JPS6219021B2 - - Google Patents

Info

Publication number
JPS6219021B2
JPS6219021B2 JP12238480A JP12238480A JPS6219021B2 JP S6219021 B2 JPS6219021 B2 JP S6219021B2 JP 12238480 A JP12238480 A JP 12238480A JP 12238480 A JP12238480 A JP 12238480A JP S6219021 B2 JPS6219021 B2 JP S6219021B2
Authority
JP
Japan
Prior art keywords
superconducting
cross
conductor
connection
superconducting conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12238480A
Other languages
Japanese (ja)
Other versions
JPS5746477A (en
Inventor
Katsuzo Aihara
Naofumi Tada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12238480A priority Critical patent/JPS5746477A/en
Publication of JPS5746477A publication Critical patent/JPS5746477A/en
Publication of JPS6219021B2 publication Critical patent/JPS6219021B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Description

【発明の詳細な説明】 本発明は超電導導体の製作方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a superconducting conductor.

一般に超電導コイルでは、有限長の超電導導体
を組合せて製作することから、超電導導体相互を
電気的に接続する必要がある。
Generally, superconducting coils are manufactured by combining superconducting conductors of finite length, so it is necessary to electrically connect the superconducting conductors to each other.

かかる超電導導体の接続方法を第1図乃至第4
図に示す。第1図は超電導導体1の相互を重ね合
せて、例えば半田にて接続を行なう方法である。
第2図は超電導導体1を相互に突合せ、超電導導
体1′を副木的に配置して、例えば半田にて接続
する方法である。第1図、及び第2図の接続方法
は、接続工程が簡単であるという利点がある反
面、重ね合せ部が出つ張るという幾何学的な乱れ
があるため超電導コイルとしての捲線を乱すこと
から超電導コイルの製作工程を複雑にし、ひいて
は超電導コイルの性能の劣化を来たすという欠点
を有している。この欠点を改良した接続方法の例
が第3図及び第4図に示す方法である。第3図は
接続されるべき超電導導体1の端部を斜めに切断
し、相互の端部を密着し、例えば半田を介して接
続する方法である。ところで、超電導導体1の接
続部においては、電気的な接続抵抗の存在による
ジユール発熱が超電導コイルの性能に悪影響を与
える。接続抵抗は接続界面2の面積に反比例し、
かつ接続界面2の厚さに比例することが知られて
おり、このことから第3図の従来例では、接続端
部を極力ゆるやかな角度で斜めに切断し、接続界
面2の面積を大きくするように注意が払われる。
しかるに、工学的立場からは限界があり、第1図
あるいは第2図の方法にくらべ接続抵抗が大きく
なるという欠点を有する。第4図は接続界面2の
面積が超電導導体1の横断面積と同じとなつてお
り、たとえば半田接続の場合には接続抵抗を小さ
くすることができないし、又、機械的強度を大き
くすることができない。このことから、加圧溶着
により接続する方法が取られるが、この時には、
半田を使用しないから接続抵抗としては小さなも
のが得られる反面、溶着による熱影響が超電導導
体1に使用されている超電導素線そのものの超電
導特性を劣化させるという欠点を有している。
The method of connecting such superconducting conductors is shown in FIGS. 1 to 4.
As shown in the figure. FIG. 1 shows a method in which superconducting conductors 1 are stacked on top of each other and connected by, for example, solder.
FIG. 2 shows a method in which superconducting conductors 1 are butted against each other, superconducting conductors 1' are arranged like splints, and the superconducting conductors 1' are connected by, for example, soldering. The connection methods shown in Figures 1 and 2 have the advantage that the connection process is simple, but on the other hand, there is a geometric disorder in which the overlapping portion protrudes, which disturbs the winding of the superconducting coil. This method has the drawback of complicating the manufacturing process of the superconducting coil and, in turn, deteriorating the performance of the superconducting coil. An example of a connection method that improves this drawback is the method shown in FIGS. 3 and 4. FIG. 3 shows a method in which the ends of the superconducting conductors 1 to be connected are cut diagonally, the ends are brought into close contact with each other, and the connections are made by, for example, soldering. By the way, at the connection portion of the superconducting conductor 1, the Joule heat generated due to the presence of electrical connection resistance has an adverse effect on the performance of the superconducting coil. The connection resistance is inversely proportional to the area of the connection interface 2,
It is known that the thickness of the connection interface 2 is proportional to the thickness of the connection interface 2. Therefore, in the conventional example shown in FIG. 3, the connection end is cut diagonally at an angle as gentle as possible to increase the area of the connection interface 2. Attention is paid to
However, there are limitations from an engineering standpoint, and the disadvantage is that the connection resistance is greater than the method shown in FIG. 1 or 2. In Fig. 4, the area of the connection interface 2 is the same as the cross-sectional area of the superconducting conductor 1. For example, in the case of solder connection, it is not possible to reduce the connection resistance, and it is not possible to increase the mechanical strength. Can not. For this reason, a method of connecting by pressure welding is used, but in this case,
Since no solder is used, a small connection resistance can be obtained, but it has the disadvantage that the thermal effect caused by welding deteriorates the superconducting properties of the superconducting wire used in the superconducting conductor 1.

本発明は上述の点に鑑み成されたもので、その
目的とするところは、接続部における幾何学的な
乱れを無くし、かつ接続抵抗の小さい超電導導体
の製作方法を提供するにある。
The present invention has been made in view of the above-mentioned points, and an object thereof is to provide a method for manufacturing a superconducting conductor that eliminates geometric disturbances in the connection portion and has low connection resistance.

本発明は複数の導体を接続して一体化する超電
導導体の接続部を銅と超電導体との複合導体から
なる中空ケースで覆い、しかる後に、該中空ケー
スを機械加工して、この中空ケースと共に前記超
電導体の接続部近傍の断面を減少々せ、接続部の
断面寸法を前記超電導導体とほぼ同程度の断面寸
法とすることにより、所期の目的を達成するよう
になしたものである。
The present invention covers the connecting part of a superconducting conductor that connects and integrates a plurality of conductors with a hollow case made of a composite conductor of copper and a superconductor, and then machine-processes the hollow case. The intended purpose is achieved by decreasing the cross section of the superconductor near the connecting portion and making the cross-sectional size of the connecting portion approximately the same as that of the superconducting conductor.

以下図面の実施例に基づいて本発明を詳細に説
明する。尚、符号は従来と同一のものは同符号を
使用する。
The present invention will be described in detail below based on embodiments shown in the drawings. Incidentally, the same reference numerals are used for the same parts as in the past.

第5図、及び第6図に本発明の一実施例を示
す。
An embodiment of the present invention is shown in FIGS. 5 and 6.

該図に示す実施例では、超電導導体1同志の端
面を互いに接触させ、しかる後にこの接続部分を
含む超電導導体1の一部を中空ケース3で覆つて
いる。ここで超電導導体1は、幅3.0mm、厚さ2.0
mmの矩形断面を持ち、安定化基材としての銅母材
中に、50μm直径のNb−Ti合金系超電導体のフ
イラメントが1000本埋込まれた極細多芯超電導導
体である。また中空ケース3は、外側寸法が幅
6.0mm、厚さ4.0mm、内側寸法が幅3.1mm厚さ2.1mm
の断面寸法で、長さが約10cmであり、50μm直径
のNb−Ti合金系超電導体のフイラメントが3000
本埋込まれた極細多芯超電導導体からなる。第5
図に示す組合せ構造体とした後に、溝ロール等を
用いて中空ケース3部分を機械加工(加圧成形)
を行ない、中空ケース3と共に超電導導体1の接
続部近傍の断面を減少させ、接続部の断面寸法を
超電導導体1の断面寸法とほぼ同一にする。第6
図はこの時の接続部の長手方向に平行な断面構造
を模式的に示した図である。
In the embodiment shown in the figure, the end surfaces of the superconducting conductors 1 are brought into contact with each other, and then a portion of the superconducting conductor 1 including this connecting portion is covered with a hollow case 3. Here, superconducting conductor 1 has a width of 3.0 mm and a thickness of 2.0 mm.
It is an ultra-fine multicore superconducting conductor with a rectangular cross section of mm, and 1000 filaments of Nb-Ti alloy superconductor with a diameter of 50 μm are embedded in a copper base material serving as a stabilizing base material. In addition, the outer dimension of the hollow case 3 is the width
6.0mm, thickness 4.0mm, inner dimensions are width 3.1mm thickness 2.1mm
A filament of Nb-Ti alloy superconductor with a cross-sectional dimension of about 10 cm in length and a diameter of 50 μm has a diameter of 3000.
Consists of embedded ultra-fine multicore superconducting conductor. Fifth
After forming the combined structure shown in the figure, the 3 parts of the hollow case are machined (pressure forming) using grooved rolls, etc.
The cross section of the superconducting conductor 1 near the connecting portion is reduced together with the hollow case 3, and the cross-sectional size of the connecting portion is made almost the same as the cross-sectional size of the superconducting conductor 1. 6th
The figure is a diagram schematically showing a cross-sectional structure parallel to the longitudinal direction of the connection portion at this time.

このような本実施例の製作方法では、接続部で
約75%の断面減少であり、そのため超電導導体1
と中空ケース3の界面2′は互いの銅が金属的に
結合されており、光学顕微鏡による観察ではもは
や明瞭な界面は判別できなかつた。また、接続界
面2近傍では、フイラメント径は約25μm直径ま
で断面減少がなされていたが、接続部の銅を硝酸
にて溶解除去して検査したが、接続工程に伴うフ
イラメントの断線は認められなかつた。さらに、
4.2Kの液体ヘリウム中にて、直流電流を2000Aま
で通電したが、接続抵抗は10-9Ωの測定感度では
抵抗の発生が認められなかつたので、本実施例の
方法によれば、接続部の幾何学的な乱れがなく、
かつ、接続抵抗の非常に小さなものが得られるこ
とが示された。
In the manufacturing method of this example, the cross section is reduced by about 75% at the connection part, so the superconducting conductor 1
At the interface 2' between the hollow case 3 and the hollow case 3, the copper is metallically bonded to each other, and a clear interface could no longer be discerned by observation using an optical microscope. In addition, near the connection interface 2, the filament diameter had been reduced to about 25 μm in cross section, but when the copper at the connection was removed by dissolving it with nitric acid and inspected, no breakage of the filament was observed due to the connection process. Ta. moreover,
Although a DC current of up to 2000 A was passed in liquid helium at 4.2 K, no resistance was observed with a measurement sensitivity of 10 -9 Ω. According to the method of this example, the connection There is no geometric disturbance,
Moreover, it was shown that a connection resistance of very low value could be obtained.

第7図、および第8図は本発明の他の実施例を
示す図である。第7図は、組合せ構造体とする時
に、超電導導体1の端部を斜めに切断加工あるい
は圧延加工し、接触界面2の面積を大きくした実
施例、第8図は、組合せ構造体とする時に、超電
導導体1の端部に切込みを入れて、相互の接触界
面2の面積を大きくした実施例である。
FIGS. 7 and 8 are diagrams showing other embodiments of the present invention. Fig. 7 shows an example in which the end of the superconducting conductor 1 is diagonally cut or rolled to increase the area of the contact interface 2 when used to form a combined structure, and Fig. 8 shows an example in which the area of the contact interface 2 is increased when used to form a combined structure. This is an embodiment in which a notch is made at the end of the superconducting conductor 1 to increase the area of the mutual contact interface 2.

以上の実施例にては、矩形断面形状の超電導導
体1を用いたが、超電導導体1としては、円形断
面形状であつても本発明の主旨は変らない。
Although the superconducting conductor 1 having a rectangular cross-sectional shape is used in the above embodiment, the gist of the present invention does not change even if the superconducting conductor 1 has a circular cross-sectional shape.

また、上記実施例にては、接続されるべき超電
導導体1が同一断面寸法としたが、断面寸法の異
なる超電導導体1を接続することもできる。さら
に、本発明の製作方法においては、接続部の断面
減少を行なつた後に、熱処理を行うとより効果的
である。すなわち、接続部では大きな断面減少が
なされており、それに伴つて安定化基材としての
銅母材が加工硬化を受け電気比抵抗の増大が生ず
る。安定化基材としては電気比抵抗の小さいもの
を要求されることから、電気比抵抗の増大は望ま
しくない。銅母材の電気比抵抗を低減させるため
には、焼鈍熱処理が有効である。以上の説明にお
いては、Nb−Ti合金超電導体からなる極細多芯
線を用いたが、たとえば、Nb3Snなどの化合物系
超電導体からなる極細多芯線においても本発明の
製作方法は有効である。化合物系超電導体からな
る極細多芯線は、Nb3Snを例に説明すると、Nb
のフイラメントをCu−Snブロンズ中に埋込み、
拡散障壁を介して安定化基材である銅母材中に埋
込まれた複合体を作り、この複合体を600〜800℃
の温度にて拡散熱処理を行ない、Nbフイラメン
トの周囲にNb3Sn化合物を形成させることにより
得られる。Nb3Sn化合物は金属間化合物特有の機
械的に弱い性質を有するため、本発明の製作方法
を行なう場合には、拡散熱処理前の複合体の時点
にて接続部の組合せ構造体とし、断面減少を行な
つてから拡散熱処理を行なうことが要求される。
Further, in the above embodiment, the superconducting conductors 1 to be connected have the same cross-sectional size, but superconducting conductors 1 having different cross-sectional sizes can also be connected. Furthermore, in the manufacturing method of the present invention, it is more effective to perform heat treatment after reducing the cross section of the connecting portion. That is, the cross section of the connecting portion is greatly reduced, and the copper base material serving as the stabilizing base material undergoes work hardening, resulting in an increase in electrical resistivity. Since the stabilizing base material is required to have a low electrical resistivity, an increase in the electrical resistivity is undesirable. Annealing heat treatment is effective in reducing the electrical resistivity of the copper base material. In the above description, an ultrafine multifilamentary wire made of a Nb-Ti alloy superconductor was used, but the manufacturing method of the present invention is also effective for an ultrafine multifilamentary wire made of a compound superconductor such as Nb 3 Sn. An ultrafine multifilamentary wire made of a compound-based superconductor can be explained using Nb 3 Sn as an example.
embed the filament in Cu-Sn bronze,
Create a composite embedded in a copper matrix, which is a stabilizing base material, through a diffusion barrier, and heat this composite at 600-800℃.
It can be obtained by performing diffusion heat treatment at a temperature of 100 mL to form a Nb 3 Sn compound around the Nb filament. Since Nb 3 Sn compounds have mechanically weak properties unique to intermetallic compounds, when performing the manufacturing method of the present invention, the combined structure of the connection parts is formed at the time of the composite before diffusion heat treatment, and the cross-sectional area is reduced. It is required to perform the diffusion heat treatment after the above.

以上説明した本発明の超電導導体の製作方法に
よれば、超電導導体の幾何学的乱れを無くし、か
つ、接続抵抗を非常に小さくすることができる。
According to the method for manufacturing a superconducting conductor of the present invention as described above, it is possible to eliminate geometrical disorder of the superconducting conductor and to make connection resistance extremely small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図はいずれも従来の製作過程に
おける接続方法を説明するための超電導導体の接
続部斜視図、第5図は本発明の超電導導体の製作
方法の一実施例を示し加圧成形前の断面図、第6
図はその加圧成形後の断面図、第7図、及び第8
図は本発明の他の実施例を示し、いずれも加圧成
形前の断面図である。 1……超電導導体、2,2′……接続界面、3
…中空ケース。
1 to 4 are perspective views of the connection portion of a superconducting conductor for explaining the connection method in the conventional manufacturing process, and FIG. Sectional view before molding, No. 6
The figures are cross-sectional views after pressure forming, Figures 7 and 8.
The figures show other embodiments of the present invention, and all are sectional views before pressure molding. 1... Superconducting conductor, 2, 2'... Connection interface, 3
...Hollow case.

Claims (1)

【特許請求の範囲】 1 複数の超電導導体を接続して一体に形成する
超電導導体の製作方法において、前記超電導導体
の接続部を銅と超電導体との複合導体からなる中
空ケースで覆い、しかる後に該中空ケースを機械
加工して、この中空ケースと共に前記超電導導体
の接続部近傍の断面を減少させ、接続部の断面寸
法を前記超電導導体とほぼ同程度の断面寸法とし
たことを特徴とする超電導導体の製作方法。 2 前記超電導導体、及び複合導体を極細多芯超
電導導体としたことを特徴とする特許請求の範囲
第1項記載の超電導導体の製作方法。
[Scope of Claims] 1. A method for manufacturing a superconducting conductor in which a plurality of superconducting conductors are connected and formed integrally, in which the connecting portion of the superconducting conductors is covered with a hollow case made of a composite conductor of copper and superconducting material, and then A superconductor characterized in that the hollow case is machined to reduce the cross section of the superconducting conductor near the connecting portion together with the hollow case, so that the cross-sectional dimension of the connecting portion is approximately the same as that of the superconducting conductor. How to make conductors. 2. The method of manufacturing a superconducting conductor according to claim 1, wherein the superconducting conductor and the composite conductor are ultrafine multicore superconducting conductors.
JP12238480A 1980-09-05 1980-09-05 Method of producing superconductor Granted JPS5746477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12238480A JPS5746477A (en) 1980-09-05 1980-09-05 Method of producing superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12238480A JPS5746477A (en) 1980-09-05 1980-09-05 Method of producing superconductor

Publications (2)

Publication Number Publication Date
JPS5746477A JPS5746477A (en) 1982-03-16
JPS6219021B2 true JPS6219021B2 (en) 1987-04-25

Family

ID=14834470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12238480A Granted JPS5746477A (en) 1980-09-05 1980-09-05 Method of producing superconductor

Country Status (1)

Country Link
JP (1) JPS5746477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443331U (en) * 1990-08-09 1992-04-13

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584547A (en) * 1983-12-30 1986-04-22 General Electric Company Superconducting joint for superconducting wires and coils

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443331U (en) * 1990-08-09 1992-04-13

Also Published As

Publication number Publication date
JPS5746477A (en) 1982-03-16

Similar Documents

Publication Publication Date Title
US7468207B2 (en) Superconducting coil and superconducting apparatus
JP3521612B2 (en) Connection structure of superconducting conductor
US3570118A (en) Method of producing copper clad superconductors
US4673774A (en) Superconductor
US4794688A (en) Method of connecting superconducting wires
JPS5825015A (en) Method of producing superconductive hollow conductor
JPS6219021B2 (en)
KR101112069B1 (en) A composite conductor with multifilament superconductive strands
JPS6137764B2 (en)
JPH031469A (en) Connecting method for superconductive wire and compound superconductive wire
JP2916214B2 (en) Superconducting wire connection method
JPS5923402B2 (en) superconducting wire
JPS627671B2 (en)
JPS6135667B2 (en)
JPS5836442B2 (en) superconducting wire
JPH065345A (en) Different kind superconducting wire connecting method
JP3061630B2 (en) Method for producing superconducting wire made of Nb (3) Sn compound
JPH08138820A (en) Joining method of compound superconductive wire and conductor
JP4534276B2 (en) Oxide superconducting wire connection method
JPS58169712A (en) Method of producing composite superconductive wire
JPS63124310A (en) Manufacture of nb-ti very fine multi-core superconductive wire
JPS6348147B2 (en)
JPH03194866A (en) Connection method for complex superconductive wire and connection structure therefor
JPS58191406A (en) Manufacture of superconducting coil
JPS6313286B2 (en)