6)上に厚さQ、5mi前後の
たとえば窒化アルミニウム(AJN)製の基板0■を固
定状態に載直し、XYテーブル(2)によって所定位置
に位置決めする。この位置決め後Y軸走f ミラーαl
、 X軸走査ミラー翰の二次元方向の走査制御によりレ
ーザ光(L)を半導体ウエノ(251上に照射して溝加
工を行う。なお、レーザ光(L)の走査はXYテーブル
(2)のみか、あるいはY軸走査ミラー(1→とX軸走
査ミラー(2Gの走査のどちらか一方で行ってもよい。
In the above, the substrate 0, which is made of aluminum nitride (AJN) and has a thickness Q of approximately 5 mm, is remounted in a fixed state on the document table (6) and positioned at a predetermined position by the XY table (2). After this positioning, Y-axis travel f Mirror αl
, Laser light (L) is irradiated onto the semiconductor wafer (251) to process grooves by two-dimensional scanning control of the X-axis scanning mirror. Note that the laser light (L) scans only on the XY table (2). Alternatively, scanning may be performed using either the Y-axis scanning mirror (1→) or the X-axis scanning mirror (2G scanning).

なお、基板(ハ)の材質は他の材質からなるセラミック
スであってもよい。
Note that the material of the substrate (c) may be ceramics made of other materials.

〔発明の効果〕〔Effect of the invention〕

上記の加工で得られた溝加工部分に導体を形成し絶縁抵
抗値を測定した結果、7 X 10”Ω/mmの値を得
、大気中でレーザ光による溝加工した場合の抵抗値5 
X 10’Ω/rnmあるいは基板(イ)自体の基板と
しての実用抵抗値I X 109Ω/amを大幅に上回
ることができた。これは第2図に示すように溶融凝固層
のない溝部(M)の形成によるもので上記絶縁抵抗値の
低下の解消とともに溝加工後の分割工程にも好影響を与
えることができた。
As a result of forming a conductor on the grooved part obtained by the above processing and measuring the insulation resistance value, a value of 7 x 10"Ω/mm was obtained, and the resistance value when grooved by laser light in the atmosphere was 5.
X 10'Ω/rnm, or the practical resistance value of the substrate (a) itself as a substrate, Ix 109 Ω/am, could be significantly exceeded. This is due to the formation of grooves (M) without a molten solidified layer as shown in FIG. 2, which not only eliminated the above-mentioned decrease in insulation resistance value but also had a favorable effect on the dividing process after groove processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための好適な装置の一例を示
す構成図、第2図は本発明による溝部の断面図、第3図
は従来例で得られた溝部の断面図である。 (3)・・・チャンバ (4)・・・加工液 (5)・・・レーザ発振器 (251・・・基 板 代理人 弁理士  則 近 憲 佑 同     竹 花 喜久男 第1図 第2図    第3図
FIG. 1 is a block diagram showing an example of a suitable apparatus for carrying out the present invention, FIG. 2 is a cross-sectional view of a groove according to the present invention, and FIG. 3 is a cross-sectional view of a groove obtained in a conventional example. (3)...Chamber (4)...Processing fluid (5)...Laser oscillator (251...Substrate agent Patent attorney Noriyuki Chika Yudo Kikuo Takehana Figure 1 Figure 2 Figure 3 figure

Claims (4)

【特許請求の範囲】[Claims] (1)加工液中にセラミックス基板を浸漬する工程と、
上記浸漬中のセラミックス基板に加工液を通してQスイ
ッチパルスレーザ光を照射する工程と、上記照射中セラ
ミックス基板もしくはQスイッチパルスレーザ光の少な
くとも一方を走査する工程とを備えたことを特徴とする
セラミックス基板の溝加工方法。
(1) A step of immersing the ceramic substrate in the processing liquid,
A ceramic substrate characterized by comprising the steps of: irradiating the immersed ceramic substrate with a Q-switch pulsed laser beam through a processing liquid; and scanning at least one of the ceramic substrate during irradiation or the Q-switch pulsed laser beam. groove processing method.
(2)加工液は水、水酸化カリ水溶液、水酸化ナトリウ
ム水溶液、沸酸水溶液、硫酸水溶液、アンモニア水溶液
のいずれか一つから選ばれることを特徴とする特許請求
の範囲第1項記載のセラミックス基板の溝加工方法。
(2) The ceramic according to claim 1, wherein the processing fluid is selected from any one of water, an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, a fluoric acid aqueous solution, a sulfuric acid aqueous solution, and an ammonia aqueous solution. How to make grooves on a board.
(3)Qスイッチパルスレーザ光は200ns区域のパ
ルス幅と5キロヘルツのパルス繰り返し数をもつQスイ
ッチ発振の連続YAGレーザになることを特徴とする特
許請求の範囲第1項記載のセラミックス基板の溝加工方
法。
(3) The groove of the ceramic substrate according to claim 1, wherein the Q-switched pulsed laser light is a continuous YAG laser of Q-switched oscillation having a pulse width in the 200 ns area and a pulse repetition rate of 5 kHz. Processing method.
(4)半導体ウェハは窒化アルミニウムからなることを
特徴とする特許請求の範囲第1項記載のセラミックス基
板の溝加工方法。
(4) The method for machining grooves in a ceramic substrate according to claim 1, wherein the semiconductor wafer is made of aluminum nitride.
JP61030726A 1986-02-17 1986-02-17 Grooving method for ceramics substrate Pending JPS62192283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61030726A JPS62192283A (en) 1986-02-17 1986-02-17 Grooving method for ceramics substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030726A JPS62192283A (en) 1986-02-17 1986-02-17 Grooving method for ceramics substrate

Publications (1)

Publication Number Publication Date
JPS62192283A true JPS62192283A (en) 1987-08-22

Family

ID=12311658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030726A Pending JPS62192283A (en) 1986-02-17 1986-02-17 Grooving method for ceramics substrate

Country Status (1)

Country Link
JP (1) JPS62192283A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228284A (en) * 1990-04-06 1992-08-18 Internatl Business Mach Corp <Ibm> Method and apparatus for laser etching
US6262390B1 (en) * 1998-12-14 2001-07-17 International Business Machines Corporation Repair process for aluminum nitride substrates
EP1341211A2 (en) * 2002-02-18 2003-09-03 Infineon Technologies AG Process and apparatus for light inducing chemical treatment of a workpiece
DE102013002977B3 (en) * 2013-02-18 2013-12-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Three-dimensional structuring component surfaces involves directing laser beam on component surface, wetting surface using liquid or immersing, and coupling microwaves from microwave source in liquid in which irradiation is carried out

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228284A (en) * 1990-04-06 1992-08-18 Internatl Business Mach Corp <Ibm> Method and apparatus for laser etching
US6262390B1 (en) * 1998-12-14 2001-07-17 International Business Machines Corporation Repair process for aluminum nitride substrates
EP1341211A2 (en) * 2002-02-18 2003-09-03 Infineon Technologies AG Process and apparatus for light inducing chemical treatment of a workpiece
EP1341211A3 (en) * 2002-02-18 2006-04-05 Infineon Technologies AG Process and apparatus for light inducing chemical treatment of a workpiece
DE102013002977B3 (en) * 2013-02-18 2013-12-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Three-dimensional structuring component surfaces involves directing laser beam on component surface, wetting surface using liquid or immersing, and coupling microwaves from microwave source in liquid in which irradiation is carried out

Similar Documents

Publication Publication Date Title
Meijer et al. Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons
US4539050A (en) Process for the manufacture of semiconductor wafers with a rear side having a gettering action
JP4050534B2 (en) Laser processing method
JP4509573B2 (en) Semiconductor substrate, semiconductor chip, and semiconductor device manufacturing method
US20060091126A1 (en) Ultraviolet laser ablative patterning of microstructures in semiconductors
JP2002192369A (en) Laser beam machining method and laser beam machining device
KR20070025990A (en) Method for processing inorganic materials
TW525240B (en) Ultraviolet laser ablative patterning of microstructures in semiconductors
JP2003088973A (en) Laser beam machining method
JPS62192283A (en) Grooving method for ceramics substrate
JPH10190117A (en) Laser beam machining device
JP5967913B2 (en) Laser processing apparatus, laser processing method, and inkjet head substrate
JP2003088974A (en) Laser beam machining method
JP3990711B2 (en) Laser processing equipment
JP2002018586A (en) Method of laser beam machining and device for laser beam machining
JP2005167281A (en) Method for manufacturing semiconductor chip
JP3412416B2 (en) Glass marking method
JP4633335B2 (en) Laser processing apparatus and laser processing method
JP2003088975A (en) Laser beam machining method
JP2020200237A (en) Etching liquid for glass and method for manufacturing glass substrate
CN1331729C (en) Etching process
JPS6394657A (en) Method and apparatus of laser processing
JP2009045637A (en) Laser beam machining apparatus
JP2006205259A (en) Method for laser beam machining
JP2004074211A (en) Laser beam machining method