JPS62190440A - Measurement system for in-liquid foreign matter and inorganic ion - Google Patents

Measurement system for in-liquid foreign matter and inorganic ion

Info

Publication number
JPS62190440A
JPS62190440A JP61030813A JP3081386A JPS62190440A JP S62190440 A JPS62190440 A JP S62190440A JP 61030813 A JP61030813 A JP 61030813A JP 3081386 A JP3081386 A JP 3081386A JP S62190440 A JPS62190440 A JP S62190440A
Authority
JP
Japan
Prior art keywords
liquid
foreign matter
measurement part
ultrasonic
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61030813A
Other languages
Japanese (ja)
Inventor
Masayoshi Ezawa
江澤 正義
Shigeru Wakana
若菜 茂
Akira Misumi
三角 明
Yoshifumi Tomita
富田 好文
Yutaka Hiratsuka
豊 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61030813A priority Critical patent/JPS62190440A/en
Priority to US07/014,787 priority patent/US4779451A/en
Priority to KR1019870001282A priority patent/KR900001575B1/en
Publication of JPS62190440A publication Critical patent/JPS62190440A/en
Priority to US07/226,204 priority patent/US4890481A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To evaluate the cleanliness of components quantitatively and improve the cleanliness by removing mixed gas from liquid to be inspected and measuring securely foreign matter and inorganic ions in the liquid to be inspected continuously with high accuracy. CONSTITUTION:A body to be treated is dipped in a cleaning tank 2 which contains pure water and cleaned to remove sticking foreign matter from the surface of the body to be treated, which is put in an evaluation container 6. Such a body to be treated is supplied with cleaning liquid 4a from a cleaning tank 4 and recleaned by microwave irradiation from a microwave generating device 7 to further remove foreign matter, obtaining sample liquid 7 for clean article evaluation. Such a sample liquid 7 and standard liquid 3a for monitor calibration are switched by a changeover valve 13 for liquid measurement and guided to an ultrasonic foreign matter measurement part 20 and a laser foreign matter measurement part 30. Then, the ultrasonic foreign matter sensor 22 of the measurement part 20 detects in-liquid foreign matter of 5-100mum grain size and the leaser light foreign matter sensor 31 of the measurement part 30 detects foreign matter of 0.5-4.9mum grain size. Further, the liquid 7 and liquid 3a are guided to an inorganic ion measurement part 40 to detect ions.

Description

【発明の詳細な説明】 し産業上の利用分野〕 本発明は、電子管、iIt子デバイス等に使用される構
成部品の清浄化および清浄後の構成部品の清浄度の評価
に好適な液中異物および無機イオンの計測システムに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to cleaning of components used in electron tubes, iItem devices, etc. and cleaning of foreign particles in liquid suitable for evaluating the cleanliness of components after cleaning. and inorganic ion measurement systems.

〔従来の技術〕[Conventional technology]

従来、この種の液中異物の計測装置には、断続方式によ
る粒径5〜100μm程度の異物を計測する超音波照射
形の異物計測方式と、粒径0.5〜60μm程度の異物
を計測するレーザ光線照射形の異物計測方式とが用いら
れていた。
Conventionally, this type of foreign matter measuring device in liquid has two methods: an intermittent ultrasonic irradiation type foreign matter measuring method that measures foreign matter with a particle size of approximately 5 to 100 μm, and a foreign matter measuring method that measures foreign matter with a particle size of approximately 0.5 to 60 μm. A laser beam irradiation type foreign object measurement method was used.

なお、このような液中異物の計測装置の構造は、例えば
昭和59年2月「第3回空気清浄とコンタミネーション
コントロールに関する技術研究大会」において発表され
た「液体中微粒子のオンライン測定」等に記載されてい
る。
The structure of such a device for measuring foreign particles in liquid is based on, for example, the ``Online Measurement of Fine Particles in Liquid'' presented at the ``3rd Technical Research Conference on Air Purification and Contamination Control'' in February 1980. Are listed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この種の液中異物の計測装置は、構成部品を洗浄した被
検液中に気泡、ガス等の混在気体が存在すると、異物お
よび無機イオンの計測時にセンナ部の表面に気泡が付着
したり、また液中の気泡をも同時に計測するために異物
計測値が大きくなり誤差が大きくなることおよび無機イ
オンの計測値が小さくなるため、連続してかつ液中異物
の大きさ、数および無機イオン量を正確に計測すること
ができなかった。このため、構成部品の洗浄度の定量的
評価が不可能であった。
In this type of foreign matter measurement device, if mixed gases such as bubbles and gases are present in the sample liquid that has been used to clean component parts, air bubbles may adhere to the surface of the senna part when measuring foreign matter and inorganic ions. In addition, since bubbles in the liquid are also measured at the same time, the foreign matter measurement value increases and the error increases, and the measurement value of inorganic ions becomes small. could not be measured accurately. For this reason, it has been impossible to quantitatively evaluate the degree of cleanliness of component parts.

本発明は、被検液中の混在気体を除去し、連続かつ高精
度で被検液中の異物および無機イオンの計測?可能くし
た液中異物および無機イオンの計測システムを提供する
ことを目的としている。
The present invention removes mixed gases from the test liquid and measures foreign substances and inorganic ions in the test liquid continuously and with high precision. The purpose of this study is to provide a system for measuring foreign substances and inorganic ions in liquid.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係わる液中異物および無機イオン開側システム
は、各拙の異物および無機イオンを含有する被検液とこ
の被検液の既知量を含有する校正用標準液とを作成する
サンプリング手段と、粒径0.5〜4.9μmの異物を
計測するレーザ異物計測部と、粒径5〜100μmの異
物を計測する超音波計測部と、無機イオンを計測する無
機イオン計測部と、各計測部の計測センサの前段に配設
された真空脱気装置とを有して構成される。
The open side system for foreign matter in liquid and inorganic ions according to the present invention includes a sampling means for preparing a test solution containing foreign matter and inorganic ions and a calibration standard solution containing a known amount of the test solution. , a laser foreign matter measurement unit that measures foreign matter with a particle size of 0.5 to 4.9 μm, an ultrasonic measurement unit that measures foreign matter with a particle size of 5 to 100 μm, an inorganic ion measurement unit that measures inorganic ions, and each measurement A vacuum degassing device is provided in front of the measurement sensor in the section.

〔作用〕 無機イオンおよび粒径100μmまでの異物が被検液中
に混在する混在気体に影響されることなく、連続的かつ
確実に計測される。
[Function] Inorganic ions and foreign substances with a particle size of up to 100 μm are continuously and reliably measured without being affected by mixed gases in the test liquid.

〔実施例〕〔Example〕

次に図面を用いて本発明の詳細な説明する。 Next, the present invention will be explained in detail using the drawings.

第1図は本発明による液中異物および無機イオンの計測
システムの一実施例を示す構成図である。
FIG. 1 is a block diagram showing an embodiment of a system for measuring foreign matter in liquid and inorganic ions according to the present invention.

同図において、1はサンプリング部であり、2は超音波
照射装置を有しかつ内部に電子管、電子デバイス等に用
いられる構成部品としての被検処理体を浸漬し洗浄処理
した洗浄液2aを収容する洗浄槽、3は攪拌器を有しか
つ内部に粒径0.5〜4.9μmの異物が60000個
/1001dおよび粒径5〜100μmの異物が516
6個/100m1の割合で含むモニタ校正用の標準液3
tLtl−収容した標準液貯水槽、4は清浄部品評価洗
浄液4mを収容した洗浄液種、5は清浄部品、6H清か
部品5の清浄評価容器、γに清浄部品評価被検液、8は
内部に評価容器6および洗紗水8aを収容し外部に超音
波発生装置18bをイする超音波洗浄槽、9は洗浄液2
aのサンプリングチューブ、10は標準液3aのサンプ
リングチューブ、11は洗浄液4aのサンプリングチュ
ーブ、13は各チューブ9,10.12内に流れる各液
測定用切換弁である。なお、これらの缶液は約20〜1
00OR//分の流速で順次送流されている。
In the figure, 1 is a sampling part, and 2 has an ultrasonic irradiation device, and contains therein a cleaning liquid 2a in which an object to be inspected as a component used in an electron tube, an electronic device, etc. is immersed and cleaned. Cleaning tank 3 has a stirrer and contains 60,000 foreign particles/1001d with a particle size of 0.5 to 4.9 μm and 516 foreign particles with a particle size of 5 to 100 μm.
Standard solution 3 for monitor calibration containing 6 pieces/100ml
tLtl-Accommodated standard solution water tank, 4 is the type of cleaning liquid containing 4 m of clean parts evaluation cleaning liquid, 5 is clean parts, 6H is the cleanliness evaluation container for clean parts 5, γ is clean parts evaluation sample liquid, 8 is inside An ultrasonic cleaning tank that contains an evaluation container 6 and washing water 8a and has an ultrasonic generator 18b externally; 9 is a cleaning liquid 2;
10 is a sampling tube for the standard solution 3a, 11 is a sampling tube for the cleaning solution 4a, and 13 is a switching valve for measuring each liquid flowing in each tube 9, 10, 12. In addition, these can liquids are approximately 20 to 1
The water is sequentially fed at a flow rate of 00OR//min.

また、20は超音波異物計測部であり、21は被検液中
の混在気体を脱気する真空脱気装置、22は被検液中の
粒径5〜100μmの異物を検知する超音波異物センサ
、23は電源、24はマイコン、25はディスプレイ、
26はプリンタ、27は被検液を20〜10100Oの
流速で吸引する吸引ポンプ、28は検液後の排液チュー
ブである。
Further, 20 is an ultrasonic foreign matter measuring section, 21 is a vacuum deaerator for degassing mixed gas in the test liquid, and 22 is an ultrasonic foreign matter detecting unit for detecting foreign matter with a particle size of 5 to 100 μm in the test liquid. sensor, 23 is a power supply, 24 is a microcomputer, 25 is a display,
26 is a printer, 27 is a suction pump that suctions the test liquid at a flow rate of 20 to 10,100 O, and 28 is a drain tube after the test liquid is discharged.

また、30はレーザ異物計測部であり、このレーザ異物
計測部30は、被検液中の粒径0.5〜25μmの異物
を検知するレーザ光異物センサ31を有し、残部は前述
した超音波異物計測部2oと同様に構成されている。
Further, 30 is a laser foreign matter measuring section, and this laser foreign matter measuring section 30 has a laser light foreign matter sensor 31 that detects foreign matter with a particle size of 0.5 to 25 μm in the test liquid, and the remaining parts are as described above. It is configured similarly to the sonic foreign object measuring section 2o.

また、40は無機イオン計測部であり、41はF−イオ
ン選択電極、42はレコーダ、43は被検液切換弁、4
4はイオン交換レジンが充填された2つの濃縮カラム含
有する濃縮器、45は陰イオン分離カラム、46は検出
器電4変針、47は標準液、48は炭酸ンーダと重炭酸
ナトリウムとの混合液からなる陰イオン溶離液、49は
イオン交換レジンの再生に用いる希硫酸などの再生液、
残部は前述した異物計測部20.30と同様の構成を有
している。
Further, 40 is an inorganic ion measuring section, 41 is an F-ion selection electrode, 42 is a recorder, 43 is a test liquid switching valve, 4
4 is a concentrator containing two concentrating columns packed with ion exchange resin, 45 is an anion separation column, 46 is a detector with 4 different needles, 47 is a standard solution, and 48 is a mixture of carbonate and sodium bicarbonate. 49 is a regenerating solution such as dilute sulfuric acid used for regenerating ion exchange resin,
The remaining parts have the same configuration as the foreign matter measuring section 20.30 described above.

なお、前述した真空脱気装置21は、有機膜室内に有機
物からなるチューブを通し、この有機膜室内を真空とし
、この部分に被検液が通過する際、有機チューブ内の被
検液中の混在気体を除去する有機膜製真空脱気装置tた
は低真空中で被検液を衝突板に噴霧し、低真空吸引によ
る液中混在気体を脱気する真空スプレー脱気装置が使用
でき、これらの脱気装置は、毎分20〜1000m/の
速度で送液される被検液中の混在気体1〜1100pp
を脱気する機能を有している。
The vacuum degassing device 21 described above passes a tube made of organic matter into the organic membrane chamber, creates a vacuum in the organic membrane chamber, and when the sample liquid passes through this part, the sample liquid in the organic tube is removed. A vacuum deaerator made of an organic membrane that removes mixed gases or a vacuum spray deaerator that sprays the test liquid onto a collision plate in a low vacuum and degasses the mixed gases in the liquid by low vacuum suction can be used. These deaerators remove mixed gases from 1 to 1,100 ppm in the test liquid, which is fed at a speed of 20 to 1,000 m/min.
It has the function of deaerating the air.

また、前述した超音波異物センサ22は、第2図に示す
ようにチューブ22a内に連続して流れる被検液22b
の流路測面よシフオーツクリスタル素子22cを印加し
た約400vの高周波電圧を約15MHz超音波音圧に
変換した超音波パルス22dを1秒間に200回(2μ
SeC/回)連続して繰返し照射する。その超音波エネ
ルギーは音響レンズ22eで集束させ、円錐状に焦点を
結ばせると、被検液22b中の超音波が伝波する丸め、
その密度が最も高くなる領域22f 、 22gでの異
物22hからの後方反射する反射エネルギー(粒子の大
きさに比例する)を利用し、粒子1個からの1個の反射
波をエコーとして返してくるため、反射パルス受信ゲー
ト221の約1.4關φ内の反射のみをセンサ22jで
受ける。なお、22には超音波ビームである。そして、
1000回の発射パルス22dによって返って来た反射
パルス計測値22t、 22m 、 22nをカウント
パルスに変換することにより、粒径5〜100μmの異
物の連続計測を行なう。
Further, the above-mentioned ultrasonic foreign object sensor 22 has a test liquid 22b continuously flowing inside a tube 22a as shown in FIG.
200 times per second (2 μ
SeC/time) Continuously repeat irradiation. When the ultrasonic energy is focused by the acoustic lens 22e and focused into a conical shape, the ultrasonic wave in the test liquid 22b propagates into a circular shape.
Using the reflected energy (proportional to the size of the particle) that is reflected back from the foreign object 22h in the areas 22f and 22g where the density is highest, one reflected wave from one particle is returned as an echo. Therefore, only the reflection within about 1.4 degrees φ of the reflected pulse receiving gate 221 is received by the sensor 22j. Note that 22 is an ultrasonic beam. and,
By converting the reflected pulse measurement values 22t, 22m, and 22n returned by the 1000 emitted pulses 22d into count pulses, continuous measurement of foreign particles having a particle size of 5 to 100 μm is performed.

また、前述したレーザ光異物センサ31は、第3図に示
すようにセンサセル31a内に連続して流れる被検液3
1bの流路測面より、He−Neレーザ31cをプリズ
ム31dで反射させ集束レンズ31−fで集光したレー
ザ光31eを照射し、被検液3ib中の異物(粒径0.
5〜60μm)により散乱された光を集光レンズ31j
で集め、高感度のフォトダイオード31gでその大きさ
および数量を検出することにより1粒径0.5〜25μ
mの異物の連続計測を行なう。なお、非散乱はプリズム
31hで反射させ、フォトダイオード31gに入射され
ない。
In addition, the laser beam foreign object sensor 31 described above also includes a test liquid 3 that continuously flows inside the sensor cell 31a as shown in FIG.
1b, a laser beam 31e that is reflected by a prism 31d and focused by a focusing lens 31-f is irradiated with a He-Ne laser 31c to detect foreign substances (particle size 0.
5 to 60 μm) is collected by a condenser lens 31j.
The particle size is 0.5 to 25μ by collecting the particles with a 31g high-sensitivity photodiode and detecting their size and quantity.
Continuous measurement of foreign matter of m. Note that the non-scattered light is reflected by the prism 31h and is not incident on the photodiode 31g.

このような構成において、まず、製作された図示しない
例えば電子銃構体等の被検処理体を、洗浄槽2内に純水
を収容してその中に浸漬し、洗浄処理する。この場合、
この純水中には被検処理体の表面に付着していた各種粒
径の異物が除去され含有された洗浄液2!Lとなる。次
に洗浄処理された被検処理体は清浄部品として評価容器
6内に収容し、洗浄液槽4からサンプリングチューブ1
1全通して例えば純水等の洗浄液4a e供給し、超音
波発生装置17により超音波を連続的に照射して再洗浄
し、清浄部品5に付着残存していた異物全さらに除去し
て含有させて清浄品評価被検液7とする。次にこの清浄
品評価被検液7およびモニタ校正用標準液3mは、それ
ぞれサンプリングチューブ12 、10t−通して各液
測定用切換弁13により切換えられ、超音波異物計測部
20およびし二ザ異物計測部30の各吸引ポンプ27に
よシ約xooml/分の流速で各真空脱気装置21に導
入され、被検液7および標準液3a内に含有されている
気泡、ガス等の混在気体を脱気させた後、超音波異物計
測部20では、被検液Tおよび標準液3aが超音波異物
センサ22に導入され、第2図で説明したように粒径5
〜100μmの液中異物のみが計測される。一方、レー
ザ異物計測部30では。
In such a configuration, first, a manufactured object to be inspected, such as an electron gun assembly (not shown), is placed in a cleaning tank 2 and immersed therein for cleaning treatment. in this case,
This pure water contains cleaning liquid 2 after removing foreign substances of various particle sizes that had adhered to the surface of the object to be inspected! It becomes L. Next, the cleaned object to be tested is stored in the evaluation container 6 as a clean part, and the cleaning liquid tank 4 is passed through the sampling tube 1.
1. A cleaning liquid 4a such as pure water is supplied throughout the cleaning part 5, and the ultrasonic generator 17 continuously irradiates ultrasonic waves for re-cleaning, thereby further removing all foreign matter remaining on the cleaning part 5. This is used as clean product evaluation test liquid 7. Next, the clean product evaluation test liquid 7 and the monitor calibration standard liquid 3m are passed through the sampling tubes 12 and 10t, respectively, and switched by the switching valves 13 for measuring each liquid, and the ultrasonic foreign matter measuring section 20 and the Each suction pump 27 of the measurement unit 30 introduces mixed gases such as bubbles and gases contained in the test liquid 7 and the standard liquid 3a into each vacuum deaerator 21 at a flow rate of approximately xooml/min. After degassing, in the ultrasonic foreign matter measurement section 20, the test liquid T and the standard solution 3a are introduced into the ultrasonic foreign matter sensor 22, and as explained in FIG.
Only foreign objects in the liquid of ~100 μm are measured. On the other hand, in the laser foreign matter measuring section 30.

同様に脱気した被検液7および標準液3aがレーザ光異
物センサ31にそれぞれ導入され、第3図で説明したよ
うに粒径0.5〜4,9μmの液中異物のみが計測され
る。この結果、標準液3aは、前述した標準値(粒径0
.5〜4.9μmの異物粒子数60000個/10Qd
、粒径5〜100μmの異物粒子数51667100 
ml)に対して変動係数が±15係以内で計測され、か
つ前述した被検処理体を全体の水流量を約20〜101
00O/分で洗浄した場合、評価容器6内の清浄品評価
被検液I中の異物は13000〜16000個/100
dであった。また、製作後の被検処理体10本をサンプ
リング部1で評価容器6内での超音波洗浄による再洗浄
を行なわないので。
Similarly, the degassed test liquid 7 and standard solution 3a are respectively introduced into the laser light foreign object sensor 31, and as explained in FIG. 3, only foreign objects in the liquid with a particle size of 0.5 to 4.9 μm are measured. . As a result, the standard solution 3a has the above-mentioned standard value (particle size 0
.. Number of foreign particles of 5 to 4.9 μm: 60,000/10Qd
, the number of foreign particles with a particle size of 5 to 100 μm: 51667100
ml), the coefficient of variation is within ±15 coefficients, and the total water flow rate of the above-mentioned treated object is approximately 20 to 101.
When cleaning at 000/min, the number of foreign substances in the clean evaluation test liquid I in the evaluation container 6 is 13,000 to 16,000 pieces/100.
It was d. Furthermore, the 10 processed objects to be tested after fabrication are not re-cleaned by ultrasonic cleaning in the evaluation container 6 in the sampling section 1.

初期の洗浄槽2のみによ、る洗浄後、超音波異物計測部
20で真空脱気装置21を通して計測した結果、粒径5
〜100μmの付着異物の合計が30000〜5ooo
o個/本(X= 46000個/本)であったのに対し
て本実施例の如き評価容器6内での超音波洗浄による再
洗浄を行なった場合には3100〜6200個/本(X
 = 3700個/本)となQ、連続的な異物の計測が
可能となる。次に各液測定用切換弁13により切換えら
れた清浄品評価被検液7およびモニタ校正用標準液31
は、無機イオン計測部40に導入され、真空脱気装置2
1により気泡。
After initial cleaning using only the cleaning tank 2, measurement by the ultrasonic foreign matter measuring unit 20 through the vacuum deaerator 21 revealed that the particle size was 5.
The total amount of attached foreign matter of ~100μm is 30,000~5ooo
o pieces/piece (X = 46,000 pieces/piece), whereas in the case of re-cleaning by ultrasonic cleaning in the evaluation container 6 as in this example, the number was 3,100 to 6,200 pieces/piece (X
= 3,700 pieces/piece), making it possible to continuously measure foreign substances. Next, the clean product evaluation test liquid 7 and the monitor calibration standard liquid 31 are switched by the switching valve 13 for each liquid measurement.
is introduced into the inorganic ion measuring section 40, and the vacuum degassing device 2
1 causes bubbles.

溶存ガス等の混在気体が脱気された後、一方ではF−イ
オン選択電極41によりF−のみを選択的に検出し、そ
の含有量に比例して指示する出力電圧をカウントし、予
め作成しである検量線から換算してF−イオンを測定す
る。他方ではX空脱気装置21により脱気された清浄品
評価被検液7を、切換弁43を切換えて導入し、濃縮器
44で濃縮および溶出操作を行なう。この場合:この溶
出操作は、被検液7が濃縮器44内の濃縮カラムの一方
で陰イオン溶離液48を加えて溶離操作中には他方の濃
縮カラムで濃縮され、逐次交互に連続して行なって陽イ
オンと隘イオンとに分離される。次にこの被検液γは陰
イオン分離カラム45で再生i49を加え、陽イオンの
みが分離され、ct−、pop−。
After mixed gases such as dissolved gases are degassed, only F- is selectively detected by the F- ion selection electrode 41, and an output voltage is counted in proportion to its content, which is determined in advance. The F- ion is measured based on the calibration curve. On the other hand, the clean product evaluation test liquid 7 degassed by the X air deaerator 21 is introduced by switching the changeover valve 43, and is subjected to concentration and elution operations in the concentrator 44. In this case: In this elution operation, the anionic eluent 48 is added to one of the concentration columns in the concentrator 44, and during the elution operation, the test solution 7 is concentrated in the other concentration column, and the sample solution 7 is successively and alternately concentrated. It is separated into positive ions and residual ions. Next, regeneration i49 is added to this test liquid γ in an anion separation column 45, and only cations are separated, resulting in ct- and pop-.

No″3r So;−の順に被検イオンが逐次溶出され
る。
The analyte ions are sequentially eluted in the order of No''3r So;-.

そして、これらの被検イオンは、検出器電導度肝46に
より、各電導度を測定し、予め、濃度と電導度との関係
を作成しである検量線を用いて各被検イオンが定量的に
連続計測される。ここで清浄部品5を洗浄した被検液I
からCL−、F −、No; 。
The conductivity of these test ions is measured by the conductivity detector 46, and the relationship between concentration and conductivity is created in advance, and each test ion is quantitatively determined using a calibration curve. Measured continuously. Here, the test liquid I used to clean the clean part 5
From CL-, F-, No;.

SOニー * PO”4−一をそれぞれ測定した結果、
Ct−が5 pPI 、 F−が1 ppm+ NO;
がlppm以下、so’; −が2 ppm + po
;−がlppm以下全検出することができた。
As a result of measuring SO knee * PO”4-1,
Ct- is 5 pPI, F- is 1 ppm+NO;
is less than lppm, so'; - is 2 ppm + po
;- could be detected at lppm or below.

ここで真空脱気装置21(!−用いて液中異物と無機イ
オンとを連続計測する場合、予め測定済の異物の粒子数
および大きさの判明している既知試料。
Here, when using the vacuum deaerator 21 (!-) to continuously measure foreign substances and inorganic ions in the liquid, use a known sample whose particle number and size of the foreign substances have been measured in advance.

イオン含有量既知試料を用い、異物の大きさとその数の
両者に対する照射超音波の反射エネルギーとの関係曲線
を作成し、無機イオンはイオンと電気伝24度出力等を
マイコン24に記憶させ、これと被検液中の異物および
無機イオンによるそれぞれの異物センサ及び無機イオン
センサによる計測数を演算し、異物の数と大きさと無機
イオン含有量と全グラフ表示および作表し、同時にプリ
ンタ26にプリントアウトおよびディスプレイ25に表
示することにより、液中異物および無機イオンが連続計
測される。
Using a sample with known ion content, create a relationship curve between the reflected energy of the irradiated ultrasonic wave and the size and number of foreign particles. The number of foreign particles and inorganic ions in the test liquid is calculated by the foreign particle sensor and the inorganic ion sensor, and the number and size of foreign particles and the inorganic ion content are displayed and tabulated in a graph, and simultaneously printed out on the printer 26. Foreign matter and inorganic ions in the liquid are continuously measured by displaying the information on the display 25.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、無機イオンおよび
粒径100μmまでの異物が被検液中に混在する混在気
体に影響されることなく、連続的かつ確実に計測できる
ので、構成部品の清浄度が定量的に評価でき、清浄度向
上による品質向上が得られるなどの極めて優れた効果が
得られる。
As explained above, according to the present invention, inorganic ions and foreign particles with a particle size of up to 100 μm can be measured continuously and reliably without being affected by mixed gases mixed in the test liquid, so that the component parts can be cleaned. The cleanliness can be quantitatively evaluated, and extremely excellent effects such as improved quality due to improved cleanliness can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による液中異物および無機イオンの計測
システムの一実施例を示す構成図、第2図は超音波異物
センサを説明する図、第3図はレーザ光異物センサを説
明する図である。 1・・・・サンプリング部、2・・・・洗浄槽、2&・
・・・洗浄液、3・・・・標準液貯水槽。 3&°・・・標準液、4・・・・洗浄液槽、4a。 ・・・・清浄部品評価洗浄液、5・・・・清浄部品、6
・・・・清浄評価容器、7・・・・清浄部品評価被検液
、8・・・・超音波洗浄槽、8a・・・・洗浄水、8b
・・・・超音波発生装置、9゜10.11.12・・・
・サンプリングチューブ、13・・・・各液測定用切換
弁、20・・・・超音波異物計測部、21・・・・真空
脱気装置、22・・・・超音波異物センサ、23・・・
・電源。 24・・・・マイコン、25・・・・ディスプレイ、2
6・・・・プリンタ、2γ・・・・ポンプ、28・・・
・排液チューブ、30・・・・レーザ異物計測部、31
・・・・レーザ光異物センサ、40・・・・無機イオン
計測部、41・・・・F−イオン選択電極、42・・・
・レコーダ、43・・・・切換弁、44・・・・濃縮器
、45・・・・陰イオン分離カラム、46・・・・検出
器電導度肝、47・・・・標準液、48・・・・陰イオ
ン溶離液、49・・・・再生液。
FIG. 1 is a configuration diagram showing an embodiment of the foreign matter and inorganic ion measurement system in liquid according to the present invention, FIG. 2 is a diagram explaining an ultrasonic foreign matter sensor, and FIG. 3 is a diagram explaining a laser beam foreign matter sensor. It is. 1...Sampling section, 2...Cleaning tank, 2&...
...Cleaning liquid, 3...Standard liquid storage tank. 3&°...Standard solution, 4...Cleaning liquid tank, 4a. ... Clean parts evaluation cleaning liquid, 5 ... Clean parts, 6
...Cleanliness evaluation container, 7..Clean parts evaluation test liquid, 8..Ultrasonic cleaning tank, 8a..Cleaning water, 8b
...Ultrasonic generator, 9゜10.11.12...
- Sampling tube, 13... Switching valve for each liquid measurement, 20... Ultrasonic foreign matter measuring section, 21... Vacuum deaerator, 22... Ultrasonic foreign matter sensor, 23...・
·power supply. 24...Microcomputer, 25...Display, 2
6...Printer, 2γ...Pump, 28...
・Drainage tube, 30... Laser foreign matter measurement unit, 31
... Laser light foreign object sensor, 40 ... Inorganic ion measuring section, 41 ... F-ion selection electrode, 42 ...
・Recorder, 43...Switching valve, 44...Concentrator, 45...Anion separation column, 46...Detector conductivity liver, 47...Standard solution, 48... ... Anion eluent, 49... Regeneration liquid.

Claims (1)

【特許請求の範囲】[Claims] 1、粒径および数量が異なる各種の異物および無機イオ
ンを含有する被検液と前記被検液の既知量を含有する校
正用標準液とを作製するサンプリング手段と、前記被検
液中に含有する異物を計測する異物計測手段と、前記被
検液中に含有する無機イオンを計測する無機イオン計測
手段と、前記各計測手段の計測センサ部前段に配設した
真空脱気装置とを具備したことを特徴とする液中異物お
よび無機イオンの計測システム。
1. Sampling means for preparing a test solution containing various foreign substances and inorganic ions having different particle sizes and quantities, and a calibration standard solution containing a known amount of the test solution; a foreign matter measuring means for measuring foreign matter, an inorganic ion measuring means for measuring inorganic ions contained in the test liquid, and a vacuum degassing device disposed upstream of the measurement sensor section of each of the measuring means. A system for measuring foreign substances and inorganic ions in liquid, which is characterized by:
JP61030813A 1986-02-17 1986-02-17 Measurement system for in-liquid foreign matter and inorganic ion Pending JPS62190440A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61030813A JPS62190440A (en) 1986-02-17 1986-02-17 Measurement system for in-liquid foreign matter and inorganic ion
US07/014,787 US4779451A (en) 1986-02-17 1987-02-13 System for measuring foreign materials in liquid
KR1019870001282A KR900001575B1 (en) 1986-02-17 1987-02-17 Detectin system for impurity in water
US07/226,204 US4890481A (en) 1986-02-17 1988-07-29 System for measuring foreign materials in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030813A JPS62190440A (en) 1986-02-17 1986-02-17 Measurement system for in-liquid foreign matter and inorganic ion

Publications (1)

Publication Number Publication Date
JPS62190440A true JPS62190440A (en) 1987-08-20

Family

ID=12314129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030813A Pending JPS62190440A (en) 1986-02-17 1986-02-17 Measurement system for in-liquid foreign matter and inorganic ion

Country Status (1)

Country Link
JP (1) JPS62190440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793667A (en) * 2010-03-24 2010-08-04 天津三星电机有限公司 Method for indirectly testing fume amount of dust-free appliance by adopting laser particle counter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182549A (en) * 1982-04-20 1983-10-25 Toshiba Corp Method and apparatus of measuring concentration by ultrasonic wave

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182549A (en) * 1982-04-20 1983-10-25 Toshiba Corp Method and apparatus of measuring concentration by ultrasonic wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793667A (en) * 2010-03-24 2010-08-04 天津三星电机有限公司 Method for indirectly testing fume amount of dust-free appliance by adopting laser particle counter

Similar Documents

Publication Publication Date Title
KR900001575B1 (en) Detectin system for impurity in water
CN108780768B (en) 30NM in-line liquid particle counter test and cleaning for semiconductor processing equipment
JPH11128325A (en) Cleaning process monitor
JPS6123947A (en) Method and device for measuring turbidity of liquid
EP0180140B1 (en) Method for analyzing impurities in liquid and apparatus therefor
JPS62190440A (en) Measurement system for in-liquid foreign matter and inorganic ion
CN105699138A (en) Fluid bubble removing device and water quality monitoring system
JP2003254891A (en) Apparatus and method for counting phytoplankton
US4890481A (en) System for measuring foreign materials in liquid
JPS62190439A (en) Measurement system for in-liquid foreign matter and inorganic ion
US7186379B2 (en) Continuous real-time measurement of aqueous cyanide
JPS62190441A (en) Measurement system for in-liquid foreign matter
Bond et al. High flow-rate cells for continuous monitoring of low concentrations of electroactive species by polarography and stripping voltammetry at the static mercury drop electrode
JPS62190462A (en) Measurement system for foreign matter in liquid
JP2604726B2 (en) Liquid foreign matter measurement system
JPH08211072A (en) Analyzer
JPS6126849A (en) Automatic measuring device for ion concentration of aqueous solution
CN111175203B (en) Detection system for ultralow dust on-line monitoring
JPS6013254A (en) Detection of contamination for flow through type analyzer
JPH01165939A (en) Apparatus for measuring foreign matter contained in fluidizing liquid
JP2005274400A (en) Ultrapure water evaluating apparatus and ultrapure water manufacturing system
JP2005024357A (en) Automatic measuring instrument for concentration of treatment agent in aqueous system
SU815619A1 (en) Method of measuring non-uniformity concentration in liquids
JPH03229129A (en) Sample device for measuring water quality
JPS5934135A (en) Optical type apparatus for measuring water quality