JPS62190724A - Alignment system - Google Patents

Alignment system

Info

Publication number
JPS62190724A
JPS62190724A JP61032377A JP3237786A JPS62190724A JP S62190724 A JPS62190724 A JP S62190724A JP 61032377 A JP61032377 A JP 61032377A JP 3237786 A JP3237786 A JP 3237786A JP S62190724 A JPS62190724 A JP S62190724A
Authority
JP
Japan
Prior art keywords
light
pattern
incident
wafer
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61032377A
Other languages
Japanese (ja)
Other versions
JPH033377B2 (en
Inventor
Hiroshi Uehara
洋 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP61032377A priority Critical patent/JPS62190724A/en
Publication of JPS62190724A publication Critical patent/JPS62190724A/en
Publication of JPH033377B2 publication Critical patent/JPH033377B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To align masks and wafers accurately at a high speed by obtaining a plurality of different detected images by introducing incident light from a plurality of different angles, combining the detected images and aligning them. CONSTITUTION:Laser emitting units 1, 17 are controlled by a laser controller 3 via control lines 5a, 5b to switch the incident angle of emitting light source. The light emitted from the unit 1 passes a beam splitter 2, then passes a window 27 on a mask 12 through a lens 11 to become a light trace 8'' to be emitted on the alignment pattern 24 on a wafer 13. The traces 8' and 3'' of the light are emitted in the same pattern but are emitted at different incident angles. Thus, the images detected by a photodetector 12 are different. A photodetected image combining unit 4 combined the images of two types, and aligned by the optimized imaged. The quantities of light of the units 1, 17 are controlled by the laser controller to be detected by photodetectors 5A, 5B. The levels of the reflected lights are controlled to become near values.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体の焼き付は装置におけるウェハ上のパタ
ーンとマスク上のパターンの位置合わせ方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for aligning a pattern on a wafer and a pattern on a mask in a semiconductor printing apparatus.

(従来の技術) 従来から半導体等の焼付は装置において、つ工ハとマス
クの位置合せを行う方式として、ウェハ上のパターンと
マスク上のパターン間の位置合わせを行う方式が知られ
ている。
(Prior Art) Conventionally, a method for aligning a pattern on a wafer and a pattern on a mask has been known as a method for aligning a wafer and a mask in an apparatus for printing semiconductors and the like.

このような従来公知の位置合わせ方式としては、特開昭
56−122128号公報に記載された方式が知られい
る。
As such a conventionally known positioning method, a method described in Japanese Patent Laid-Open No. 122128/1983 is known.

特開昭56−’122128号公報に記載された位置合
わせ方式は、ウェハ上とマスク上に形成された位置合わ
せ用のパターンのうち一方のパターンをあらかじめ定め
られたピッチとし、他方のパターンを同一のピッチで繰
り返される約半数の第1のパターン群と、この第1のパ
ターンのピッチと172ピッチだけ位相をずらし、かつ
ピッチ間隔を第1のパターンと同一とした第2のパター
ン群とから構成することにより、“′O′′電位による
位置合わせを可能にしたものである。
The alignment method described in JP-A-56-122128 has alignment patterns formed on a wafer and a mask, one of which has a predetermined pitch, and the other pattern with the same pitch. It consists of a first pattern group of approximately half the number of patterns repeated at a pitch of , and a second pattern group whose phase is shifted by 172 pitches from the pitch of this first pattern and whose pitch interval is the same as that of the first pattern. By doing so, alignment using the "'O'' potential is made possible.

この方式を第3図ないし第7図を参照して説明する。This method will be explained with reference to FIGS. 3 to 7.

第3図において、11はパターン投影用のレンズ、12
はマスク、13はウェハ、14.15.16はパターン
焼き付は用の光の方向を示す。また17はレーザ光源で
あり、18は発射されたレーザ光の軌跡、19はこのレ
ーザ光の正反側した軌跡、20はウェハ上のパターンで
乱反射した光の軌跡、21はウェハ上のパターンがレン
ズ11を通してマスク12に投影する光の軌跡である。
In FIG. 3, 11 is a pattern projection lens, 12
13 is a mask, 13 is a wafer, and 14, 15, and 16 are directions of light for pattern printing. Further, 17 is a laser light source, 18 is a trajectory of the emitted laser beam, 19 is a trajectory of this laser beam on the opposite side, 20 is a trajectory of light diffusely reflected by a pattern on a wafer, and 21 is a trajectory of a pattern on a wafer. This is the trajectory of light projected onto the mask 12 through the lens 11.

この構成において、ウェハ13上の位置合わせ用のパタ
ーンはレーザ光源17からのレーザ光で照射され検出器
22Aおよび22Bで光の強さが検出される。第3図で
は検出器は1個しか示されていないが、実際にはパター
ンに沿って2個配置されている。
In this configuration, the alignment pattern on the wafer 13 is irradiated with laser light from the laser light source 17, and the intensity of the light is detected by the detectors 22A and 22B. Although only one detector is shown in FIG. 3, two detectors are actually arranged along the pattern.

第4図はマスクとウェハ上に形成された位置合わせ用の
パターンの一例を示すもので、23がマスク上のパター
ン、24がウェハ上のパターンであって、これらのパタ
ーンのピッチ間隔は同一とされている。なおマスク上の
パターン23とウェハ上のパターン24とはその形成さ
れる対象が逆であっても差支えない。図中25は反射部
分、26bは非反射部分である。マスク上のパターン2
3の部分には27.28で示す光を通過させる多数の矩
形の窓27と非透過部分26aとが同一間隔で、かつA
lBの部分で172ピッチ位相をずらせて形成されてい
る。そして、ウェハ13上のパターン24の反射部分2
5から発した光は、マスク12上の矩形の窓27または
28を通り、窓27を通った光は検出器22Aに、窓2
8を通った光は検出器22Bに検出されるようになって
いる。
FIG. 4 shows an example of alignment patterns formed on a mask and a wafer, where 23 is a pattern on the mask, 24 is a pattern on a wafer, and the pitch intervals of these patterns are the same. has been done. Note that the pattern 23 on the mask and the pattern 24 on the wafer may be formed on opposite objects. In the figure, 25 is a reflective portion, and 26b is a non-reflective portion. Pattern 2 on the mask
In the part 3, there are a large number of rectangular windows 27 and non-transparent parts 26a shown at 27 and 28 at the same intervals, and which pass the light.
They are formed with a phase shift of 172 pitches in the lB portion. Then, the reflective portion 2 of the pattern 24 on the wafer 13
The light emitted from the window 2 passes through the rectangular window 27 or 28 on the mask 12, and the light that passes through the window 27 is sent to the detector 22A.
The light passing through 8 is detected by a detector 22B.

第4図の状態では、マスク12上のパターンとウェハ1
3上のパターンとがAの範囲においては完全に合致し、
Bの部分では完全にずれているため、検出器22Aの出
力は最大となり、検出器22Bの出力は最低となってい
る。
In the state shown in FIG. 4, the pattern on the mask 12 and the wafer 1
3. The pattern above matches perfectly within the range of A,
In part B, there is a complete shift, so the output of the detector 22A is the maximum, and the output of the detector 22B is the minimum.

次にウェハを矢印Xの方向に動かしていくと、Aの範囲
では窓27と反射部分25の重なりが徐々に減少してい
くため、検出器22Aの出力は徐々に減少していき、B
の範囲では窓28と反射部分25の重なりが徐々に増加
していくため、検出器22Bの出力は徐々に増加してい
く。そしてウェハが矢印X方向に172ピッチだけ動い
たときに、検出器22A、22Bの出力は完全に逆転し
、1ピッチ動くと上記の関係は元に戻ることになる。
Next, as the wafer is moved in the direction of arrow
In the range , the overlap between the window 28 and the reflective portion 25 gradually increases, so the output of the detector 22B gradually increases. When the wafer moves 172 pitches in the direction of arrow X, the outputs of the detectors 22A and 22B are completely reversed, and when the wafer moves one pitch, the above relationship returns to its original state.

第5図(a)は上記の検出器22△、22Bの出力電圧
と矢印X方向へのウェハの移動量の関係を示したもので
あり、横軸がマスク12とウェハ13の相対移動量を示
し、縦軸は検出器の出力電圧を示す。図中W1が検出器
22Aの出力電圧を示し、W2が検出器22Bの出力電
圧を示している。同図において、aおよびbで示す点は
、マスク12とウェハ13が第4図の位置関係にあると
きのもので、ウェハが第4図の矢印X方向へ移動するに
つれて、検出器の出力電圧は第5図(a)の矢印Xで示
す方向に変っていく。Cの点は、ウェハが172ピッチ
だけ動いたときの各検出器の出力電圧であり、検出器2
2Aの出力電圧と検出器22Bの出力電圧とが等しくな
っている。
FIG. 5(a) shows the relationship between the output voltages of the detectors 22Δ and 22B and the amount of movement of the wafer in the direction of the arrow X, where the horizontal axis represents the amount of relative movement between the mask 12 and the wafer 13. , and the vertical axis shows the output voltage of the detector. In the figure, W1 indicates the output voltage of the detector 22A, and W2 indicates the output voltage of the detector 22B. In the same figure, the points indicated by a and b are when the mask 12 and the wafer 13 are in the positional relationship shown in FIG. 4, and as the wafer moves in the direction of the arrow X in FIG. changes in the direction shown by arrow X in FIG. 5(a). Point C is the output voltage of each detector when the wafer moves by 172 pitches, and the point C is the output voltage of each detector when the wafer moves 172 pitches.
The output voltage of 2A and the output voltage of detector 22B are equal.

次に第5図(b)のW3で示すカーブは、検出器22A
の出力電圧と検出器22Bの出力電圧を減紳器で減算処
理したカーブである。同図から明らかなように、このカ
ーブは゛O゛′電位を中心として正負に振れるものとな
る。ここでnで示す点は第5図(a)の0点に対応する
もので検出器22Aと22Bの出力電圧が等しいとき、
すなわちウェハがX方向に172ピッチだけ動いたとき
のものである。
Next, the curve indicated by W3 in FIG. 5(b) is
This is a curve obtained by subtracting the output voltage of the detector 22B and the output voltage of the detector 22B using a reducer. As is clear from the figure, this curve swings positive and negative around the 'O' potential. Here, the point indicated by n corresponds to the 0 point in FIG. 5(a), and when the output voltages of the detectors 22A and 22B are equal,
That is, this is when the wafer moves by 172 pitches in the X direction.

したがってこの状態を位置合わせのできた状態としてお
けば、第6図(b)の“011電位を参照してマスク1
2とウェハ130位置合わせを行うことができる。
Therefore, if this state is set as a state in which alignment has been completed, the mask 1 is
2 and the wafer 130 can be aligned.

ところで一般にウェハ上の反射部分25は位置によって
反射率に若干の差があり、またパターンの配列方向と直
角の方向へのずれも考えられ、ざらにレーザ光源17も
時間とともに光量が変化することが考えられるが、この
方式ではへの部分とBの部分とで互いの変化分が相殺さ
れるのでS/N比が良く、物体および入射光の変化の影
響を受けないという利点がおる。またこの方式は反射光
のみを利用するのでマスクとウェハ間のギャップの影響
を受けないという利点もある。
By the way, in general, there is a slight difference in the reflectance of the reflective portion 25 on the wafer depending on the position, and it is also possible that there is a deviation in the direction perpendicular to the direction in which the patterns are arranged, and the light intensity of the laser light source 17 also changes over time. However, this method has the advantage that the S/N ratio is good because the changes in the portion B and the portion B cancel each other out, and that it is not affected by changes in the object and the incident light. Additionally, since this method uses only reflected light, it has the advantage of not being affected by the gap between the mask and the wafer.

(発明が解決しようとする問題点) しかしながら、特開昭56−122128号公報に記載
された位置合わせ方式では、パターンの立体的形状とレ
ーザ光の入射角との関係から、マスク12の窓27.2
8の輪郭とウェハ13上のパターン271の反射部分2
5と非反射部分26bの境界部分の輪郭が不鮮明になり
、位置合わせに困難をきたすという問題があった。
(Problems to be Solved by the Invention) However, in the alignment method described in JP-A-56-122128, due to the relationship between the three-dimensional shape of the pattern and the incident angle of the laser beam, .2
8 and the reflected portion 2 of the pattern 271 on the wafer 13
5 and the non-reflective portion 26b becomes unclear, making alignment difficult.

以下、第6図ないし第9図を参照してこの問題について
説明する。
This problem will be explained below with reference to FIGS. 6 to 9.

第6図はウェハ13上の位置合わせパターン24がマス
ク12上のパターン23の窓27と位置合わせされた状
態にあるときに、入射光線81をウェハ13に対して浅
い角度で入射させた場合の例を示したものである。なお
図において、βは窓27の幅である。
FIG. 6 shows the case where the incident light beam 81 is made incident on the wafer 13 at a shallow angle when the alignment pattern 24 on the wafer 13 is aligned with the window 27 of the pattern 23 on the mask 12. This is an example. Note that in the figure, β is the width of the window 27.

この例の場合には、パターン24の平坦面での反射光は
マスク12のパターン23の窓27を通過しない暗部と
して検知される。そしてマスク12の窓27には下から
のみ光が入射するため、窓27の上縁が不必要な散乱光
をカットして窓27の輪郭が明瞭に現れる。
In this example, the light reflected from the flat surface of the pattern 24 is detected as a dark portion that does not pass through the window 27 of the pattern 23 of the mask 12. Since light enters the window 27 of the mask 12 only from below, the upper edge of the window 27 cuts off unnecessary scattered light and the outline of the window 27 appears clearly.

第7図は第6図と同一の位置関係を示す図であるが、入
射光線82を、マスク12のパターン23の窓27を経
由してウェハ13のパターン24にほぼ垂直に入射させ
た場合の例を示したものである。
FIG. 7 is a diagram showing the same positional relationship as FIG. 6, but when the incident light beam 82 is made to enter the pattern 24 of the wafer 13 almost perpendicularly through the window 27 of the pattern 23 of the mask 12. This is an example.

第7図に示した例ではウェハ13上に光線がほぼ垂直に
入射するため、ウェハ13上のパターン24のエツジ部
分[に非常に浅い角度で入射し、したがって反射した光
線203.204はマスクパターン23側には戻らない
。一方、パターン24の非反射部分26bを除く反射部
分25でマスクパターン23側に反射される光線の比率
が非常に大きくなり、この反射光が82と同一の経路を
たどりマスクパターン23の窓27を経由して検出器2
2Aで検出される。従って第7図の例の場合には、ウェ
ハ13上のパターン26の部分はそのエツジ部分Eまで
暗く見え反射部分25が特に明るく見えることになり、
パターン26と反射部分25の輪郭は明瞭に現れる。
In the example shown in FIG. 7, the light rays are incident on the wafer 13 almost perpendicularly, so they are incident on the edge portions of the pattern 24 on the wafer 13 at a very shallow angle, and therefore the reflected light rays 203 and 204 are incident on the mask pattern 24. I will not return to the 23rd side. On the other hand, the ratio of the light rays reflected toward the mask pattern 23 by the reflective portion 25 excluding the non-reflective portion 26b of the pattern 24 becomes extremely large, and this reflected light follows the same path as 82 and passes through the window 27 of the mask pattern 23. via detector 2
Detected at 2A. Therefore, in the case of the example shown in FIG. 7, the portion of the pattern 26 on the wafer 13 appears dark up to its edge portion E, and the reflective portion 25 appears particularly bright.
The contours of the pattern 26 and the reflective portion 25 appear clearly.

(発明が解決しようとする問題点) しかしながら第6図の例では、入射光線81が浅い角度
で人制し、かつパターン24のエツジ部分Eの立上り角
度が90’よりやや傾斜しているため、このエツジ部分
Fで反射された光線201.202も検出器22Aで検
出されて非反射部分26bの境界が窓27の中心位置よ
り若干ずれた位置となり、さらにエツジ部分Eのバラツ
キに応じてこの境界位置にバラツキが発生するという問
題がある。このバラツキの範囲はパターン24形成時の
プロセスに左右されるが、現在のプロセス技術では0.
1〜0.2μmのバラツキとなって現れ、第8図に示す
ように、ウェハ13上の非反射部26bのエツジ部分F
が不鮮明部Uが生じてしまう。
(Problems to be Solved by the Invention) However, in the example shown in FIG. 6, the incident light ray 81 is confined at a shallow angle, and the rising angle of the edge portion E of the pattern 24 is slightly inclined from 90'. The light rays 201 and 202 reflected by this edge portion F are also detected by the detector 22A, and the boundary of the non-reflection portion 26b is located at a position slightly shifted from the center position of the window 27. There is a problem that variations occur in the positions. The range of this variation depends on the process used to form the pattern 24, but with current process technology 0.
This appears as a variation of 1 to 0.2 μm, and as shown in FIG.
However, an unclear portion U occurs.

また第7図に示した例では、マスクパターン23の窓部
27より入射した光線は窓部27の上縁近傍で20f1
.20f2.20f3.20f4で示すように反射した
り窓部27の内面で乱反射したりする上に、ウェハ13
上のパターン24の非反射部分26bおよび反射部分2
5が厳密な平坦面でないこともあって、第9図に示すよ
うに、窓部27の周辺部にボケU′が生じるという問題
があった。
In the example shown in FIG. 7, the light beam incident through the window 27 of the mask pattern 23 is 20f1
.. In addition to being reflected as shown by 20f2, 20f3, and 20f4 and being diffusely reflected on the inner surface of the window 27, the wafer 13
Non-reflective portion 26b and reflective portion 2 of upper pattern 24
5 is not a strictly flat surface, there is a problem in that blur U' occurs around the window portion 27, as shown in FIG.

したがって本発明の目的は、マスクパターンの窓部の輪
郭も、またこの窓部から位置合わせがなされたとき見え
るウェハのパターンの反射部分と非反射部分の輪郭も明
瞭にした位置合わせ方式を提供することを目的とする。
Therefore, an object of the present invention is to provide an alignment method that makes clear the contours of the window portion of the mask pattern and the contours of the reflective and non-reflective portions of the wafer pattern that are visible when alignment is performed through the window portion. The purpose is to

(問題点を解決するための手段) 本発明はかかる目的を達成するため、マスク上に設けた
パターンと、ウェハ上に設けたこれと同一ピッチのパタ
ーンを一定のギャップをおいて重ね、これら各パターン
に光線を入射させ前記各パターンによって生じた反射光
の強度の変化によってマスクとウェハの相対変位を検出
して位置合わせを行なう位置合わせ方式において、前記
マスクまたはウェハの少なくとも一方のパターンを、第
1と第2のパターン群に区分し、この第1のパターン群
と他方のパターンの組の対応関係と、第2のパターン群
と他方のパターンの組の対応関係とを、互いにほぼ1/
2ピッチずれた位置関係とするとともに、前記入射させ
る光線を複数の異なる角度より入射させて複数の異なる
検出像を得、これら複数の検出像を合成して位置合わせ
を行うことを特徴としている。
(Means for Solving the Problems) In order to achieve the above object, the present invention overlaps a pattern formed on a mask and a pattern formed on a wafer with the same pitch with a certain gap between them. In an alignment method in which a light beam is incident on a pattern and alignment is performed by detecting a relative displacement between a mask and a wafer based on a change in the intensity of reflected light caused by each of the patterns, at least one pattern on the mask or the wafer is The correspondence relationship between the first pattern group and the other pattern group and the correspondence relationship between the second pattern group and the other pattern group are set to be approximately 1/1/2 of each other.
It is characterized in that the positional relationship is shifted by two pitches, the incident light beam is made incident from a plurality of different angles to obtain a plurality of different detected images, and the plurality of detected images are combined to perform alignment.

(作用) 本発明においては、2つの異なる角度で入射した光線に
対するそれぞれの検出像を、両者の長所となる部分を組
合せて合成するようにしたので、光線の乱反射による輪
郭の不明瞭な部分が較正されて明瞭となり、迅速で高精
度の位置合わせを行うことが可能となる。
(Function) In the present invention, the respective detection images for the light rays incident at two different angles are combined and synthesized by combining the parts that have the advantages of both, so that the parts with unclear outlines due to diffuse reflection of the light rays are It is calibrated and clear, allowing for rapid and highly accurate alignment.

(実施例) 以下本発明の一実施例について説明する。(Example) An embodiment of the present invention will be described below.

なお、本発明は光源の数と検出器とを除いて第3図に示
した従来の方式と同じであるので、同一部分には共通の
符号を付して重複する説明を省略する。
It should be noted that since the present invention is the same as the conventional system shown in FIG. 3 except for the number of light sources and detectors, the same parts are given the same reference numerals and redundant explanations will be omitted.

第1図は、本発明の位置合わせ方式の構成例を示したも
ので、図において11はレンズ、12は原版マスク、1
3はウェハ、14.15.16はパターン焼き付は用の
光の方向を示す。17はレーザ発光装置、18は発射さ
れた光の軌跡を示し、19は前記の光の正反射された軌
跡を示す。また、20で示す多数の矢印は、位置合わせ
用のパターン上で乱反射する光の軌跡を示す。21はウ
ェハ上の位置合わせ用のパターンがレンズ1を通して、
逆にマスク2に向かって投影されてくる光の軌跡を示す
FIG. 1 shows an example of the configuration of the alignment method of the present invention. In the figure, 11 is a lens, 12 is an original mask, 1
3 indicates the wafer, and 14, 15, and 16 indicate the direction of light for pattern printing. 17 is a laser emitting device, 18 is a locus of emitted light, and 19 is a specularly reflected locus of the light. Further, a large number of arrows indicated by 20 indicate the locus of light that is diffusely reflected on the alignment pattern. 21, the alignment pattern on the wafer passes through the lens 1;
Conversely, it shows the locus of light projected toward the mask 2.

しかしてこの実施例では、以上の従来の構成に加えて、
さらに別のレーザ発光装置1、ビームスプリッタ2、レ
ーザ制御装置3、受光像の合成装置4、テレビカメラ等
の受光素子5A、5Bが設けられている。なおこの受光
素子5A、5bも検出器22A、22Bと同様に位置合
わせ用のパターンに沿って2個配置されている。
However, in this embodiment, in addition to the above conventional configuration,
Furthermore, another laser emitting device 1, a beam splitter 2, a laser control device 3, a light receiving image combining device 4, and light receiving elements 5A and 5B such as a television camera are provided. Note that, like the detectors 22A and 22B, two light receiving elements 5A and 5b are also arranged along a pattern for positioning.

レーザ発光装置1と17は制御線5aおよび5bにより
レーザ制御装置3で制御され、照射する光源の入射角が
切替えられる。8′、8″はレーザ発光装置1より発射
された光の軌跡を示している。この光はビームスプリッ
タ2をを透過し、マスク12上の窓27を通過後、レン
ズ11を経由して光の軌跡8″となってウェハ13上の
位置合わせパターン24を照らす。光の軌跡8と8″は
同一のパターンを照射するが入射角が異なるため、受光
素子12で検出された像には相違が生じる。
The laser emitting devices 1 and 17 are controlled by the laser control device 3 using control lines 5a and 5b, and the incident angle of the irradiating light source is switched. 8' and 8'' indicate the trajectory of the light emitted from the laser emitting device 1. This light passes through the beam splitter 2, passes through the window 27 on the mask 12, and then passes through the lens 11. 8'' and illuminates the alignment pattern 24 on the wafer 13. The light trajectories 8 and 8'' illuminate the same pattern but have different incident angles, so that the images detected by the light receiving element 12 are different.

受光像の合成装置4はこれら2種類の像を合成し、最適
化された像により位置合わせを行なえるようにする。
A light receiving image synthesizing device 4 synthesizes these two types of images so that alignment can be performed using the optimized image.

なおレーザ発光装置1、および17の光量はレーザ制御
装置81に制御されて受光素子5A、5Bで検出される
その反射光のレベルがほぼ近い値となるように制御され
る。
Note that the light quantities of the laser emitting devices 1 and 17 are controlled by the laser control device 81 so that the levels of the reflected light detected by the light receiving elements 5A and 5B are approximately close to each other.

そして第8図および第9図の例で説明したように、レー
ザ発光装置17による検出像は、窓27の上縁が不必要
な散乱光をカットし窓27の輪郭を明瞭に坦し、またレ
ーザ発光装置1による検出像は、パターン24の反射部
分25と非反射部分26bの境界を明瞭に現すのでこれ
らの合成像は、第2図に示すように、両者の長所となる
部分が重畳されて光線の乱反射による輪郭の不明瞭な部
分が較正され、迅速で高精度の位置合わせを行なうこと
が可能となる。
As explained in the examples of FIGS. 8 and 9, the image detected by the laser emitting device 17 shows that the upper edge of the window 27 cuts unnecessary scattered light and clearly flattens the outline of the window 27. Since the image detected by the laser emitting device 1 clearly shows the boundary between the reflective portion 25 and the non-reflective portion 26b of the pattern 24, the composite image of these is a composite image in which the advantageous portions of both are superimposed. This calibrates ambiguous contours due to diffused reflection of light beams, making it possible to perform quick and highly accurate positioning.

した結果を示すものである。The results are shown below.

なお、この方式ではAの部分とBの部分とで互いの変化
分が相殺されるのでS/N比が良く、物体および入射光
の変化の影響を受けず、また反射光のみを利用するので
マスクとウェハ間のギャップの影響を受けないという利
点もある。
In addition, in this method, changes in parts A and B cancel each other out, so the S/N ratio is good, and it is not affected by changes in the object or incident light, and only reflected light is used. Another advantage is that it is not affected by the gap between the mask and the wafer.

(発明の効果) 以上述べたように本発明は、2つの異なる角度で入射し
た光線に対するそれぞれの検出像を、両者の長所となる
部分を組合せて合成することにより従来よりも高精度で
位置合わせ可能となる。
(Effects of the Invention) As described above, the present invention achieves positioning with higher precision than before by combining the respective detection images of light rays incident at two different angles and combining the advantages of both. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の方式の構成図、第2図はこ
の実施例により位置合わせが行われた状態のマスクの位
置合わせ用パターンの窓から見た状態を示す平面図、第
3図は従来の位置合わせ方式の構成図、第4図はその位
置合わせ用のバターンを示す平面図、第5図(a>、(
b)は第3図に示した位置合わせ方式において検出され
る波形を示した波形図、第6図および第7図はそれぞれ
従来の位置合わせ方式における検出光の経路を示す図、
第8図および第9図はこれらの方式で得られる検出像を
示す平面図である。
FIG. 1 is a block diagram of a method according to an embodiment of the present invention, and FIG. 2 is a plan view showing the alignment pattern of a mask after alignment is performed according to this embodiment, as seen through the window. Figure 3 is a block diagram of the conventional alignment method, Figure 4 is a plan view showing the alignment pattern, and Figure 5 (a>, (
b) is a waveform diagram showing the waveform detected in the alignment method shown in FIG. 3; FIGS. 6 and 7 are diagrams showing the path of the detection light in the conventional alignment method, respectively;
FIGS. 8 and 9 are plan views showing detected images obtained by these methods.

Claims (4)

【特許請求の範囲】[Claims] (1)マスク上に設けたパターンと、ウェハ上に設けた
これと同一ピッチのパターンを一定のギャップをおいて
重ね、これら各パターンに光線を入射させ前記各パター
ンによつて生じた反射光の強度の変化によつてマスクと
ウェハの相対変位を検出して位置合わせを行なう位置合
わせ方式において、前記マスクまたはウェハの少なくと
も一方のパターンを、第1と第2のパターン群に区分し
、この第1のパターン群と他方のパターンの組の対応関
係と、第2のパターン群と他方のパターンの組の対応関
係とを、互いにほぼ1/2ピッチずれた位置関係とする
とともに、前記入射させる光線を複数の異なる角度より
入射させて複数の異なる検出像を得、これら複数の検出
像を合成して位置合わせを行うことを特徴とする位置合
わせ方式。
(1) A pattern formed on a mask and a pattern formed on a wafer with the same pitch are overlapped with a certain gap, and a light beam is incident on each of these patterns, and the reflected light generated by each of the patterns is In an alignment method that performs alignment by detecting relative displacement between a mask and a wafer by a change in intensity, a pattern on at least one of the mask or the wafer is divided into a first pattern group and a second pattern group. The correspondence relationship between the first pattern group and the other pattern group and the correspondence relationship between the second pattern group and the other pattern group are shifted by approximately 1/2 pitch from each other, and the incident light beam is A positioning method characterized in that a plurality of different detection images are obtained by making the light incident from a plurality of different angles, and alignment is performed by composing these plurality of detection images.
(2)複数の異なる角度から入射される光線の少なくと
も一つはウェハの面に対して垂直または垂直に近い角度
で入射させ、他の光線の少なくとも一つはウェハの面に
対して浅い角度で入射させることを特徴とする特許請求
の範囲第1項記載の位置合わせ方式。
(2) At least one of the light rays incident from a plurality of different angles is incident at a perpendicular or nearly perpendicular angle to the wafer surface, and at least one of the other light rays is incident at a shallow angle to the wafer surface. 2. The alignment method according to claim 1, wherein the alignment method comprises:
(3)複数の異なる角度から入射される光線の少なくと
も一つはマスクを介して入射され、他の光線の少なくと
も一つはマスクを介さないで入射されることを特徴とす
る特許請求の範囲第1項記載の位置合わせ方式。
(3) At least one of the light rays incident from a plurality of different angles is incident through a mask, and at least one of the other light rays is incident without passing through the mask. The alignment method described in Section 1.
(4)前記複数の異なる角度より入射させる光は切替え
て入射されることを特徴とする特許請求の範囲第1項な
いし第3項記載の位置合わせ方式。
(4) The alignment method according to any one of claims 1 to 3, characterized in that the light incident from the plurality of different angles is switched to be incident.
JP61032377A 1986-02-17 1986-02-17 Alignment system Granted JPS62190724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61032377A JPS62190724A (en) 1986-02-17 1986-02-17 Alignment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61032377A JPS62190724A (en) 1986-02-17 1986-02-17 Alignment system

Publications (2)

Publication Number Publication Date
JPS62190724A true JPS62190724A (en) 1987-08-20
JPH033377B2 JPH033377B2 (en) 1991-01-18

Family

ID=12357260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61032377A Granted JPS62190724A (en) 1986-02-17 1986-02-17 Alignment system

Country Status (1)

Country Link
JP (1) JPS62190724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950188B2 (en) 2003-04-23 2005-09-27 International Business Machines Corporation Wafer alignment system using parallel imaging detection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082268A2 (en) 2007-12-21 2009-07-02 Alla Chem, Llc LIGANDS OF α-ADRENOCEPTORS AND OF DOPAMINE, HISTAMINE, IMIDAZOLINE AND SEROTONIN RECEPTORS AND THE USE THEREOF

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122128A (en) * 1980-02-29 1981-09-25 Telmec Co Ltd Positioning system for printing device of semiconductor or the like
JPS609126A (en) * 1983-06-29 1985-01-18 Hitachi Ltd Projection type exposing device
JPS60119722A (en) * 1983-12-01 1985-06-27 Hitachi Ltd Method for detection of wafer pattern to be used for semiconductor exposing device and device thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122128A (en) * 1980-02-29 1981-09-25 Telmec Co Ltd Positioning system for printing device of semiconductor or the like
JPS609126A (en) * 1983-06-29 1985-01-18 Hitachi Ltd Projection type exposing device
JPS60119722A (en) * 1983-12-01 1985-06-27 Hitachi Ltd Method for detection of wafer pattern to be used for semiconductor exposing device and device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950188B2 (en) 2003-04-23 2005-09-27 International Business Machines Corporation Wafer alignment system using parallel imaging detection

Also Published As

Publication number Publication date
JPH033377B2 (en) 1991-01-18

Similar Documents

Publication Publication Date Title
US4167677A (en) Optical device for the alignment of two superimposed objects
US4103998A (en) Automatic alignment apparatus
JPS6227536B2 (en)
JPS5928337A (en) Projection aligner
US4641035A (en) Apparatus and a method for position detection of an object stepped portion
US4496241A (en) Process and device for relatively aligning the image and object surfaces in optical copying systems
JP3282233B2 (en) Distance measuring apparatus and projection exposure apparatus using the same
JPS62190724A (en) Alignment system
JPS63180801A (en) Alignment apparatus
JPS62190726A (en) Alignment system
JPS62190725A (en) Alignment system by means of double diffraction grating
GB2112933A (en) Positioning apparatus
JP2555651B2 (en) Alignment method and device
JP2925168B2 (en) Position detecting device and method
JPS60173837A (en) Controlling method of positioning of gap by combination diffraction grating
JPH05166695A (en) Method for positional detection and exposure system using it
JPH01180405A (en) Inclination detecting method
JPS6046361B2 (en) alignment device
JPH03155114A (en) Positioning of reduction projecting exposure device
JPH0323619A (en) Method and apparatus for focusing
JPH0782390B2 (en) Stage positioning method
JPS60262423A (en) Position detector
JPS6032320A (en) Semiconductor baking and exposing device
JPS6197919A (en) Aligner
JPH0361804A (en) Substrate aligner