JPS62191903A - Work robot - Google Patents

Work robot

Info

Publication number
JPS62191903A
JPS62191903A JP3286986A JP3286986A JPS62191903A JP S62191903 A JPS62191903 A JP S62191903A JP 3286986 A JP3286986 A JP 3286986A JP 3286986 A JP3286986 A JP 3286986A JP S62191903 A JPS62191903 A JP S62191903A
Authority
JP
Japan
Prior art keywords
axis
robot
action
slew
work tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3286986A
Other languages
Japanese (ja)
Inventor
Hiroshi Okumura
寛 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3286986A priority Critical patent/JPS62191903A/en
Publication of JPS62191903A publication Critical patent/JPS62191903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To remarkably diversify the attitude actions of a tool, to enhance its control function, to eliminate the interruption and stop of work and to improve the work efficiency by incorporating a slope action axis between the slew action axis of a robot wrist part and a rotational action axis. CONSTITUTION:The slew action axis 14 to slew and operate a welding torch (a) is continuously installed on the end of a robot arm, that is, the end of a vertical action axis 13. The slope action axis 15 to incliningly operating the welding torch (a) is perpendicularly disposed on the end of the slew action shaft 14, and the rotational action axis 16 with a work tool holder 17 to rotate and operate said torch (a) is protrusively disposed perpendicular to both axis 14 and 15, thereby constituting the robot wrist part. A computer 23 sots out the actions of the axis 14 and 15 for positional direction due to the slew of the torch (a), proceeding and reteating angles due to inclination and an inclination angle due to rotation, and controls the axis 14 and 15 through numerical analysis using coordinate inversion. The computer calculates the angles of respective shafts, selects answers which can switch the shaft angle in an attitude at the leading edge to that in an attitude at the tailing edge, and issues an action command to a robot main body 20.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アーク溶接などの各種作業に適用される作業
用ロボットに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a working robot applied to various works such as arc welding.

(従来の技術) アーク溶接作業用ロボットについて従来例を説明すると
、ロボットアームの端部に設けられたロボット手首部で
保持、操作される溶接トーチ(作業具)の姿勢とその先
端の描く軌跡を溶接線に対して連続的に変化させる制御
が要求されるが、該要求に対してロボットの各動作軸の
ストロークが有限であるため、作業者が、ワークの溶接
線(作業位置)を見て、その溶接線に対する終了時の溶
接トーチ姿勢および途中の姿勢を想定し、そのスタート
時の姿勢を決めて教示(ティーチング)を実施している
ため、ワークを教示時の状態にセットする位置決めに神
経を使うことになり、作業者の技量により教示作業時間
に大幅な差が生じロボット稼働率に影響をもたらしてい
る。
(Prior art) To explain a conventional example of a robot for arc welding work, the posture of a welding torch (work tool) held and operated by the robot wrist provided at the end of the robot arm and the trajectory drawn by its tip are Continuously changing control is required for the welding line, but since the stroke of each axis of motion of the robot is finite in response to this requirement, the operator has to control the welding line (working position) of the workpiece. , the welding torch position at the end of the welding line and the position during the welding line are assumed, and the starting position is determined before teaching (teaching). As a result, there is a large difference in teaching time depending on the skill of the worker, which has an impact on the robot's operating rate.

また、ソフトウェアの充実によって座標変換機能などを
有する制御機器が用いられ、ワークセット時の位置ずれ
を検知し、教示データをワークのセット状態に合せてシ
フトすることにより制御されるロボットが現れているが
、ワークが平行移動している場合は格別の支障がないと
しても、ワークが回動ずれを起している場合は、溶接線
の始端と終端において溶接トーチの姿勢が教示時と変化
しロボット動作軸のストローク範囲をはみ出して、作業
不能となるケースかありその機能を有効に使用できない
場合が多い。
In addition, with the advancement of software, control devices with coordinate conversion functions are being used, and robots that are controlled by detecting positional deviation when setting a workpiece and shifting teaching data to match the setting state of the workpiece have appeared. However, if the workpiece is moving in parallel, there will be no particular problem, but if the workpiece is rotationally misaligned, the posture of the welding torch at the start and end of the welding line will change from when it was taught, causing the robot to There are cases where the stroke range of the operating axis is exceeded, rendering work impossible, and the function cannot be used effectively.

一方、ストローク範囲のはみ出しを防止するために、動
作軸のストロークを大きくする方法も考えられるが、溶
接トーチに連なる溶接ワイヤのコンジットチュプの引き
蜘しを考えると設計上自ら限度があって経済的にも有効
な方法とは言えない。
On the other hand, in order to prevent the stroke from extending beyond the stroke range, it is possible to increase the stroke of the operating axis, but considering the tension of the welding wire conduit that connects to the welding torch, there is a limit due to the design and it is not economical. It cannot be said that it is an effective method.

アーク溶接作業用ロボットの従来例を第6図によって説
明すると、水平作動軸(1)と、該水平作動軸(1)に
配設された直交方向の水平作動軸(2)、および該水平
作動箱(2)の端部に配設された垂直方向の上下作動軸
(3)からなるロボットアーム(1,2,3)において
、該ロボットアームの端部に、溶接トーチ(作業共)(
α)を旋回操作する旋回動作軸(4)を連設し、該旋回
動作軸(4)の先端部に溶接トーチ(α)を回転操作し
て傾斜させる回転動作軸(6)を直角に突設して、回転
動作軸(6)先端の作業具保持器(力に保持された溶接
トーチ(α)は、ロボットアームによる前後、左右の水
平動作、上下動作とともに、ロボット手首部による旋回
動作(104) 、回転動作(106)により、例えば
、第7図に示すワーク(b)の溶接線(C)に指向され
それに沿って移動制御される。
A conventional example of an arc welding robot will be explained with reference to FIG. 6, which includes a horizontal operating shaft (1), a horizontal operating shaft (2) disposed in the orthogonal direction to the horizontal operating shaft (1), and In a robot arm (1, 2, 3) consisting of a vertical up-and-down operating shaft (3) disposed at the end of a box (2), a welding torch (for both work) (
A rotating shaft (4) for rotating the welding torch (α) is arranged in series, and a rotating shaft (6) for rotating and tilting the welding torch (α) projects at a right angle at the tip of the rotating shaft (4). The welding torch (α), which is held by the work tool holder (force) at the tip of the rotational movement axis (6), is moved forward and backward, horizontally and vertically by the robot arm, and rotates by the robot wrist ( 104), and by the rotational movement (106), it is directed to, for example, the welding line (C) of the workpiece (b) shown in FIG. 7, and the movement is controlled along it.

また、第8図(A)に示すワーク(b)のセット位置に
対して教示データにより溶接トーチ(α)が実線位置か
ら鎖線位置へ矢示のような姿勢制御で移動されるが、実
際の作業時には、第8図(B)に示すワーク(7)のよ
うにα度回動ずれのセットになることがある。
In addition, the welding torch (α) is moved from the solid line position to the chain line position by posture control as shown by the arrow according to the teaching data with respect to the set position of the workpiece (b) shown in FIG. 8(A), but in actual During work, the set may be rotated by α degrees as shown in the workpiece (7) shown in FIG. 8(B).

(発明が解決しようとする問題点) 従来の前記作業用ロボットにおいては、ロボットに対す
る教示時(ティーチング)と異なる作動時のワークずれ
等によりロボットに対する動作範囲が変化し、これに伴
って生じる動作軸のストローク範囲外れが原因罠なって
、ロボットが停止し、作業が中断されるなどの問題点が
ある。
(Problems to be Solved by the Invention) In the above-mentioned conventional work robot, the range of motion for the robot changes due to workpiece shift, etc. during operation different from the time of teaching to the robot, and the movement axis that occurs due to this changes. There are problems such as the robot becoming trapped due to being out of the stroke range, causing the robot to stop and the work to be interrupted.

(問題点の解決手段) 本発明は、前記のような問題点に対処するためのもので
あって、ロボットアームの端部に連設され作業具を旋回
操作する旋回動作軸と、該旋回動作軸の端部に直角に配
設され前記作業具を傾斜操作する傾斜動作軸、および該
傾斜動作軸罠突設されて前記両軸に対し直角に配置され
前記作業具を回転操作する作業具保持器付き回転動作軸
を具備したロボット手首部に構成したことにより、作業
具の動作姿勢を多様化し、前記各軸を前記作業具の旋回
による位置方向と、#l斜による前進・後退角および回
転によるMfP+角に使い分けて座標変換による数値解
析で制御し、該制御によってワークに対する作業具の動
作連続性を判定して選択制御する作業具制御装置を付設
したこと忙より、ワークのずれ等に対する制御性能を高
めて前記のような問題点を解消している。
(Means for Solving Problems) The present invention is intended to solve the above-mentioned problems. a tilting operation shaft disposed perpendicularly to the end of the shaft for tilting the work implement; and a work implement holder protruding from the tilting operation shaft and disposed perpendicular to the axes for rotationally operating the work implement. By configuring the robot wrist with a rotary motion axis, the operating posture of the work tool can be diversified, and each axis can be used to change the position direction by turning the work tool, forward/backward angles and rotation by #l tilt. We have attached a work tool control device that uses MfP + angle according to the numerical analysis using coordinate transformation, and uses this control to determine the continuity of the work tool's motion with respect to the workpiece and selectively control it. This improves performance and solves the problems mentioned above.

(作用) ロボット手首部の旋回動作軸と回転動作軸との間に傾斜
動作軸を組み込んだことによって、作業具の動作姿勢が
多様化されているとともに、傾斜動作軸による作業具の
前進・後退角の制御要素が追加されて、ワークのずれ等
に対応した作業具の動作姿勢制御が可能になっている。
(Function) By incorporating a tilting motion axis between the rotation motion axis and rotation motion axis of the robot wrist, the operating posture of the work tool is diversified, and the work tool can be moved forward and backward by the tilting motion axis. Corner control elements have been added, making it possible to control the operating posture of the work tool in response to workpiece misalignment, etc.

(実施例) 第1図ないし第5図に本発明の一実施例を示しており、
第1図に示すようにロボットアームの端部即ちその上下
動作動軸(13)の端部に溶接トーチ(作業共)(α)
を旋回操作する旋回動作軸(14)を連設し、旋回動作
軸(14)の端部に溶接トーチ(α)を傾斜操作する傾
斜動作軸(15)を直角に配設するとともに、傾斜動作
軸(15)に溶接トーチ(α)を回転操作する作業具保
持器(17)付き回転動作軸(16)を前記両軸(14
)(15)に対し直角に突設してロボット手首部に構成
されている。図中(104)は旋回動作軸α荀による旋
回動作、(105)は傾斜動作軸(15)による前進・
後退の傾斜動作、(106)は回転動作軸(16)によ
る回転動作である。
(Example) An example of the present invention is shown in FIGS. 1 to 5,
As shown in Figure 1, a welding torch (for both work) (α) is attached to the end of the robot arm, that is, the end of its vertical movement axis (13).
A pivoting shaft (14) for rotating the welding torch (α) is arranged in series, and a tilting shaft (15) for tilting the welding torch (α) is disposed at right angles to the end of the pivoting shaft (14). A rotary operation shaft (16) with a work tool holder (17) for rotating the welding torch (α) is attached to the shaft (15).
) (15), and is configured on the robot wrist portion so as to protrude at right angles to (15). In the figure (104) is the turning movement by the turning movement axis α, and (105) is the forward movement by the tilting movement axis (15).
The backward tilt movement (106) is a rotation movement by the rotation movement axis (16).

さらに、前記溶接トーチ(α)即ち作業具制御装置は、
第4図に示すようにワーク(b)の位置を検知するセン
サー(21) (または位置情報の入力装置)、インタ
ーフェース(22)、コンピューター(23)、および
メモリー(24)等からなり、コンピューター(ハ)は
、前記各軸(14)、(15)、(16)を溶接トーチ
(α)(作業具)の旋回による位置方向と、傾斜による
前進・後退角(傾斜動作軸15)、および回転による傾
斜角に分けて座標点換による数理解析で制御するように
なっており、ロボット本体(20)にワーク位置の教示
データを発するとともに、特に、本発明の前記コンピュ
ーター(23)は、センサー(21)により入力された
ワーク(b)の位置データと予め教示されている前記デ
ータによりワーク(b)のずれ量(回動ずれを含む)を
前記牌析で計算するとともに、教示データにある溶接始
端および終端での溶接トーチ姿勢を前記ずれ量分補正計
算し、この計算結果によりロボットの前記各動作軸の軸
角度を計算して、始端姿勢時の軸角度から終端姿勢への
軸角度へ、各動作軸の動作範囲(ストローク)内で連続
して動作できる解答を選択し、ロボット本体(20)に
動作指令を発する機能になっている。
Furthermore, the welding torch (α), ie, the work tool control device,
As shown in Fig. 4, it consists of a sensor (21) (or position information input device) that detects the position of the workpiece (b), an interface (22), a computer (23), a memory (24), etc. c) The respective axes (14), (15), and (16) are defined by the position direction by turning the welding torch (α) (working tool), the forward/backward angle by tilting (tilting motion axis 15), and the rotation. The computer (23) of the present invention transmits teaching data of the workpiece position to the robot body (20), and in particular, the computer (23) of the present invention is controlled by mathematical analysis using coordinate conversion. 21) The displacement amount (including rotational displacement) of the workpiece (b) is calculated using the position data of the workpiece (b) inputted in step 21) and the previously taught data, and the welding data specified in the taught data is calculated using the tile analysis. Calculate the welding torch posture at the start end and end end by the amount of deviation, calculate the axis angle of each of the movement axes of the robot based on the calculation result, and convert the axis angle from the start end posture to the end posture, The function is to select an answer that allows continuous movement within the movement range (stroke) of each movement axis, and issue a movement command to the robot body (20).

本発明の実施例は、前記のような構成になっておりその
作用について説明すると、第2図(Nに示すように旋回
動作軸(14)と、傾斜動作軸(15)および回転動作
軸(16)を具備した本発明のロボット手首部は、第2
図(B) 、 (C)に示すように各軸(14)、(1
5λ(16)の方向を逆にすること(iso0回動)に
より溶接トーチ(作業具)(α)は同一の姿勢を取るこ
とができる。
The embodiment of the present invention has the above-mentioned structure, and its operation will be explained as follows.As shown in FIG. 16) The robot wrist portion of the present invention includes the second
As shown in Figures (B) and (C), each axis (14) and (1
By reversing the direction of 5λ (16) (iso0 rotation), the welding torch (work tool) (α) can take the same posture.

第2図(A)に示す各軸の回転角を0°にすると、第2
図但)においては、旋回動作軸(14)はQ O1傾斜
動作軸(15)は+900、回転動作軸(16)はOo
となり、また、第2図(C)においては、旋回動作軸(
14)は180°%傾斜動作軸(15)は−900、回
転動作軸(16)は180°となって、溶接トーチ(α
)の姿勢を同一にできる。
When the rotation angle of each axis shown in Fig. 2 (A) is set to 0°, the second
In the diagram), the rotation axis (14) is QO1, the tilt axis (15) is +900, and the rotation axis (16) is Oo
In addition, in Fig. 2 (C), the rotation axis (
14) has a 180°% tilting motion axis (15) at -900°, a rotating motion axis (16) at 180°, and a welding torch (α
) can have the same posture.

前記2つの姿勢(B) 、 (C)において、旋回動作
軸αaを動作させた場合、同l1Ill(14)の動作
範囲(ストローク)を±180°(計360°)とする
と、溶接トーチ(α)の動作は、第2図の)の状態では
第3図(A)に示すE印をストロークエンドとする36
0°の動作範囲となるのに対し、第2図(G)の状態で
は第3図(B)に示すF印をストロークエンドとする3
60°の動作範囲になって、第2図(qでは180°反
転された動作範囲になり、ワークの溶接線(作業位置範
囲)の存在している位置方向に応じて、第2図(B)、
(C)の状態を使い分けることにより、溶接途中で動作
範囲を外れることな(連続した溶接が可能となる。
In the above two postures (B) and (C), when the turning motion axis αa is operated, if the motion range (stroke) of l1Ill (14) is ±180° (total 360°), the welding torch (α In the state shown in ) of Fig. 2, the operation of ) is 36, with the stroke end being marked E shown in Fig. 3 (A).
While the operating range is 0°, in the state shown in Fig. 2 (G), the stroke end is marked F shown in Fig. 3 (B).
The operating range becomes 60°, and the operating range is reversed by 180° in Fig. 2 (q). ),
By properly using the state (C), it is possible to perform continuous welding without going out of the operating range during welding.

前記動作のアルゴリズムのフローは、第5図のように示
すことができ、前記機能は、ロボット手首部に前記傾斜
動作軸α9を付設し、従来のコンピューターによる制御
機能に、前記傾斜帖日の傾斜による前進・後退角の制御
要素が追加されて、前記のような作業具の?tIIJ御
が可能になっている。
The flow of the algorithm for the operation can be shown as shown in FIG. Control elements for forward and backward angles have been added to control the working implements as described above. tIIJ control is possible.

前記実施例では、主として溶接作業について説明したが
、各種の作業に適用可能である。
In the embodiments described above, welding work was mainly explained, but the present invention is applicable to various types of work.

(発明の効果) 本発明は、前述のような構成罠なっており、ロボット手
首部の旋回動作軸と回転動作軸間に傾斜動作軸を組み込
んだことにより、作業具の姿勢動作が著しく多様化され
ているとともに、傾斜動作軸による作業具の前進・後退
角の?1御要素追加により、ワークのずれ等に対応した
作業具の制御機能が著しく高められ、作業の中断、停止
等が解消され作業能率が向上されているとともに、ティ
ーチング時間が大幅に短縮されロボットの稼働率が高め
られているなどの効果を有している。
(Effects of the Invention) The present invention has the above-mentioned configuration, and by incorporating a tilting movement axis between the rotation movement axis and the rotation movement axis of the robot wrist, the posture movement of the work tool is significantly diversified. What is the forward and backward angle of the work implement due to the tilting movement axis? With the addition of 1 control element, the control function of the work tool in response to workpiece misalignment has been significantly improved, work interruptions and stoppages have been eliminated, work efficiency has been improved, teaching time has been significantly shortened, and robot control has been improved. This has the effect of increasing the operating rate.

以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種種の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すロボット手首部の斜視
図、第2図(A)(B)(C)は作業具の姿勢を取るた
めの各手首動作を示す概念図、第3図(A)(B)は第
2図(B)<Qにおける作業具の動作範囲を示す説明図
、第4図は制御装置のブロック図、第5図は本発明の動
作のアルゴリズムのフロー図、第6図は従来例のロボッ
ト手首部の斜視図、第7図は従来のロボットによる溶接
姿勢を示す斜視図、第8図(A)(B)はワークの正常
なセットとワークずれを示す平面説明図である。 α:作業具(溶接トーチ)、13:ロボットアーム(上
下作動軸)、14:旋回動作軸、15:’#l斜動作軸
、16二回転動作軸、17:作業具保持器、21:セン
サー、22:インターフェイス、23:コンピューター
、24:メモリー 復代理人 弁理士開本重文 外2名 莞1図 第2図 (A) 児3図 (A) (B) 兎5図
FIG. 1 is a perspective view of a robot wrist showing an embodiment of the present invention, FIGS. Figures (A) and (B) are explanatory diagrams showing the operating range of the work tool when Figure 2 (B) < Q, Figure 4 is a block diagram of the control device, and Figure 5 is a flow diagram of the operation algorithm of the present invention. , Fig. 6 is a perspective view of a conventional robot wrist, Fig. 7 is a perspective view showing a welding posture by a conventional robot, and Fig. 8 (A) and (B) show normal setting of workpieces and workpiece misalignment. FIG. α: Work tool (welding torch), 13: Robot arm (vertical operation axis), 14: Swivel operation axis, 15: '#l oblique operation axis, 16 2-rotation operation axis, 17: Work tool holder, 21: Sensor , 22: Interface, 23: Computer, 24: Memory Sub-Agent Patent Attorney Kaihon Important Literature 2 People Figure 1 Figure 2 (A) Child Figure 3 (A) (B) Rabbit Figure 5

Claims (1)

【特許請求の範囲】[Claims] ロボットアームの端部に連設され作業具を旋回操作する
旋回動作軸と、該旋回動作軸の端部に直角に配設され前
記作業具を傾斜操作する傾斜動作軸、および該傾斜動作
軸に突設され前記両軸に対し直角に配置されて前記作業
具を回転操作する作業具保持器付き回転動作軸を具備し
たロボット手首部に構成するとともに、前記各軸を前記
作業具の旋回による位置方向と、傾斜による前進・後退
角および回転による傾斜角に使い分けて座標変換による
数理解析で制御し、該制御によってワークに対する作業
具の動作連続性を判定して選択制御する作業具制御装置
を付設したことを特徴とする作業用ロボット。
a rotational movement axis that is connected to an end of the robot arm and rotates the work tool; a tilting movement axis that is disposed at right angles to the end of the rotational movement axis and tilts the workpiece; The robot wrist is provided with a rotary operation axis with a work tool holder that is protruded and arranged at right angles to the two axes and rotates the work tool, and the robot wrist part is provided with a rotary operation axis with a work tool holder that is protruded and arranged perpendicularly to the two axes, and that rotates the work tool. Equipped with a work tool control device that controls the direction, advance/retreat angle due to tilt, and tilt angle due to rotation through mathematical analysis using coordinate transformation, and determines and selectively controls the continuity of the work tool's motion with respect to the workpiece through this control. A working robot that is characterized by the following:
JP3286986A 1986-02-19 1986-02-19 Work robot Pending JPS62191903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3286986A JPS62191903A (en) 1986-02-19 1986-02-19 Work robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3286986A JPS62191903A (en) 1986-02-19 1986-02-19 Work robot

Publications (1)

Publication Number Publication Date
JPS62191903A true JPS62191903A (en) 1987-08-22

Family

ID=12370867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3286986A Pending JPS62191903A (en) 1986-02-19 1986-02-19 Work robot

Country Status (1)

Country Link
JP (1) JPS62191903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926906A (en) * 1988-03-30 1990-05-22 Diesel Kiki Co., Ltd. Spool valve
JP4599475B2 (en) * 2000-03-22 2010-12-15 福岡県 Welding systems on machine tools

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926906A (en) * 1988-03-30 1990-05-22 Diesel Kiki Co., Ltd. Spool valve
JP4599475B2 (en) * 2000-03-22 2010-12-15 福岡県 Welding systems on machine tools

Similar Documents

Publication Publication Date Title
KR100240085B1 (en) A handling device of excavator
JP5547626B2 (en) 7-axis articulated robot control apparatus and teaching method
EP1050383B1 (en) Arm structure for man type working robots
US7047107B2 (en) Robot control apparatus
KR960001962B1 (en) Method of controlling tool attitude of a robot
JP2007136590A (en) Control device and control method for redundant robot having redundant joint
JP7144754B2 (en) Articulated robots and articulated robot systems
JP2019048343A (en) Operation device using parallel link mechanism
JPS62191903A (en) Work robot
JPS6346844B2 (en)
JP2009034741A (en) Robot system control device
KR100389010B1 (en) Control Method of PC based Gantry Robot
JP2022018843A5 (en) Robot system, control method, article manufacturing method, program, and recording medium
JP2001318715A (en) Teaching method and device for robot for welding
JPH11239988A (en) A singular point avoiding method in direct teaching of articulated robot
KR100321497B1 (en) Robot Motion Teach Method
WO2019049972A1 (en) Work device using parallel link mechanism
JPH05127714A (en) Arm control system for redundancy arm robot
JPH025558B2 (en)
WO2024048285A1 (en) Articulated robot, articulated robot control method, robot system, and article manufacturing method
JPH0544073Y2 (en)
JP2024033339A (en) Articulated robot, articulated robot control method, robot system, and article manufacturing method
TW202335808A (en) Robot control device and multijoint robot
JP2024024201A (en) Robot control method and robot system
JPS63150170A (en) Operation type manipulator