JPS62191702A - Operation circuit - Google Patents

Operation circuit

Info

Publication number
JPS62191702A
JPS62191702A JP3419586A JP3419586A JPS62191702A JP S62191702 A JPS62191702 A JP S62191702A JP 3419586 A JP3419586 A JP 3419586A JP 3419586 A JP3419586 A JP 3419586A JP S62191702 A JPS62191702 A JP S62191702A
Authority
JP
Japan
Prior art keywords
transistor
circuit
collector
vcc
comparators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3419586A
Other languages
Japanese (ja)
Other versions
JPH0453361B2 (en
Inventor
Toshihide Miyake
敏英 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3419586A priority Critical patent/JPS62191702A/en
Publication of JPS62191702A publication Critical patent/JPS62191702A/en
Publication of JPH0453361B2 publication Critical patent/JPH0453361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To obtain a simple operation circuit easy to adjust, by providing a position detecting element, a means for performing logarithmic scaling and a differential amplifier containing one set of transistors. CONSTITUTION:The detection currents I3, I4 outputted from a light receiving element for detecting a position are applied to the bases of NPN transistors TR1, TR2 through diodes D3, D4 for logarithmic scaling and follower amplifiers 4, 5. The collector of the transistor TR1 is connected to a power source +VCC and the collector of the transistor TR2 is connected to a power source +VCC through a resistor R8. The output led out to the collector of the transistor TR2 is applied to one input terminals of a plurality of comparators C5-C8 and voltage for comparison obtained by respectively dividing the line between the power source +VCC and a constant current source I6 by resistors R9-R12 is applied to the other input terminals of the comparators C5-C8 to be compared with the voltage applied to one input terminals to form a distance signal. By this method, a circuit can be constituted using a resistance value easy to control and the load for planning is reduced and the enhancement of operation accuracy can be attained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は演算回路に関し、特にはカメラに用いられる自
動合焦点用測距回路の演算回路に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an arithmetic circuit, and more particularly to an arithmetic circuit for an automatic focusing distance measuring circuit used in a camera.

く従来の技術〉 近年のカメラでは、位置検出素子としてPSD(Pos
ition  5ensitive Diord )を
使用する自動合焦点回路が主流となりつつあるが、この
方式は、三角測量の原理に基くアクティブタイプの測距
方式である。
Conventional technology> Recent cameras use PSD (Positive SD card) as a position detection element.
Automatic focusing circuits using a 5-sensitivity diord are becoming mainstream, but this method is an active type ranging method based on the principle of triangulation.

すなわち、撮影に際してIRED(赤外発光ダイオード
)を−瞬発光させて指向性の強いレンズで被写体を照射
し、反射光をIREDより一定の基線長だけ光軸と直角
方向に離れた場所に設置されたPSDにレンズによって
投影し、その投影位置によってPSDの2つの電極間に
流れる出力電流の比が変わることを利用し、その比率を
検出することで距離を測定する。
In other words, when photographing, an IRED (infrared light emitting diode) is instantaneously emitted to illuminate the subject with a highly directional lens, and the reflected light is placed at a location perpendicular to the optical axis by a certain baseline length from the IRED. The distance is measured by projecting the current onto the PSD using a lens, and detecting the ratio by utilizing the fact that the ratio of the output current flowing between the two electrodes of the PSD changes depending on the projection position.

上記測距方式では被写体の反射率によシ反射光の強度は
変化するので比の値を検出せねばならないが、これには
まず各電流を対数圧縮した電圧を得てそれを演算した電
圧を作り、これを複数のコンパレータで同時比較し、弁
別することで、距離信号を得ている。
In the above distance measurement method, the intensity of the reflected light changes depending on the reflectance of the subject, so it is necessary to detect the ratio value. To do this, first, obtain the voltage by logarithmically compressing each current, and then calculate the voltage. A distance signal is obtained by simultaneously comparing and discriminating the results using multiple comparators.

このような2つの入力信号から距離信号を作り出すため
に従来から用いられている回路を第2図に示す。
FIG. 2 shows a circuit conventionally used to create a distance signal from such two input signals.

L、 丁2はPSDの各電極から取り出されるIRED
反射光の信号電流である。上記信号電流II、I2は、
夫々対数圧縮用ダイオードDt 、 D2に流れ込むと
共に第1.第2演算増幅器1.2の非反転入力に与えら
れる。第1演算増幅器1の反転入力には基準電圧Vre
f+に接続された抵抗R1、また出力との間に抵抗R2
が接続されている。また第2演算増幅器2の反転入力に
は第1演算増幅器1の出力との間に抵抗R3が、更に出
力との間に抵抗R4が接続されている。第2演算増幅器
2の出力は複数の比較器C1〜Cnの一方の入力に与え
らね、ている。比較器C1〜Cnの他方の入力には、距
離分割に応じた比較のための基準電圧が与えられている
L, D2 are IREDs taken out from each electrode of PSD.
This is the signal current of reflected light. The above signal currents II and I2 are
They flow into the logarithmic compression diodes Dt and D2, respectively, and the first. It is applied to the non-inverting input of the second operational amplifier 1.2. The reference voltage Vre is applied to the inverting input of the first operational amplifier 1.
A resistor R1 is connected to f+, and a resistor R2 is connected to the output.
is connected. Further, a resistor R3 is connected between the inverting input of the second operational amplifier 2 and the output of the first operational amplifier 1, and a resistor R4 is connected between the output and the inverting input of the second operational amplifier 2. The output of the second operational amplifier 2 is not applied to one input of the plurality of comparators C1 to Cn. A reference voltage for comparison according to the distance division is given to the other inputs of the comparators C1 to Cn.

上記回路において、入力電流I+、Izが与えられたと
きダイオードDI、D2の順方向電圧はそれぞれ次のよ
うになる。
In the above circuit, when input currents I+ and Iz are applied, the forward voltages of the diodes DI and D2 are as follows.

■! DI :VF(DI)=  / tn  /、。■! DI:VF(DI)=/tn/,.

D 2 : V F(D 2 ) =  /g tnZ
D 2 : V F (D 2 ) = /g tnZ
.

ここでKはボルツマン定数1gは電子の電荷。Here, K is Boltzmann's constant and 1g is the electron charge.

Tは絶対温度+Ioは逆方向飽和電流である。T is the absolute temperature +Io is the reverse saturation current.

今冬抵抗の値が、Rr =R2=R3=R4とすると、
第2演算増幅器2の出力Vout(OF2)は次のよう
になる。
If the value of resistance this winter is Rr = R2 = R3 = R4,
The output Vout (OF2) of the second operational amplifier 2 is as follows.

Vout(OF2)=2(Vp(D2)−VF(DI)
)+Vref+=2 //g(tn(2/Io)−4n
(1イ。) )十Vref 1=2/gtn(2名、 
) +Vr e f 1 −・−(1)これから信号電
流It 、 I2 の絶対値には、無関係に比率だけで
決まる出力が得られることがわかる。
Vout(OF2)=2(Vp(D2)−VF(DI)
)+Vref+=2 //g(tn(2/Io)-4n
(1 B.) ) 10 Vref 1=2/gtn (2 people,
) +Vr e f 1 −·− (1) From this, it can be seen that an output determined only by the ratio is obtained regardless of the absolute values of the signal currents It and I2.

次に信号電流II、I2の比が距離によってどのような
値となるかを考えてみる。
Next, let us consider what value the ratio of the signal currents II and I2 takes depending on the distance.

ゾーン方式によるオートフォーカスにおいては、 ゛各
ゾーンの幅は、各ゾーン内で、フォーカス点は一定であ
るにもかかわらず、ゾーンに幅があることから生じる最
大錯乱円の大きさが、各ゾーンにおいて等しくなるよう
決定されるのが理想的である。このような場合無限遠側
から第1.第2.・・・。
In autofocus using the zone method, ``Even though the width of each zone is constant within each zone and the focus point is constant, the size of the maximum circle of confusion caused by the width of the zone is Ideally, they should be determined to be equal. In such a case, the first . Second. ....

第nゾーンとしたとき、各ゾーンのレンズ繰り出し量の
差は一定に近い値になるため、設計の容易さから繰シ出
し量を各ゾーンごとに一定にして行うのが通例である。
When the n-th zone is selected, the difference in the amount of lens extension for each zone is close to a constant value, so for ease of design, it is customary to set the amount of lens extension to be constant for each zone.

撮影レンズ焦点距離をf+とすると、繰り出し量n−a
(n=1.2・・・)とフォーカス位置りとの関係は次
のようになる。
If the focal length of the photographing lens is f+, the amount of extension na
The relationship between (n=1.2...) and the focus position is as follows.

f I> n、 aと近似とすると上記りは、これから
例えば、f 1= 40簡、a=0.4簡のときすなわ
ち無限遠の位置から、0.4調ずつレンズを繰り出すに
つれて4m、2m、1.33m+  1mというように
フォーカス位置の変わることがわかる〇 一方PSD上のIREDの反射像の結像位置Xは、被写
体距離をL1基線長(IREDの発光部とPSD部のそ
れぞれのレンズの光軸距離)をtとし、PSDの結像レ
ンズの焦点距離をI2とすると、無限遠の結像位置を原
点として次のように表わすことができる。
Assuming that f I > n, a is approximated, the above becomes, for example, when f 1 = 40 points and a = 0.4 points, that is, from the infinite position, as the lens is extended by 0.4 steps, the distance increases to 4 m and 2 m. , 1.33m + 1m On the other hand, the imaging position (optical axis distance) is t, and the focal length of the imaging lens of the PSD is I2, it can be expressed as follows, with the imaging position at infinity as the origin.

故に例えば、f+ =40rHR,I2 =20mm+
 a=0.4mm。
Therefore, for example, f+ = 40rHR, I2 = 20mm+
a=0.4mm.

L=40tanという条件の時、結像位置Xは次の値に
なる。
When the condition is L=40tan, the imaging position X has the following value.

の時中央に結像するよう光学系をセットすると、4mで
は中央から0.2 mm、  2 mでは0.4 rr
rm 、 1.333 mでは0.6間、Imでは0.
8mmというようにフォーカス位置釦のとき、PSD上
の結像位置は0.2・n”mmとなる。このときPSD
の2つの電極からとり出される電流11:I2の比は無
限遠で1:1.4mでは1.2:0.8.2mでは1.
4:0.6というように、1+0.2n:1−0.2n
の比率となる。
If you set the optical system so that the image is centered at 4 m, it will be 0.2 mm from the center and 0.4 rr at 2 m.
rm, 0.6 at 1.333 m and 0.6 at Im.
When the focus position button is set to 8mm, the image formation position on the PSD is 0.2・n”mm.At this time, the PSD
The ratio of current 11:I2 extracted from the two electrodes is 1:1.4m at infinity and 1.2:1.2 at 0.8.2m.
4:0.6, 1+0.2n:1-0.2n
The ratio will be

上記電流II、I2の比率をに′I4−26mVとして
(1)式に代入すると出力vou t (OP 2 )
はnの値によって次のようになる。
When the ratio of the above currents II and I2 is set to 'I4-26mV and substituted into equation (1), the output vout (OP 2 )
is as follows depending on the value of n.

(1+0.2n) Vout(□p2)=26X2Xtn   、y50.
2.)+Vrf3fln”1  21.08(鯉) 十
vref。
(1+0.2n) Vout(□p2)=26X2Xtn, y50.
2. )+Vrf3fln”1 21.08 (Carp) 10vref.

n = 2 44・06 (mV ) +vre f+
n”3 72.09(my)+Vref。
n = 2 44・06 (mV) +vre f+
n”3 72.09 (my) + Vref.

n ”= 4 114.26 (my ) + Vr8
t。
n”=4 114.26 (my) + Vr8
t.

それ故第2図の回路における各コンパレータC1〜C4
の比較電圧を、コンパレータC1は21.08mV。
Therefore, each comparator C1 to C4 in the circuit of FIG.
The comparison voltage of comparator C1 is 21.08 mV.

コンパレータC2は44.06mV、コンパレータC3
は72.09mV、 :7ンパレータC4は114.2
6mVだけそれぞれ、基準電圧Vreftより高くなる
ように基準電圧Vref2+基準電圧Vref39分割
抵抗値Rs T R6+R7を決めておくと、被測定距
離■〜4mに対してはコンパレータC1−C4出力は全
部鬼低〃、4〜2mに対してはコンパレータCtdi’
高〃、2〜1.33□に対してはコンパレータC+、C
zが’高“、1.33〜1mに対してはコンパレータC
+ 、 C2、C3が気高〃、1m以下に対してはコン
パレータC1〜c4がすべて気高〃となって測距できる
Comparator C2 is 44.06mV, comparator C3
is 72.09mV, :7 comparator C4 is 114.2
If the reference voltage Vref2 + reference voltage Vref39 dividing resistance value Rs T R6 + R7 is determined so that each of them is higher than the reference voltage Vreft by 6 mV, the comparator C1-C4 outputs are all low for the measured distance ■ ~ 4 m. , for 4 to 2 m, the comparator Ctdi'
For high〃, 2~1.33□, comparator C+, C
Comparator C for z 'high', 1.33~1m
+, C2, and C3 are high, and for distances below 1 m, comparators C1 to C4 are all high, allowing distance measurement.

〈発明が解決しようとする問題点〉 上記従来の測距回路では、 l、抵抗の比によって演算しているので、高い精度の抵
抗(R1へR4)が必要。
<Problems to be Solved by the Invention> In the conventional distance measuring circuit described above, since calculation is performed based on the ratio of l and resistance, highly accurate resistance (R1 to R4) is required.

Z 演算にOPアンプが2コ必要なため回路が複雑。Z: The circuit is complicated because two OP amplifiers are required for calculation.

3、比較電圧の差が不均一なため分割抵抗R5〜R7と
して中途半端な値に設定しなければならず、精度を上げ
ることが難しい。
3. Since the difference in comparison voltage is uneven, the dividing resistors R5 to R7 must be set at intermediate values, making it difficult to improve accuracy.

4、 光学系がずれると、比も変わるので光学系の合せ
込みに精度が必要である。
4. If the optical system is misaligned, the ratio will also change, so precision is required for alignment of the optical system.

等の欠点があった。There were other drawbacks.

〈問題点を解決するための手段〉 本発明は上記従来回路の欠点を解消し、簡単で調整も容
易な測距用演算回路を得ることを目的としてなされたも
のである。
<Means for Solving the Problems> The present invention has been made for the purpose of eliminating the drawbacks of the above-mentioned conventional circuits and providing a simple and easily adjustable distance measuring arithmetic circuit.

被写体からの反射光を検出するPSDに対して、該PS
Dからの2の検出電流を夫々トランジスタまたはダイオ
ードの対数圧縮特性を利用して対数圧縮し、対数圧縮さ
れた2つの出力が夫々ベースに直接或いはホロワアンプ
を介して1組のトランジスタを含んでなる差動増幅回路
に入力して演算回路を構成し、上記差動増幅回路の出力
を距離分割に応じて複数個設けられた比較回路に与えて
測距による信号を形成する。
For a PSD that detects reflected light from a subject, the PS
The two detected currents from D are logarithmically compressed using the logarithmic compression characteristics of each transistor or diode, and the two logarithmically compressed outputs each include a set of transistors directly or via a follower amplifier at the base. The signal is inputted to a dynamic amplifier circuit to form an arithmetic circuit, and the output of the differential amplifier circuit is applied to a plurality of comparison circuits provided according to the distance division to form a signal based on distance measurement.

〈作 用〉 PSDからの信号電流は夫々トランジスタのベースに入
力され、2つの検出電流の演算結果は差動増幅器の出力
として得られる。
<Operation> The signal currents from the PSD are input to the bases of the transistors, respectively, and the calculation results of the two detection currents are obtained as the output of the differential amplifier.

〈実施例〉 第1図において、位置検出のための受光素子(PSD、
図示せず)から出力された2つの検出電流I3. I4
は夫々対数圧縮用のダイオードD3+D4に与えられる
と共に、ホロワアンプ4.5を介してNPNトランジス
タTRI 、 TR2の各ベースに与えられる。尚上記
対数圧縮用ダイオードD3.D4のカソード側は基準電
圧V。に接続されている。
<Example> In Fig. 1, a light receiving element (PSD,
(not shown) output from two detection currents I3. I4
are applied to the logarithmic compression diodes D3+D4, respectively, and to the bases of the NPN transistors TRI and TR2 via the follower amplifier 4.5. Note that the logarithmic compression diode D3. The cathode side of D4 is the reference voltage V. It is connected to the.

上記両トランジスタTR1,TRzのエミッタは共通に
定電流源I5に接続されている。トランジスタTR+の
コレクタは電源+Vooに、 トランジスタTR2のコ
レクタは抵抗R8を介して電源十V。0に接続されてい
る。トランジスタT R2のコレクタに導出された出力
は、複数のコンパレータc5〜CBの一方の各入力端子
に与えられる。該コンパレータC5〜C8の他方の入力
端子には、電源+VCoと定電流源工6間を分割抵抗R
9〜Rl 2で夫々分割して得られる比較のための電圧
が与えられ、上記一方の入力端子に与えられる電圧レベ
ルと比較されて距離信号が形成される。
The emitters of both transistors TR1 and TRz are commonly connected to a constant current source I5. The collector of the transistor TR+ is connected to the power supply +Voo, and the collector of the transistor TR2 is connected to the power supply +Voo through the resistor R8. Connected to 0. The output led to the collector of the transistor TR2 is given to each input terminal of one of the plurality of comparators c5 to CB. The other input terminals of the comparators C5 to C8 are connected to a dividing resistor R between the power supply +VCo and the constant current source 6.
Voltages for comparison obtained by dividing the input terminals 9 to Rl 2 are applied, and compared with the voltage level applied to the one input terminal, to form a distance signal.

上記構成の回路において、ダイオードD3. D4には
、前述の如〈従来回路と同様にPSDにより1 + 0
.2 n a 1−0.2 nの比となる検出′電流が
流れている。従って両ダイオードD3.D4の電圧差V
Fは次のように表わすことができる。
In the circuit having the above configuration, the diode D3. As mentioned above, D4 is set to 1 + 0 by PSD as in the conventional circuit.
.. A detection current having a ratio of 2n a 1-0.2n is flowing. Therefore, both diodes D3. D4 voltage difference V
F can be expressed as follows.

Vp (D4 )−Vp■3)”Kr/gtn (1−
0・シf+0.2n )またトランジスタTRIのコレ
クタ電流を■。
Vp (D4)-Vp■3)"Kr/gtn (1-
0・shif+0.2n) Also, the collector current of transistor TRI is ■.

(TR1〕、トランジスタTR2のコレクタ電流をIC
(TR2)とすると、両トランジスタT Rt 、T 
R2ノヘース電圧V  (TRI)、VBE(TR2)
CI量関係、E V8E(TR2)−V8E(TRI )=に%tn(工
C(TJ(TR,))となる。
(TR1), the collector current of transistor TR2 is IC
(TR2), both transistors T Rt , T
R2 noise voltage V (TRI), VBE (TR2)
Regarding the CI amount relationship, EV8E(TR2)-V8E(TRI)=%tn(TJ(TR,)).

ダイオードD3の電圧は、ホロ、ワアンプ4を介してト
ランジスタT Rrのベースに与えられ、同様にダイオ
ードD4の電圧もトランジスタTR2のベースに与えら
れているので、結局 ”T/g”((1−”296+o、2nア=に/g” 
(1C(T”2(TRt))より rc<T2.(TR4,=1−0・”%+0.2nとな
る。
The voltage of the diode D3 is applied to the base of the transistor TRr via the holoamp 4, and the voltage of the diode D4 is also applied to the base of the transistor TR2, so in the end, "T/g" ((1- “296+o, 2n a=ni/g”
(1C(T"2(TRt)), rc<T2.(TR4,=1-0."%+0.2n).

ここで定電流工5との間に工。(TR2) 十I。(T
&)=αa isの関係があるのでα竺1とみなすと、
上式より次の関係が得られる。
At this point, work between the constant current workman 5 and the constant current workman 5. (TR2) 10I. (T
Since there is a relationship of &)=αa is, if we consider it as αjiku1,
The following relationship is obtained from the above equation.

故に十電源電圧をV。0とすると、コンパレータ1−0
.2n の正入力はRe I・° 2 となる。
Therefore, the power supply voltage is V. 0, comparator 1-0
.. The positive input of 2n becomes Re I·° 2 .

この時、例えば、l5=2・Is  R9=R1O=R
Il=RIz = 0.2・R8と選ぶと、従来の回路
のように無限遠〜4mのときはコンパレータ出力は全部
−低“4m〜2mではコンパレータC5だけ気高〃、2
〜1.333mではコンパレータCs 、 Csが一高
”1.333〜1mではコンパレータC5,C6,C7
が1高“1m以下ではコンパレータC8がゝ高”となシ
、コンパレータC5〜C8の出力として測距結果が得ら
れる。
At this time, for example, l5=2・Is R9=R1O=R
If you choose Il = RIz = 0.2・R8, as in the conventional circuit, when the distance is from infinity to 4 m, all the comparator outputs are - low. From 4 m to 2 m, only comparator C5 is high, 2
~1.333m, comparator Cs, Cs is one high.''1.333~1m, comparators C5, C6, C7.
When the distance is 1 m or less, the comparator C8 is high, and the distance measurement results are obtained as the outputs of the comparators C5 to C8.

ここで上記構成の回路では、光学系の微少なずれがあっ
たとしても、これは2つの出力電流1−0.2n:1+
0.2nにシフトを与えない。すなわち、1−0.2n
+K : 1+0.2n−にという形で現われるので1
−0.2n という形となムこれは結局R8・■5−アー+に’と表
わせるので単なるシフトであp、例えば、抵抗&の値を
動かす等の方法で調整が可能となる。
In the circuit with the above configuration, even if there is a slight deviation in the optical system, this will result in two output currents of 1-0.2n:1+
No shift is given to 0.2n. i.e. 1-0.2n
+K: Appears in the form of 1+0.2n-, so 1
-0.2n This can be expressed as 'R8.5-A+', so it can be adjusted by simply shifting p, for example, by changing the value of the resistor &.

〈発明の効果〉 以上本発明によれば、調整容易な抵抗値を用い°C回路
を構成することができ、設計に対する負担が軽減される
と共に、演算精度の向上をも図ることができる。また回
路全体としての構成が簡単になり、集積回路化し易く、
実用性にすぐれた演算回路を得ることができる。
<Effects of the Invention> According to the present invention, a °C circuit can be constructed using easily adjustable resistance values, the burden on design can be reduced, and calculation accuracy can also be improved. In addition, the overall circuit configuration becomes simpler, making it easier to integrate the circuit.
A highly practical arithmetic circuit can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例のカメラ測距用の演算回
路図、第2図は従来の測距回路図である。 I3.I4 : PSD出力電流 D3 + D4 :
対数圧縮用ダイオード 4,5:ホロワアンプ TRI
 。 TRz:トランジスタ C5〜C8:コンパレータR8
−R12:抵抗 I5+I5:定電流源代理人 弁理士
 杉 山 毅 至(他1名)すVcc す曾φmb> 第1cA
FIG. 1 is a calculation circuit diagram for camera distance measurement according to an embodiment of the present invention, and FIG. 2 is a conventional distance measurement circuit diagram. I3. I4: PSD output current D3 + D4:
Logarithmic compression diode 4, 5: Follower amplifier TRI
. TRz: Transistor C5-C8: Comparator R8
-R12: Resistance I5+I5: Constant current source agent Patent attorney Takeshi Sugiyama (and 1 other person) Vcc Suso φmb> 1st cA

Claims (1)

【特許請求の範囲】 1)入射光の位置を電極間の抵抗値に基いて検出する位
置検出素子と、 該検出素子の2つの検出電流を夫々対数圧縮する手段と
、 対数圧縮された2つの出力が夫々ベースに直接或いはホ
ロワアンプを介して印加される1組のトランジスタを含
んでなる差動増幅器とを備えてなり、 検出素子の出力電流の演算結果を差動増幅器の出力とし
て取り出すことを特徴とする測距用演算回路。
[Claims] 1) A position detection element that detects the position of incident light based on a resistance value between electrodes; means for logarithmically compressing two detection currents of the detection element; and two logarithmically compressed currents. It is equipped with a differential amplifier including a pair of transistors whose outputs are applied directly to the base or via a follower amplifier, and the result of calculation of the output current of the detection element is taken out as the output of the differential amplifier. A calculation circuit for distance measurement.
JP3419586A 1986-02-18 1986-02-18 Operation circuit Granted JPS62191702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3419586A JPS62191702A (en) 1986-02-18 1986-02-18 Operation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3419586A JPS62191702A (en) 1986-02-18 1986-02-18 Operation circuit

Publications (2)

Publication Number Publication Date
JPS62191702A true JPS62191702A (en) 1987-08-22
JPH0453361B2 JPH0453361B2 (en) 1992-08-26

Family

ID=12407390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3419586A Granted JPS62191702A (en) 1986-02-18 1986-02-18 Operation circuit

Country Status (1)

Country Link
JP (1) JPS62191702A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480809A (en) * 1987-09-24 1989-03-27 West Electric Co Distance detector
JPH0250862A (en) * 1988-08-12 1990-02-20 Canon Inc Image forming apparatus
US5557363A (en) * 1993-03-16 1996-09-17 Olympus Optical Co., Ltd. CMOS-analog IC for controlling camera and camera system using the same
JP2013208376A (en) * 2012-03-30 2013-10-10 Kyoraku Sangyo Kk Game machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480809A (en) * 1987-09-24 1989-03-27 West Electric Co Distance detector
JPH0250862A (en) * 1988-08-12 1990-02-20 Canon Inc Image forming apparatus
US5557363A (en) * 1993-03-16 1996-09-17 Olympus Optical Co., Ltd. CMOS-analog IC for controlling camera and camera system using the same
US5708880A (en) * 1993-03-16 1998-01-13 Olympus Optical Co., Ltd. CMOS-analog IC for controlling camera and camera system using the same
JP2013208376A (en) * 2012-03-30 2013-10-10 Kyoraku Sangyo Kk Game machine

Also Published As

Publication number Publication date
JPH0453361B2 (en) 1992-08-26

Similar Documents

Publication Publication Date Title
JPS62191702A (en) Operation circuit
JP3215232B2 (en) Photoelectric distance sensor
US4704024A (en) Photometric circuit for camera
JP2648491B2 (en) Distance detection device
JPS6227688A (en) Photoelectric switch for setting distance
JP3117227B2 (en) Distance detection device
JP2559393B2 (en) Distance detector
JP2942046B2 (en) Optical ranging sensor
JPH0457962B2 (en)
JP2674468B2 (en) Distance detection device
JPS62212512A (en) Apparatus for detecting range information on object
JPS5888608A (en) Optical position detector
JPH0518745A (en) Range finding apparatus
JPS59193307A (en) Distance measuring apparatus
JP2836025B2 (en) Focus adjustment signal processor
JP3432852B2 (en) Distance measuring device
JP3130559B2 (en) Active distance measuring device
JPH0372208A (en) Angle measuring apparatus
JPS61107111A (en) Range finder
JPH01240812A (en) Range finder
JPS5937688Y2 (en) Moving object position detection device
JP3193481B2 (en) Distance measuring device
JPS6361922A (en) Luminance measuring instrument
JPS62220872A (en) Detecting circuit for current variation
JPS59221609A (en) Distance measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees