JPS62192271A - Plasma torch - Google Patents

Plasma torch

Info

Publication number
JPS62192271A
JPS62192271A JP61032921A JP3292186A JPS62192271A JP S62192271 A JPS62192271 A JP S62192271A JP 61032921 A JP61032921 A JP 61032921A JP 3292186 A JP3292186 A JP 3292186A JP S62192271 A JPS62192271 A JP S62192271A
Authority
JP
Japan
Prior art keywords
electrode
magnetic field
nozzle
cylindrical
solenoid coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61032921A
Other languages
Japanese (ja)
Inventor
Takayuki Kono
隆之 河野
Shinsuke Oba
大場 真助
Hiroshi Fujimura
藤村 浩史
Tatsuro Fukae
深江 達郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61032921A priority Critical patent/JPS62192271A/en
Publication of JPS62192271A publication Critical patent/JPS62192271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To increase the strength of the magnetic field which acts on a cylindrical electrode and to turn an arc point at high speed stably on the cylindrical electrode by providing a solenoid coil on the outer cylindrical nozzle and by providing a ferromagnetic body on the electrode support cylinder. CONSTITUTION:A plasma arc P is rotated on a cylindrical electrode 9 by generating a magnetic field G2 on the electrode 9 part by passing a current from a power source 27 to the annular solenoid coil 26 which is provided on an outer cylinder nozzle 1. Namely the arc point is rotated on the cylindrical electrode 9 with Fleming's left hand rule by the radial magnetic line of force of the magnetic field G2 obtd. by passing the current to the solenoid coil 26. Since a ferromagnetic body 24 is provided on the electrode support cylinder 8 near the electrode 9, the magnetic flux density at the electrode 9 part is increased with the convergence of the magnetic line of force of the magnetic field G2 and the rotating effect of the arc point is made highly efficient.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は鋼板等の被切断材を高速で切断するトランスフ
ァ型プラズマトーチに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a transfer type plasma torch for cutting materials such as steel plates at high speed.

〈従来の技術〉 本発明者らは、被切断材を切断するプラズマトーチにつ
いて電極の耐用時間の長期化を企図したものを既に開発
した。
<Prior Art> The present inventors have already developed a plasma torch for cutting a material to be cut, which is intended to extend the service life of the electrode.

の 第4図はこのプラズマトーチ縦断面図である。図示のよ
うに、先端に向って漏斗状に絞られた外筒ノズル1はそ
の外周の水冷外筒2と水密に連結されており、外筒ノズ
ル1と水冷外筒2どの間の空所に供給パイプ3から冷却
水を供給すると共に該空所内の加熱された冷却水を排出
パイプ4から排出することにより、外筒ノズル1は後述
する切断作業時に冷却されるようになっている。また外
筒ノズル1の」二部には多数の作動ガス噴出口6が設け
られており、これら噴出口6にチャンバ5を介して連通
した作動ガス供給パイプ7からアルゴン、水素、空気、
酸素等の作動ガスを外筒ノズル1内へ供給するようにな
っている。
FIG. 4 is a longitudinal sectional view of this plasma torch. As shown in the figure, the outer cylinder nozzle 1, which is narrowed into a funnel shape toward the tip, is watertightly connected to the water-cooled outer cylinder 2 on its outer periphery. By supplying cooling water from the supply pipe 3 and discharging the heated cooling water in the space from the discharge pipe 4, the outer cylinder nozzle 1 is cooled during the cutting operation to be described later. Further, a large number of working gas nozzles 6 are provided in the second part of the outer cylinder nozzle 1, and a working gas supply pipe 7 communicating with these nozzles 6 via a chamber 5 supplies argon, hydrogen, air, etc.
A working gas such as oxygen is supplied into the outer cylinder nozzle 1.

外筒ノズル1内には先端に電極支持筒8を備えた通電パ
イプ10が同軸に設けられており、通電パイプ10及び
電極支持筒8はそれぞれ環状の電気絶縁体14.15を
介して外筒ノズル1内に支持されている。尚、絶縁体1
5にはスパイラル状に多数の通孔15aが設けられてお
り、作動ガス噴出口6を通して供給された作動カスを該
通孔15aを通して旋回させて外筒ノズル1の先端へ供
給するようになっている。
Inside the outer cylinder nozzle 1, a current-carrying pipe 10 having an electrode support cylinder 8 at its tip is provided coaxially. It is supported within the nozzle 1. In addition, insulator 1
5 is provided with a large number of through holes 15a in a spiral shape, and the working waste supplied through the working gas jet port 6 is rotated through the through holes 15a and supplied to the tip of the outer cylinder nozzle 1. There is.

電極支持筒8の先端にはタングステン、ハフニウム、ジ
ルコニウム等からなる円筒形電極9が設けられており、
また、電極支持筒8内には後述するように電極部に磁界
G1を生じさせて電極9上でプラズマアークを回転させ
る永久磁石20が設けられている。
A cylindrical electrode 9 made of tungsten, hafnium, zirconium, etc. is provided at the tip of the electrode support tube 8.
Furthermore, a permanent magnet 20 is provided in the electrode support tube 8 to generate a magnetic field G1 in the electrode portion and rotate the plasma arc on the electrode 9, as will be described later.

前記通電パイプ10内には同軸に冷却水導管11が設け
られており、冷却水導管11に連結された冷却水供給パ
イプ12から冷却水を供給し、通電パイプ10に連結さ
れた冷却水排出パイプ13から加熱された冷却水を排出
することにより、後述する切断作業時に円筒形電極9を
冷却する。尚、16は通電パイプ10と被切断月18と
の間に介装されたプラズマ電源、17は通電パイプ10
と外筒ノズル1との間に介装されたパイロットアーク電
源である。
A cooling water conduit 11 is provided coaxially within the energizing pipe 10, and cooling water is supplied from a cooling water supply pipe 12 connected to the energizing pipe 11, and a cooling water discharge pipe connected to the energizing pipe 10. By discharging heated cooling water from the cylindrical electrode 13, the cylindrical electrode 9 is cooled during cutting operations to be described later. In addition, 16 is a plasma power supply interposed between the current-carrying pipe 10 and the moon 18 to be cut, and 17 is the current-carrying pipe 10.
This is a pilot arc power supply interposed between the cylinder nozzle 1 and the cylinder nozzle 1.

上記構成のプラズマトーチの作用を説明する。まず、パ
イロットアーク電源17により外筒ノズル1と電極9と
の間に電圧を印加して外筒ノズル1と電極9との間に小
電流のパイロットアークを発生させる。また、これと同
時に、作動ガス供給パイプ7から作動ガスをチャンバ5
、作動ガス噴出口6、通孔15aを通してパイロットア
ーク発生点まで供給する。これによって1通孔15aで
旋回流とされた作動ガスはパイロットアークの熱により
旋回プラズマ流となり、パイロンドプラズマとして外筒
ノズル1の先端より下方へ伸びる。
The operation of the plasma torch configured as described above will be explained. First, a voltage is applied between the outer cylinder nozzle 1 and the electrode 9 by the pilot arc power supply 17 to generate a small current pilot arc between the outer cylinder nozzle 1 and the electrode 9. At the same time, the working gas is supplied from the working gas supply pipe 7 to the chamber 5.
, the working gas is supplied to the pilot arc generation point through the nozzle 6 and the through hole 15a. As a result, the working gas that has been turned into a swirling flow in the first through hole 15a becomes a swirling plasma flow due to the heat of the pilot arc, and extends downward from the tip of the outer cylinder nozzle 1 as a pyloned plasma.

そして、このパイロ・ントプラズマが被切断材18に接
した後に、パイロットアーク電源17からプラズマ電源
1Gに切換えて電極9と被切断材18との間に電圧を印
加し、アークを電極9と被切断材18との間に移行させ
て大電流(100〜25OA)のプラズマアークPを電
極9と被切断材18との間に発生させ、この被切断材1
8を切断する。この時、永久磁石20の磁界G1による
磁力線の方向は切断電流の方向と常に交差しているため
、フレミングの左手の法則によってアーク点は円筒形電
極9上で回転することとなる。従って、円筒形電極9は
均一に加熱されることとなるため、この電極9は冷却水
供給パイプ12から供給された冷却水により均一に冷却
されることとなる。
After this pilot plasma comes into contact with the material to be cut 18, the pilot arc power source 17 is switched to the plasma power source 1G, a voltage is applied between the electrode 9 and the material to be cut 18, and the arc is applied between the electrode 9 and the material to be cut. A large current (100 to 25 OA) plasma arc P is generated between the electrode 9 and the workpiece 18, and the workpiece 18 is moved between the electrode 9 and the workpiece 18.
Cut 8. At this time, since the direction of the magnetic lines of force due to the magnetic field G1 of the permanent magnet 20 always crosses the direction of the cutting current, the arc point rotates on the cylindrical electrode 9 according to Fleming's left hand rule. Therefore, the cylindrical electrode 9 is uniformly heated, and therefore, the electrode 9 is uniformly cooled by the cooling water supplied from the cooling water supply pipe 12.

〈発明が解決しようとする問題点〉 」二部のように、切断作業時に円筒形電極9上のアーク
点を回転させると、電極9の加熱状態が均一化され、電
極9の消耗を軽減して耐用時間を長くし、切断作業能率
を向」ニさせることができる。しかしながら、この効果
をもたらす永久磁石20は比較的小さな電極支持筒8内
に設けられているため、この永久磁石20の寸法が小さ
くなって円筒形電極9先端での磁界強度が小さい。この
ため、アーク点の回転が十分に行われなかったり、或い
は、プラズマアークの作る磁界により永久磁石20の磁
力が減少して上記効果が次第に薄れるという不具合があ
った。また、永久磁石20を超高性能磁石にすることも
考えられるが、コスト面において非常な不利がある。
<Problems to be Solved by the Invention> As shown in Part 2, when the arc point on the cylindrical electrode 9 is rotated during the cutting operation, the heating state of the electrode 9 is made uniform and wear and tear on the electrode 9 is reduced. This can extend the service life and improve cutting efficiency. However, since the permanent magnet 20 that provides this effect is provided within the relatively small electrode support tube 8, the size of the permanent magnet 20 is small and the magnetic field strength at the tip of the cylindrical electrode 9 is small. For this reason, there have been problems in that the arc point is not sufficiently rotated, or the magnetic field of the permanent magnet 20 is reduced by the magnetic field created by the plasma arc, and the above-mentioned effect is gradually weakened. It is also possible to use an ultra-high performance magnet as the permanent magnet 20, but this is very disadvantageous in terms of cost.

本発明は上記事情に鑑みなされたもので、円筒形電極上
の磁界強度を大きくすると共に安定化したプラズマトー
チを提供することを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a plasma torch that increases the magnetic field strength on a cylindrical electrode and is stabilized.

く問題点を解決するための手段〉 本願の第1の発明に係るプラズマトーチは、先端に円筒
形電極を有する電極支持筒の外周に、該電極支持筒と同
軸に先端に向って漏斗状に絞られた外筒ノズルを設け、
該外筒ノズルから作動ガスを供給しつつ前記電極と被切
断材との間にプラズマアークを発生させて該被切断材を
切断するプラズマトーチにおいて、前記電極部に作用す
る磁界を生じさせて該電極上でプラズマアークを回転さ
せるソレノイドコイルを前記外筒ノズルに設けたことを
特徴とする。
Means for Solving Problems〉 The plasma torch according to the first invention of the present application has a cylindrical electrode on the outer periphery of the electrode support cylinder having a cylindrical electrode at the tip, and a funnel-like shape extending toward the tip coaxially with the electrode support cylinder. Equipped with a narrowed outer cylinder nozzle,
In a plasma torch that cuts a material by generating a plasma arc between the electrode and a material to be cut while supplying working gas from the outer cylindrical nozzle, a magnetic field acting on the electrode portion is generated to cut the material. A solenoid coil for rotating a plasma arc on an electrode is provided in the outer cylinder nozzle.

また、本願の第2の発明に係るプラズマトーチは、先端
に円筒形電極を有する電極支持筒の外周に、該電極支持
筒と同軸に先端に向って漏斗状に絞られた外筒ノズルを
設け、該外筒ノズルから作動ガスを供給しつつ前記電極
と被切断材との間にプラズマアークを発生させて該被切
断材を切断するプラズマトーチにおいて、前記電極部に
作用する磁界を生じさせて該電極上でプラズマアークを
回転させるソレノイドコイルを前記外筒ノズルに設ける
と共に、前記電極支持筒に前記ソレノイドコイルにより
作られる磁力線を収束させて前記電極部の磁束密度を高
める強磁性体を設けたことを特徴とする。
Further, in the plasma torch according to the second invention of the present application, an outer tube nozzle is provided on the outer periphery of the electrode support tube having a cylindrical electrode at the tip, and is coaxial with the electrode support tube and narrowed in a funnel shape toward the tip. , in a plasma torch that generates a plasma arc between the electrode and the material to be cut while supplying working gas from the outer cylindrical nozzle to cut the material to be cut, generating a magnetic field acting on the electrode portion; A solenoid coil for rotating a plasma arc on the electrode is provided in the outer tube nozzle, and a ferromagnetic material is provided in the electrode support tube to converge the lines of magnetic force created by the solenoid coil and increase the magnetic flux density of the electrode portion. It is characterized by

く作   用〉 設置スペースが大きくとれる外筒ノズル側に設けた大型
のソレノイドコイルにより、円筒形電極部での磁界強度
を十分な大きさのものとすると共に安定化を図る。
Function: The large solenoid coil installed on the outer cylindrical nozzle side, which requires a large installation space, ensures that the magnetic field strength at the cylindrical electrode part is sufficiently large and stabilized.

く実 施 例〉 本発明の実施例を図面に基づいて説明する。尚、前述し
た従来のプラズマトーチと同一部分には同一符号を付し
て重複する説明は省略する。
Embodiments Examples of the present invention will be described based on the drawings. Incidentally, the same parts as those of the conventional plasma torch described above are given the same reference numerals, and redundant explanation will be omitted.

第1図は本発明の一実施例に係るプラズマトーチの縦断
面図、第2図はそのII −II矢視断面図である。図
示のように、本実施例のプラズマトーチは、従来より設
けていた棒状の永久磁石20の代りに強磁性体24を設
け、外筒ノズルlに環状のソレノイドコイル28を設け
ている。尚、第1図中の27はこのソレノイドコイル2
Bに電流を流す電源である。このソレノイドコイル26
も、永久磁石20と同様に、円筒形電極9部に磁界G2
を生じさせて電極9上でプラズマアークを回転させるも
のであり、ソレノイドコイル26に電流を流すことによ
り得られる磁界G2の放射状の磁力線でフレミングの左
手の法則によりアーク点を円筒形電極9上で回転させる
。ここで、本実施例においては、電極9近傍の電極支持
筒8に強磁性体24を設けているため、磁界G2の磁力
線が収束されて電極9部での磁束密度が高められており
、上記アーク点回転効果の高効率化が図られている。従
って、円筒形電極9の加熱状態を確実且つ十分に均一化
して、該電極9の耐用時間を長期化し、切断作業能率を
向上することができる。尚、ソレノイドコイル26へ供
給する電流値を適当に調整することによりアーク点の回
転数を任意に調節することができるため、切断電流に応
じてアーク点の回転速度を調節することができ、プラズ
マトーチの使用電流範囲が拡大される。
FIG. 1 is a longitudinal cross-sectional view of a plasma torch according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line II--II. As shown in the figure, the plasma torch of this embodiment is provided with a ferromagnetic material 24 in place of the bar-shaped permanent magnet 20 provided conventionally, and an annular solenoid coil 28 is provided in the outer cylindrical nozzle l. In addition, 27 in Fig. 1 is this solenoid coil 2.
This is a power source that allows current to flow through B. This solenoid coil 26
Similarly to the permanent magnet 20, a magnetic field G2 is applied to the cylindrical electrode 9.
The plasma arc is rotated on the electrode 9 by causing a current to flow through the solenoid coil 26, and the radial lines of magnetic force of the magnetic field G2 are used to rotate the arc point on the cylindrical electrode 9 according to Fleming's left-hand rule. Rotate. Here, in this embodiment, since the ferromagnetic material 24 is provided in the electrode support tube 8 near the electrode 9, the lines of magnetic force of the magnetic field G2 are converged and the magnetic flux density at the electrode 9 portion is increased. The arc point rotation effect is highly efficient. Therefore, the heating state of the cylindrical electrode 9 can be reliably and sufficiently uniformized, the service life of the electrode 9 can be extended, and the cutting efficiency can be improved. Note that by appropriately adjusting the current value supplied to the solenoid coil 26, the rotation speed of the arc point can be adjusted arbitrarily, so the rotation speed of the arc point can be adjusted according to the cutting current, and the plasma The torch's usable current range is expanded.

第3図は本発明の他の一実施例に係るプラズマトーチの
縦断面図である。図示のように、本実施例のプラズマト
ーチは棒状の強磁性体24を廃止し、環状のソレノイド
コイル28のみを外筒ノズル1に設けている。本実施例
ではソレノイドコイル2Bによる磁界G2の磁力線でフ
レミングの左手の法則によりアーク点を円筒形電極9上
で回転させるが、この環状のソレノイドコイル2Bは前
記棒状の永久磁石20よりはるかに大型であるため、強
磁性体24が無くともアーク点回転効果を十分に達成す
ることができる。
FIG. 3 is a longitudinal sectional view of a plasma torch according to another embodiment of the present invention. As shown in the figure, in the plasma torch of this embodiment, the rod-shaped ferromagnetic material 24 is eliminated, and only an annular solenoid coil 28 is provided in the outer cylinder nozzle 1. In this embodiment, the arc point is rotated on the cylindrical electrode 9 by Fleming's left-hand rule using the lines of magnetic force of the magnetic field G2 generated by the solenoid coil 2B, but this annular solenoid coil 2B is much larger than the rod-shaped permanent magnet 20. Therefore, the arc point rotation effect can be sufficiently achieved even without the ferromagnetic material 24.

〈発明の効果〉 本願の発明によれば、外筒ノズルに設けた大型のソレノ
イドコイル更には電極支持筒に設けた強磁性体により、
円筒形電極に作用する磁界強度を大幅に増加させること
ができるため、円筒形電極」−でアーク点を常に高速で
且つプラズマアークにより発生する磁界にも影響されず
に安定して回転させることができる。従って、円筒形電
極の1耐用時間を安定して長くすることができて作業能
率を向上させることができると共に、大幅なコスト増を
生ずることなく十分な磁界強度を得ることができる。
<Effects of the Invention> According to the invention of the present application, the large solenoid coil provided in the outer tube nozzle and the ferromagnetic material provided in the electrode support tube,
Since the magnetic field strength acting on the cylindrical electrode can be greatly increased, the cylindrical electrode can constantly rotate the arc point at high speed and stably without being affected by the magnetic field generated by the plasma arc. can. Therefore, it is possible to stably lengthen the one service life of the cylindrical electrode, improve work efficiency, and obtain sufficient magnetic field strength without significantly increasing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るプラズマトーチの縦断
面図、第2図はそのII −II矢視断面図、第3図は
本発明の他の一実施例に係るプラズマト−チの縦断面図
、第4図は従来のプラズマトーチの縦断面図である。 図  面  中、 1は外筒ノズル、 8は電極支持筒、 9は円筒形電極、 18は被切断材、 24は強磁性体、 26はソレノイドコイル、 G2は磁界、 Pはプラズマアークである。
FIG. 1 is a longitudinal cross-sectional view of a plasma torch according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along arrow II-II, and FIG. 3 is a longitudinal cross-sectional view of a plasma torch according to another embodiment of the present invention. FIG. 4 is a longitudinal sectional view of a conventional plasma torch. In the drawing, 1 is an outer cylinder nozzle, 8 is an electrode support tube, 9 is a cylindrical electrode, 18 is a material to be cut, 24 is a ferromagnetic material, 26 is a solenoid coil, G2 is a magnetic field, and P is a plasma arc.

Claims (2)

【特許請求の範囲】[Claims] (1)先端に円筒形電極を有する電極支持筒の外周に、
該電極支持筒と同軸に先端に向って漏斗状に絞られた外
筒ノズルを設け、該外筒ノズルから作動ガスを供給しつ
つ前記電極と被切断材との間にプラズマアークを発生さ
せて該被切断材を切断するプラズマトーチにおいて、前
記電極部に作用する磁界を生じさせて該電極上でプラズ
マアークを回転させるソレノイドコイルを前記外筒ノズ
ルに設けたことを特徴とするプラズマトーチ。
(1) On the outer periphery of the electrode support tube that has a cylindrical electrode at the tip,
An outer tube nozzle constricted into a funnel shape toward the tip is provided coaxially with the electrode support tube, and a plasma arc is generated between the electrode and the material to be cut while supplying working gas from the outer tube nozzle. The plasma torch for cutting the material to be cut is characterized in that the outer cylindrical nozzle is provided with a solenoid coil that generates a magnetic field acting on the electrode portion and rotates a plasma arc on the electrode.
(2)先端に円筒形電極を有する電極支持筒の外周に、
該電極支持筒と同軸に先端に向って漏斗状に絞られた外
筒ノズルを設け、該外筒ノズルから作動ガスを供給しつ
つ前記電極と被切断材との間にプラズマアークを発生さ
せて該被切断材を切断するプラズマトーチにおいて、前
記電極部に作用する磁界を生じさせて該電極上でプラズ
マアークを回転させるソレノイドコイルを前記外筒ノズ
ルに設けると共に、前記電極支持筒に前記ソレノイドコ
イルにより作られる磁力線を収束させて前記電極部の磁
束密度を高める強磁性体を設けたことを特徴とするプラ
ズマトーチ。
(2) On the outer periphery of the electrode support tube that has a cylindrical electrode at the tip,
An outer tube nozzle constricted into a funnel shape toward the tip is provided coaxially with the electrode support tube, and a plasma arc is generated between the electrode and the material to be cut while supplying working gas from the outer tube nozzle. In the plasma torch for cutting the material to be cut, the outer tube nozzle is provided with a solenoid coil that generates a magnetic field acting on the electrode section to rotate a plasma arc on the electrode, and the solenoid coil is provided in the electrode support tube. 1. A plasma torch characterized by comprising a ferromagnetic material that converges lines of magnetic force created by the ferromagnetic material and increases the magnetic flux density of the electrode portion.
JP61032921A 1986-02-19 1986-02-19 Plasma torch Pending JPS62192271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61032921A JPS62192271A (en) 1986-02-19 1986-02-19 Plasma torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61032921A JPS62192271A (en) 1986-02-19 1986-02-19 Plasma torch

Publications (1)

Publication Number Publication Date
JPS62192271A true JPS62192271A (en) 1987-08-22

Family

ID=12372366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61032921A Pending JPS62192271A (en) 1986-02-19 1986-02-19 Plasma torch

Country Status (1)

Country Link
JP (1) JPS62192271A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121300A (en) * 1988-10-31 1990-05-09 Fuji Denpa Koki Kk Arc torch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121300A (en) * 1988-10-31 1990-05-09 Fuji Denpa Koki Kk Arc torch

Similar Documents

Publication Publication Date Title
KR930005953B1 (en) Plasma arc torch starting process having separated generated flows of non-oxidizing and oxidizing gas
JP2577311B2 (en) Torch equipment for chemical processes
US4748312A (en) Plasma-arc torch with gas cooled blow-out electrode
US6133542A (en) Process for coating or welding easily oxidized materials and plasma torch for carrying out this process
JP3783014B2 (en) Plasma arc torch and method of operating the same
JPH08319552A (en) Plasma torch and plasma thermal spraying device
US20150027997A1 (en) Welding torch, welding apparatus and method of welding using hollow electrode and filler material
US4587397A (en) Plasma arc torch
CA2303546A1 (en) Tapered electrode for plasma arc cutting torches
CA1221746A (en) Thermal plasma torches
JP2002231498A (en) Composite torch type plasma generating method and device
JPS6340299A (en) Electrode construction of non-transferring plasma torch
JP3198727U (en) Plasma cutting torch electrode
AU651302B2 (en) Arc plasma torch having tapered-bore electrode
JPS62192271A (en) Plasma torch
JP3268235B2 (en) Molten steel heating tundish
JPS63154272A (en) Plasma torch
JPS62192270A (en) Plasma torch
JP3138578B2 (en) Multi-electrode plasma jet torch
JPS63154273A (en) Plasma torch
JPS6330181A (en) Plasma torch
DE69919018D1 (en) IMPROVED WELDING MACHINE AND WELDING PROCESS
JPH06200360A (en) Plasma electrode material
JPH10189290A (en) Plasma torch
JPS62118977A (en) Plasma torch