JPS62190824A - Electromagnetic apparatus assembling device - Google Patents

Electromagnetic apparatus assembling device

Info

Publication number
JPS62190824A
JPS62190824A JP3458286A JP3458286A JPS62190824A JP S62190824 A JPS62190824 A JP S62190824A JP 3458286 A JP3458286 A JP 3458286A JP 3458286 A JP3458286 A JP 3458286A JP S62190824 A JPS62190824 A JP S62190824A
Authority
JP
Japan
Prior art keywords
magnet
magnetizing
yoke
gap
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3458286A
Other languages
Japanese (ja)
Inventor
Shigeo Obata
茂雄 小幡
Kaoru Matsuoka
薫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3458286A priority Critical patent/JPS62190824A/en
Publication of JPS62190824A publication Critical patent/JPS62190824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To reduce fluctuation in characteristic of an electromagnetic apparatus by measuring the amount of gap between a magnet and a yoke and magnetizing the magnet by controlling the optimum magnetizing power which makes minimum the fluctuation of characteristic of electromagnetic apparatus depending on said amount of gap. CONSTITUTION:Outputs of electronic micro-pickups 30, 31 are applied to a gap calculator 32 and thereby amount of gap g between the magnetic pole surface of magnet 5 and a printed wiring substrate 7 is calculated. This amount of gap g is input to an optimum power controller 33 and thereby a magnetizing power, which provides the design characteristic of motor placed on a setting board 40, can be obtained. The optimum power controller 33 controls capacity of capacitor and charging voltage in a magnetizing power supply 34. When the magnetizing power supply apparatus is charged, preparing for magnetization, electrical power is supplied to an excitation winding 12 of magnetizing yoke 10. When power is supplied to the excitation winding 12, intensive magnetic field is generated at the lower end surface of magnetization yoke 10 and this magnetic field passes through a back yoke 4 and magnetizes a magnet 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は永久磁石を仕様したiit磁機器機器立装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an IIT magnetic equipment equipment using permanent magnets.

従来の技術 近年永久磁石を備えた電磁機器、アクチュエータは電気
機器等に非常に増加してきており、小型化、軽量化、高
性能化が強く要求されている。
BACKGROUND OF THE INVENTION In recent years, electromagnetic devices and actuators equipped with permanent magnets have been increasingly used in electrical devices, and there is a strong demand for smaller size, lighter weight, and higher performance.

その−構成例を第3図により説明する。第3図は一般に
よく知られている平面対向型モータである0図示のごと
く、ホルダー1に設けた軸受2゜2′にて回転自在に支
持された軸3にはマグネット5が装備されている。マグ
ネット5は回転方向に複数極着磁され、磁性材料製のプ
リント基板12上に配設された駆動コイル6の付勢によ
り回転させられる構成となっている。
An example of its configuration will be explained with reference to FIG. Figure 3 shows a generally well-known planar opposed type motor.As shown in Figure 3, a magnet 5 is attached to a shaft 3 which is rotatably supported by bearings 2゜2' provided in a holder 1. . The magnet 5 is magnetized with a plurality of poles in the rotation direction, and is configured to be rotated by the urging of a drive coil 6 disposed on a printed circuit board 12 made of a magnetic material.

ここでマグネット5は第4図に示すように、マグネット
5をバックヨーク4に接着した状態で着磁を行なう、!
rI磁ヨーク10のマグネット5に対向する面には複数
本の溝(図示せず)が設けられており、この溝には励磁
用巻線12が巻かれている。この着磁ヨーク10にマグ
ネット5の磁極面を対向させ、励磁用巻線12に着T6
1電力を供給してマグネット5を着磁する。
Here, the magnet 5 is magnetized with the magnet 5 adhered to the back yoke 4, as shown in FIG.
A plurality of grooves (not shown) are provided on the surface of the rI magnetic yoke 10 facing the magnet 5, and the excitation winding 12 is wound around the grooves. The magnetic pole face of the magnet 5 is opposed to this magnetizing yoke 10, and the excitation winding 12 is attached with a T6
1 power is supplied to magnetize the magnet 5.

発明が解決しようとする問題点 ところでモータの寸法は薄型化、軽量化の要求に伴ない
、極力小さくする事が望まれるが、一方で大量生産を要
求されるモータはその特性のバラツキを極小にする事も
重要である。
Problems to be Solved by the Invention Incidentally, as the dimensions of motors are required to be thinner and lighter, it is desirable to make them as small as possible, but on the other hand, motors that are required to be mass-produced must minimize variations in their characteristics. It is also important to do.

しかしながら、モータの特性は磁束密度に大きく依存す
る。一方、磁束密度は第3図に示す、マグネット5の磁
極面と磁性材料製のプリント基板7との空隙量gにより
、非常に大きな影響をうける。一般に前記のような構成
の平面対向型モータにおいては、マグネット5や磁性材
料よりなるプリント基板7等の厚みのバラツキが加算さ
れて空隙1gのバラツキが増大する。したがって、実際
の空隙量gを無視して、マグネット5を飽和着磁した場
合は、非常に良好な特性を得る事が出来たり、その逆と
なったりするというように、製品によってその特性のバ
ラツキが著しく増大する事になる。
However, motor characteristics largely depend on magnetic flux density. On the other hand, the magnetic flux density is greatly influenced by the amount of air gap g between the magnetic pole surface of the magnet 5 and the printed circuit board 7 made of magnetic material, as shown in FIG. In general, in a planar opposed motor having the above configuration, variations in the thickness of the magnet 5, the printed circuit board 7 made of a magnetic material, etc. are added to increase the variation in the air gap 1g. Therefore, if the actual gap amount g is ignored and the magnet 5 is magnetized to saturation, the characteristics will vary depending on the product, such as being able to obtain very good characteristics and vice versa. will increase significantly.

従って、一般には特性のバラツキを一定の許容範囲に抑
えるべく、モータを構成する要素部品の単品精度を向上
させたり、空隙1gを調整しつつマグネットを取付ける
ための調整機構を電磁a器に取付けたりする事が多いが
、コストが大幅にアンプしてし摩ったり、重量1寸法が
増大するという問題点があった。
Therefore, in order to suppress the variation in characteristics within a certain tolerance range, it is generally necessary to improve the accuracy of the individual components that make up the motor, or to attach an adjustment mechanism to the electromagnetic aperture for attaching the magnet while adjusting the air gap of 1 g. However, there are problems in that the cost is significantly increased, wear and tear increases, and the weight increases by one dimension.

問題点を解決するための手段 上記問題点を解決する、本発明の技術的な手段は、マグ
ネットとこのマグネットの磁路を閉しるためのヨークと
所定の空隙を介して配置される電磁機器の組立において
、マグネットとヨークとの空隙量を測定して、しかる後
にその空隙量から電磁機器の特性のバラツキが最小とな
るような最適な着磁電力を制御してマグネットを着磁す
る事によるものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems includes a magnet, a yoke for closing the magnetic path of the magnet, and an electromagnetic device disposed through a predetermined gap. During assembly, the amount of air gap between the magnet and yoke is measured, and then the magnet is magnetized by controlling the optimum magnetizing power based on the amount of air gap to minimize the variation in the characteristics of the electromagnetic device. It is something.

作用 この技術的手段による作用は次のようになる。action The effect of this technical means is as follows.

すなわち、上記のごとくマグネットの着磁前にマグネ7
トとヨークとの空隙量を測定して、モーフ等tm機器の
特性のバラツキが最小となるような最適な着磁電力をそ
の空隙量から制御してマグネ・7トを着磁する事によっ
て、空隙量のバラツキが磁束密度のバラツキへと反映し
なくなり、したがって機器の構造を著しく変更する事な
く、機器の特性のバラツキを低減できる事になる。
In other words, as mentioned above, the magnet 7 is
By measuring the amount of air gap between the magnet and yoke, and controlling the optimum magnetizing power from the amount of air gap to minimize the variation in the characteristics of TM devices such as Morph, magnetizing the magnet. Variations in the amount of air gaps are no longer reflected in variations in magnetic flux density, and therefore variations in device characteristics can be reduced without significantly changing the structure of the device.

実施例 以下、本発明の一実施例を図面に基いて説明する。第1
図は本発明の一実施例における、モータの組立装置のブ
ロック図である。
EXAMPLE Hereinafter, an example of the present invention will be explained based on the drawings. 1st
The figure is a block diagram of a motor assembly device in one embodiment of the present invention.

リング状のマグネット5は磁性材料よりなるバックヨー
ク4に接着等により固定されており、またバックヨーク
4は軸3に圧入されている。軸3はホルダー1に配設さ
れた軸受部2,2′に回転自在に挿入されている。ホル
ダー1にはマグネット5の磁路を閉じるためのヨークを
兼ねる磁性材料製のプリント基板7が固着され、またプ
リント基板7上には駆動コイル6が接着されている。
The ring-shaped magnet 5 is fixed to a back yoke 4 made of a magnetic material by adhesive or the like, and the back yoke 4 is press-fitted into the shaft 3. The shaft 3 is rotatably inserted into bearings 2 and 2' provided in the holder 1. A printed circuit board 7 made of a magnetic material, which also serves as a yoke for closing the magnetic path of the magnet 5, is fixed to the holder 1, and a drive coil 6 is bonded onto the printed circuit board 7.

組立に際しては、モータ置台40にモータを載置して、
更にモータの上方には着磁ヨーク10を載置する。ここ
で着磁ヨーク10の下端面はバックヨーク4の端面に当
接する。着磁ヨーク10のこの下端面には複数本のS(
図示せず)が設けられ、この溝には絶縁被覆を施した励
磁用巻線12が巻かれている。
When assembling, place the motor on the motor stand 40,
Further, a magnetizing yoke 10 is placed above the motor. Here, the lower end surface of the magnetizing yoke 10 comes into contact with the end surface of the back yoke 4. The lower end surface of the magnetizing yoke 10 has a plurality of S(
(not shown), and an excitation winding 12 coated with insulation is wound around this groove.

また置台40にはリニア・モータ41が設けられ、モー
タが置台40に載置されるとこのリニア・モータ41に
より電子マイクロ・ビック・アップ30.31がマグネ
ット5とプリント基板7との間の空隙に挿入される。
A linear motor 41 is also provided on the stand 40, and when the motor is placed on the stand 40, the linear motor 41 moves an electronic micro-buck-up 30.31 into the gap between the magnet 5 and the printed circuit board 7. inserted into.

この電子マイクロ・ピック・アンプ30.31の出力は
空隙量計算器32に印加されてマグネット5の磁極面と
プリント基板7との間の空隙量gが計算される。更にこ
の空隙量gの値は最適電力制御器33に人力されて、置
台40上にa置されているモータの特性が設計値になる
ような着磁電力を求める。最適電力制御器33は着磁電
力供給装置34の内部のコンデンサー容量や充電電圧を
制御する。
The outputs of the electronic micro pick amplifiers 30 and 31 are applied to the air gap calculator 32 to calculate the air gap g between the magnetic pole face of the magnet 5 and the printed circuit board 7. Furthermore, the value of this gap amount g is manually inputted to the optimum power controller 33 to determine the magnetizing power that will bring the characteristics of the motor placed a on the mounting table 40 to the design value. The optimum power controller 33 controls the capacitor capacity and charging voltage inside the magnetizing power supply device 34.

そして着磁電力供給装置が充電されて、着磁の準備が禰
うと、着磁ヨーク10の励磁用巻線12に電力が供給さ
れる。励磁用巻線12に電力が印加されると、着磁ヨー
ク10の下端面には強大な磁界が発生して、この磁界は
ハックヨーク4を通過してマグネット5を磁化する。
When the magnetizing power supply device is charged and ready for magnetization, power is supplied to the excitation winding 12 of the magnetizing yoke 10. When power is applied to the excitation winding 12, a strong magnetic field is generated at the lower end surface of the magnetizing yoke 10, and this magnetic field passes through the hack yoke 4 and magnetizes the magnet 5.

次に本実施例における作用を説明する。Next, the operation of this embodiment will be explained.

マグネット5の磁極面とプリント基板7との間の空隙量
gが設計値に等しい場合は第2図に示すように、着磁ヨ
ーク10の下端面に発生する磁界の強度Hが、H=Ho
となるように着磁電力供給装置34から着磁電力が励磁
用巻線12に印加される。ここでHoの値は磁石材料の
磁化状態が、飽和状態(第2図において100%の状態
)よりも数%落ちるように設定される。
When the air gap g between the magnetic pole surface of the magnet 5 and the printed circuit board 7 is equal to the design value, the strength H of the magnetic field generated at the lower end surface of the magnetizing yoke 10 is H = Ho
Magnetizing power is applied from the magnetizing power supply device 34 to the excitation winding 12 so that. Here, the value of Ho is set so that the magnetization state of the magnet material is several percent lower than the saturated state (100% state in FIG. 2).

次に空隙量gが設計値よりも大きい場合は、着Effl
界の強度をH=Hoとすると、マグネ・ノド5とプリン
ト基板7との間の磁束密度は設計値よりも下がり、モー
タの特性も低下してしまう、しかしこの場合は着磁磁界
の強度Hが、Hoよりも大きな値になるように着磁電力
を制御して着磁すると、マグネット5の磁化の強さは、
設計値よりも大きくなる。したがって、空隙1gが設計
値よりも大きいにもかかわらず、マグネ・ノド5とプリ
ント基板7との間の磁束密度は設計値に近づける事がで
き、モータの特性は設計値に極めて近い値を得る事が可
能となる。
Next, if the void amount g is larger than the design value,
If the strength of the field is H=Ho, the magnetic flux density between the magnetization node 5 and the printed circuit board 7 will be lower than the design value, and the motor characteristics will also be degraded.However, in this case, the strength of the magnetizing magnetic field H When the magnetization power is controlled and magnetized so that the value becomes larger than Ho, the strength of magnetization of the magnet 5 is
It becomes larger than the design value. Therefore, even though the air gap 1g is larger than the design value, the magnetic flux density between the magneto node 5 and the printed circuit board 7 can be made close to the design value, and the motor characteristics can be obtained with values extremely close to the design values. things become possible.

次に空隙量gが設計値よりも小さい場合は、着磁磁界の
強度HをH6とすると、マグネット5とプリント基板7
との間の磁束密度は設計値よりも上がり、モータの特性
は設計値よりも向上する事になる。しかしこの場合は@
磁位界の強度HがHoよりも小さい値となるように着磁
電力を制御して着磁すると、マグネット5の磁化の強さ
は、設計値よりも小さくなる。したがって、空隙量gが
設計値よりも小さいにもかかわらず、マグネット5とプ
リント基板7との間の磁束密度は設計値近づける事がで
き、モータの特性は設計値に極めて近い値を得る事が可
能となる。
Next, when the air gap amount g is smaller than the design value, if the strength H of the magnetizing magnetic field is H6, then the magnet 5 and the printed circuit board 7
The magnetic flux density between the two ends will rise above the design value, and the motor characteristics will improve over the design value. But in this case @
When the magnetization power is controlled and magnetized so that the strength H of the magnetic field becomes a value smaller than Ho, the strength of magnetization of the magnet 5 becomes smaller than the designed value. Therefore, even though the air gap amount g is smaller than the design value, the magnetic flux density between the magnet 5 and the printed circuit board 7 can be brought close to the design value, and the motor characteristics can be obtained extremely close to the design value. It becomes possible.

また従来例におけるマグネット5の着磁方法においては
、マグネット5の磁極面を着磁ヨーク10に対向させて
行なっている。したがって、マグネット5の厚みがその
直径に比して著しく薄<、かつその磁石材料が残留磁束
密度に比して、抗磁力が小さい場合は、マグネット5を
着磁ヨーク10より外す際にマグネット5の自己Kmを
生ずる事があり、磁石材料の特性を充分に活用する事が
できなくなるという問題点があった。−古本実施例にお
いては、マグネット5は磁性材料製のプリント基板7に
対向して、すなわち磁気回路を閉じた状態にて着磁を行
なっている。したがって、マグネットを着磁して着磁ヨ
ークからマグネットを外す際に生じる自己減磁も防止で
きるという効果も併せて有している。
Further, in the conventional method of magnetizing the magnet 5, the magnetic pole face of the magnet 5 is opposed to the magnetizing yoke 10. Therefore, if the thickness of the magnet 5 is extremely thin compared to its diameter, and the magnet material has a small coercive force compared to the residual magnetic flux density, when the magnet 5 is removed from the magnetizing yoke 10, There was a problem in that the characteristics of the magnetic material could not be fully utilized. - In the used book embodiment, magnetization is performed with the magnet 5 facing the printed circuit board 7 made of a magnetic material, that is, with the magnetic circuit closed. Therefore, it also has the effect of preventing self-demagnetization that occurs when the magnet is magnetized and removed from the magnetization yoke.

なお、本実施例は平面対向型モータに適用したものであ
るが、全く同様な構成で、面対向型モータへも適用可能
である。
Although this embodiment is applied to a plane facing type motor, it can also be applied to a plane facing type motor with a completely similar configuration.

なお上記実施例においては、モータについて行なったが
、本発明はモータに限られるものではなく、永久磁石を
もちいた電磁機器のあらゆる種類にも適用できる事はあ
きらかである。
Although the above embodiments have been described with respect to motors, it is obvious that the present invention is not limited to motors and can be applied to all kinds of electromagnetic devices using permanent magnets.

発明の効果 本発明は、マグネットとこのマグネットの磁路を閉じる
ためのヨークと所定の空隙を介して配置される電磁機器
の組立において、マグネットとヨークの間の空隙量にバ
ラツキが生じても、マグネットの着磁電力を制御する事
により、電M1機器の特性のバラツキを低減する事がで
きるという効果を有する。
Effects of the Invention The present invention is capable of assembling a magnet, a yoke for closing the magnetic path of the magnet, and an electromagnetic device arranged with a predetermined gap in between, even if the amount of gap between the magnet and the yoke varies. By controlling the magnetizing power of the magnet, it is possible to reduce variations in the characteristics of the electric M1 equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるモータの組立装置の
ブロック図、第2図はマグネ・ノドの磁化曲線図、第3
図は従来例におけるモータの横断面図、第4図は従来例
のモータのマグネットの着磁状態図である。 5・・・・・・マグネット、7・・・・・・プリント基
板、10・・・・・・着磁ヨーク、30.31・・・・
・・電子マイクロ・ピンク・アップ、32・・・・−・
空隙量計算器、33・・・・・・最適電力制御器、34
・・・・・・着磁電力供給装置。 代理人の氏名 弁理士 中尾敏男 ほか1名第2図 1膿遜1」= 1−7.ルク゛− 第3図      2.2’−II!I÷3−一一細 4−バ′・y73−2 5−−−7プネン1 第4図
FIG. 1 is a block diagram of a motor assembly device according to an embodiment of the present invention, FIG. 2 is a magnetization curve diagram of a magnet throat, and FIG.
The figure is a cross-sectional view of a conventional motor, and FIG. 4 is a diagram showing the state of magnetization of the magnet of the conventional motor. 5... Magnet, 7... Printed circuit board, 10... Magnetizing yoke, 30.31...
・・Electronic Micro Pink Up, 32・・・・−・
Gap amount calculator, 33...Optimum power controller, 34
...Magnetizing power supply device. Name of agent: Patent attorney Toshio Nakao and 1 other person Figure 2 1 1' = 1-7. Luk-Figure 3 2.2'-II! I÷3-11th 4-ba'・y73-2 5--7 Punen 1 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  磁性材料よりなるヨークと所定の空隙を介して永久磁
石を配置してなる電磁機器の組立において、前記永久磁
石の着磁装置と、前記永久磁石と前記ヨークとの空隙量
を測定する測定手段と、この測定手段により得た空隙量
から前記着磁装置の最適な着磁電力を制御する制御手段
とを具備したことを特徴とする電磁機器の組立装置。
In the assembly of an electromagnetic device including a yoke made of a magnetic material and a permanent magnet arranged through a predetermined gap, a magnetizing device for the permanent magnet and a measuring means for measuring the amount of gap between the permanent magnet and the yoke are provided. and a control means for controlling the optimum magnetizing power of the magnetizing device based on the amount of air gap obtained by the measuring means.
JP3458286A 1986-02-18 1986-02-18 Electromagnetic apparatus assembling device Pending JPS62190824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3458286A JPS62190824A (en) 1986-02-18 1986-02-18 Electromagnetic apparatus assembling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3458286A JPS62190824A (en) 1986-02-18 1986-02-18 Electromagnetic apparatus assembling device

Publications (1)

Publication Number Publication Date
JPS62190824A true JPS62190824A (en) 1987-08-21

Family

ID=12418313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3458286A Pending JPS62190824A (en) 1986-02-18 1986-02-18 Electromagnetic apparatus assembling device

Country Status (1)

Country Link
JP (1) JPS62190824A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177280A (en) * 1984-09-20 1986-04-19 三洋電機株式会社 Magnetization for rotor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177280A (en) * 1984-09-20 1986-04-19 三洋電機株式会社 Magnetization for rotor

Similar Documents

Publication Publication Date Title
JP3249930B2 (en) Insert light source
US4429240A (en) Stator yoke for electrical apparatus
GB2028597A (en) Electrical motor
JPH03215154A (en) Motor
JPS62190824A (en) Electromagnetic apparatus assembling device
JPH1155907A (en) Electromagnetic driver having moving permanent magnet
JP2002354779A (en) Linear motor
Joyce et al. Micro-step motor
JP4387877B2 (en) Magnetizing apparatus, voice call motor, and method of manufacturing voice coil motor
JP2699252B2 (en) Permanent magnet variable magnetic field generator
JPH1011886A (en) Storage device
JPH10270247A (en) Multiple polar magnetizing device of permanent magnet
JPS62152350A (en) Assembling of electromagnetic apparatus
JPH10243623A (en) Permanent magnet motor
JPH0833304A (en) Voice coil type linear motor
JP2000209834A (en) Voice coil type linear motor
JPS61116962A (en) Linear motor
JP2542491Y2 (en) Linear motor
JPS61124915A (en) Driving and positioning device for extremely small stage
RU1111649C (en) Linear striction step electric motor
JPH06121513A (en) Magnetic actuator
JPS5815461A (en) Controlled dc coreless motor
JPH099600A (en) Actuator for magnetic disk device
JPH02193560A (en) Actuator
JPS61176104A (en) Rectilinearly moving electromagnetic device