JPS62190139A - Oxidation of glycol - Google Patents

Oxidation of glycol

Info

Publication number
JPS62190139A
JPS62190139A JP61031521A JP3152186A JPS62190139A JP S62190139 A JPS62190139 A JP S62190139A JP 61031521 A JP61031521 A JP 61031521A JP 3152186 A JP3152186 A JP 3152186A JP S62190139 A JPS62190139 A JP S62190139A
Authority
JP
Japan
Prior art keywords
aqueous solution
acid
periodic acid
oxidation
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61031521A
Other languages
Japanese (ja)
Other versions
JPH068262B2 (en
Inventor
Takaharu Ikeda
池田 隆春
Kazuhiro Tada
和弘 多田
Hiroshi Yamachika
山近 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP61031521A priority Critical patent/JPH068262B2/en
Publication of JPS62190139A publication Critical patent/JPS62190139A/en
Publication of JPH068262B2 publication Critical patent/JPH068262B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:In the oxidation of glycol with aqueous periodic acid, the aqueous iodic acid as a by-product of the oxidation is electrolytically oxidized and the regenerated periodic acid is reused to effect the oxidation with industrial advantage. CONSTITUTION:i) A compound of formula I (R1-R4 are H, alkyl, aryl, alkoxycarbonyl where R1-R4 are not H or alkoxycarbonyl simultaneously) is oxidized with periodic acid into the objective compounds of formula II and formula III. ii) The products are separated from the reaction mixture. iii) The aqueous iodic acid which is recovered in the formula process as a by-product is electrolytically oxidized to regenerate periodic acid. iv) The acid is recycled to the process i) repeatedly to solve the problems of economy in the use of the acid in large amounts, the safety in the transportation and the post treatment of the by-products.

Description

【発明の詳細な説明】 く肢莱上の利用分野〉 本発明は改良されたグリコール類の酸化方法に関する。[Detailed description of the invention] Fields of use on Kushirai〉 The present invention relates to an improved method for oxidizing glycols.

く従来の技術〉 従来より、グリコール類の開裂に用いられる酸化剤とし
て過ヨウ素酸水溶液は公知であり、そのか、折曲酸化作
用と良好な啄率で反応が進行するものとしてもよく知ら
れている(「最新−i’ lt+化学J H,O,Ho
use )。
Prior art> A periodic acid aqueous solution has been known as an oxidizing agent used for the cleavage of glycols, and it is also well known that the reaction proceeds with bending oxidation action and good elongation. ("Latest-i' lt+Chemistry J H, O, Ho
use).

しかし i16ヨウ紫酸水溶液によるグリコール知の酸
化を1莱的規模で実施するには、大量の過ヨウ素酸水溶
赦を必要とし、またそれに伴って人尿のヨウ素酸水溶液
が副生品として発生するため、■大量の過ヨウ素酸水溶
欣を使用するための経済上の問題、■大垣使用に伴う迭
ヨウ素酸水I4I欣輸送の安全対策の同順、■大垣に発
生する副生ヨウ素酸水溶液の処理の間踊など工業上極め
て重要な同一を有していた。
However, in order to carry out the oxidation of glycol using an aqueous solution of i16 iodohydric acid on a scale of one cup, a large amount of aqueous periodic acid is required, and an aqueous solution of iodic acid in human urine is generated as a by-product. For this reason, ■ economic problems associated with using a large amount of periodic acid aqueous solution, ■ safety measures for transporting iodic acid water I4I due to the use of Ogaki, and ■ problems with by-product iodic acid aqueous solution generated in Ogaki. It had the same characteristics that are extremely important industrially, such as during processing.

く発明が解決しようとする間騙点〉 このようなことから、過ヨウ木酸水ghを酸化剤とする
グリコール類の酸化において、上記諸同順を発すること
なく工業上有利にその酸化反応を行うべく極々検討の結
果、該反応により剛性するヨウ素酸水溶液を再生し、こ
れを酸化剤として再利用することによりその目的が連成
′せられることを見出し、本発明に至った。
Problems that the invention seeks to solve> For these reasons, in the oxidation of glycols using periodic acid water gh as an oxidizing agent, it is possible to carry out the oxidation reaction industrially advantageously without causing the above-mentioned problems. As a result of extensive research, it was discovered that the objectives could be achieved by regenerating a rigid aqueous iodic acid solution through the reaction and reusing it as an oxidizing agent, leading to the present invention.

く問題点を解決するための手段〉 すなわち本発明は、一般式(1) (式中、R+ 、 R2、RsおよびR4は水素原子、
アルキル基、アリール基またはアルコキシカルボニル基
を示す。ただし、 R1,R2,R3およびR4が同時
に水素原子またはアルコキシカルボニル基であることは
ない。) で示されるグリコール類を過ヨウ素酸水溶液と反応させ
て、一般式(n)および(III)(II)     
    (m) (上式中、 Rt、Rz、RaおよびR4は前記と同じ
意味を有する) で示される酸化生成物を得る工程、 ■ 酸化反応欣から上記酸化生成物を分離する工程、 ■ ■の工程により回収されるヨウ素酸水溶液を電解酸
化して過ヨウ素酸水溶液を再生させる工程、 ■ ■で得た過ヨウ素酸水溶液を■の工程に循環使用す
る工程、 からなることを特徴とするグリコール類の酸化方法を提
供するものである。
Means for Solving the Problems> That is, the present invention solves the problems of the general formula (1) (wherein R+, R2, Rs and R4 are hydrogen atoms,
Indicates an alkyl group, an aryl group or an alkoxycarbonyl group. However, R1, R2, R3 and R4 are never hydrogen atoms or alkoxycarbonyl groups at the same time. ) is reacted with an aqueous periodic acid solution to form the general formulas (n) and (III) (II).
(m) A step of obtaining an oxidation product represented by (in the above formula, Rt, Rz, Ra and R4 have the same meanings as above); Glycols characterized by comprising the following steps: (1) regenerating the periodic acid aqueous solution by electrolytically oxidizing the iodic acid aqueous solution recovered in the process; (1) recycling the periodic acid aqueous solution obtained in (2) to the process (2). The present invention provides a method for oxidizing.

本発明に適用されるグリコール類は前記一般式(夏)で
示されるものであり、各置換基においてアルキル基とし
てはメチル、エチル、n−ブチル、イソペンチル、n−
オキシル、シクロプロピル、2,2−ジメチル−8−メ
トキシカルボニルシクロプロビル、シクロヘキシル、メ
ンチル、ヒドロキシカルボニルオクチルなどが、アリー
ル基としてはフェニル、トリル、クロロフェニル、8.
4−メチレンジオキシフェニルなどが、アルコキシカル
ボニル基としてはメトキシカルボニル、n−ブトキシカ
ルボニル、p−メントキシカルボニルなどが例示される
The glycols applied to the present invention are those represented by the general formula (summer), and the alkyl groups in each substituent include methyl, ethyl, n-butyl, isopentyl, n-
Oxyl, cyclopropyl, 2,2-dimethyl-8-methoxycarbonylcycloprobyl, cyclohexyl, menthyl, hydroxycarbonyloctyl, etc., and aryl groups include phenyl, tolyl, chlorophenyl, 8.
Examples of the alkoxycarbonyl group include 4-methylenedioxyphenyl, methoxycarbonyl, n-butoxycarbonyl, and p-menthoxycarbonyl.

かかるグリコール類の過ヨウ素酸水溶液による酸化反応
において、使用する過ヨウ素酸水溶液のe度は反応終了
後における酸化生成物とヨウ素酸水溶液の分離を有効に
行わせしめるために、80重ff11以上とすることが
望ましい。
In such an oxidation reaction of glycols with an aqueous periodic acid solution, the degree of e of the aqueous periodic acid solution used is 80 times ff11 or more in order to effectively separate the oxidation product and the aqueous iodic acid solution after the reaction is completed. This is desirable.

この分離が不十分で、ヨウ素酸水溶液中に酸化生成物や
溶媒が混入したりすると、過ヨウ素酸水溶液再生の際に
悪影響を及ぼす。
If this separation is insufficient and oxidation products or solvents are mixed into the aqueous iodic acid solution, it will have an adverse effect on the regeneration of the aqueous periodic acid solution.

また、過ヨウ累酸水溶赦の使用量は、グリコール類に対
して過ヨウ素酸として1モル倍以上であり、好ましくは
1.1〜2モル倍である。もちろん2モル倍以上でも反
応に何ら悪彰晴はないが、それに見合うだけの効果もな
く、経済的に不利である。
The amount of periodic acid used is at least 1 mole, preferably 1.1 to 2 moles, of periodic acid relative to the glycols. Of course, there is no negative effect on the reaction if the amount is more than 2 times the amount by mole, but it is not as effective as it should be and is economically disadvantageous.

この酸化反応において、原料となるグリコール類が水に
溶けに<<、その結果、反応の進行が遅いならば溶媒を
使用することができる。
In this oxidation reaction, a solvent can be used if the raw material glycols are not soluble in water and, as a result, the reaction progresses slowly.

溶媒を使用する場合、溶媒としては反応に不活性であれ
ば特に制限されることなく各抽の有機溶媒が使用される
が、メタノール、エタノールなどのアルコール系溶媒や
アセトニトリルなどが好ましく使用される。
When a solvent is used, any organic solvent may be used without particular limitation as long as it is inert to the reaction, but alcoholic solvents such as methanol and ethanol, acetonitrile, and the like are preferably used.

溶媒の使用量は特に制限されないが、一般的にはlOモ
ル倍程度までであり、好ましくは1〜8モル倍の範囲で
ある。
The amount of the solvent to be used is not particularly limited, but is generally up to about 10 moles, preferably 1 to 8 moles.

酸化反応における反応温度は使用するグリコ−ル類の柿
類、その他の条件により異るが、一般的には0〜70”
Cである。
The reaction temperature in the oxidation reaction varies depending on the type of glycol used and other conditions, but is generally 0 to 70".
It is C.

かかる酸化反応により、グリコール類からの酸化生成物
と副生するヨウ素酸水溶液が生成する。
This oxidation reaction produces oxidation products from glycols and an aqueous iodic acid solution as a by-product.

この酸化生成物とヨウ素酸水溶液の分離は、一般には酸
化反応液を分散することにより行われるが1分散に原し
てヨウ素酸水溶液と混和しない何機溶媒を使用すること
により分離を促進させることができる。この目的のため
の有°機溶腺としてはトルエン等の芳香族系の溶媒ある
いはジクロロエタン等のハロゲン系溶媒が好ましい。
This separation of the oxidation product and the iodic acid aqueous solution is generally performed by dispersing the oxidation reaction solution, but separation can be accelerated by using a solvent that is immiscible with the iodic acid aqueous solution per dispersion. I can do it. As the organic solvent for this purpose, aromatic solvents such as toluene or halogen solvents such as dichloroethane are preferable.

かくして回収されたヨウ素酸水溶液はこれを電解酸化し
て過ヨウ素酸水溶液に再生する。
The iodic acid aqueous solution thus recovered is electrolytically oxidized and regenerated into a periodic acid aqueous solution.

この電解酸化法は特に制限されず、公知の方法に準じて
行われるが、一般的には次の方法で行われる。
This electrolytic oxidation method is not particularly limited and may be carried out according to a known method, but is generally carried out by the following method.

この電解酸化において、作用電極は陽極であり、対極は
陰極であって、それぞれの電極の材質として陽極には二
酸化鉛、陰極には鉄、ステンレス、白金、グラファイト
などが用いられ、極間距離は通常50mm以下である。
In this electrolytic oxidation, the working electrode is an anode, and the counter electrode is a cathode.The material of each electrode is lead dioxide for the anode, iron, stainless steel, platinum, graphite, etc. for the cathode, and the distance between the electrodes is It is usually 50 mm or less.

また、このft/、 解酸化において、生成した過ヨウ
素酸水溶液が陰極で還元される可能性があるため、陽極
と1I2−8i11との同に隔膜を入れるのが望ましい
。この目的の隔膜としては陽イオン交換膜、陰イオン交
換膜、磁性P/Ii膜等を用いることができる。
In addition, during this deoxidation, the periodic acid aqueous solution produced may be reduced at the cathode, so it is desirable to insert a diaphragm between the anode and 1I2-8i11. As a diaphragm for this purpose, a cation exchange membrane, an anion exchange membrane, a magnetic P/Ii membrane, etc. can be used.

隔膜を使用する場会には陰all液が必要であり、この
陰極液としては水酸化ナトリウム等の水溶性無機塩基の
水溶液、硫酸等の鉱酸の水溶液、食塩等の水溶性塩の水
溶液が使用される。
Where a diaphragm is used, a catholyte is required, and the catholyte can be an aqueous solution of a water-soluble inorganic base such as sodium hydroxide, an aqueous solution of a mineral acid such as sulfuric acid, or an aqueous solution of a water-soluble salt such as common salt. used.

陽極の電流密度は通常100A/dni’以下。The current density of the anode is usually less than 100 A/dni'.

好ましくは0.5〜40A/dゴである。Preferably it is 0.5 to 40 A/d.

電気社は特に制限なく、電気組に応じて過ヨウ素酸が生
成するが、一般的にはヨウ紫酸に対して2F1モル以上
、好ましくは2〜6F1モルである。
Periodic acid is not particularly limited, and periodic acid is produced depending on the electric group, but generally it is 1 mol or more of 2F, preferably 1 mol of 2F to 6F, based on iopuric acid.

反応は通常0〜70°Cの範囲で行われる。The reaction is usually carried out at a temperature of 0 to 70°C.

かかる電解酸化により、前工程で回収された副生ヨウ素
酸水溶液は過ヨウ素酸水溶液に再生され、この過ヨウ素
酸水溶液は最初の工程であるグリコール類の酸化におけ
る酸化剤としてそのままリサイクル使用される。
Through this electrolytic oxidation, the by-product iodic acid aqueous solution recovered in the previous step is regenerated into a periodic acid aqueous solution, and this periodic acid aqueous solution is recycled as it is as an oxidizing agent in the first step of oxidizing glycols.

リサイクル使用するにあたって、再庄過ヨウ素酸水溶故
のみを酸化剤として使用することもできるし、必要に応
じてこれと共に新鮮な過ヨウ素酸水溶欣を使用してもよ
い。
For recycling, only the reconstituted aqueous periodic acid may be used as the oxidizing agent, or, if necessary, fresh aqueous periodic acid may be used together with it.

〈発明の効果〉 かくして、本発明の方法に従えば、従来より1大な問題
とされていた大嵐に過ヨウ素酸水溶液を使用することに
伴う経済上の問題や輸送に伴う安全対策上の問題、更に
は副生品であるヨウ素酸水溶数の処理の問題などが一挙
に解決され、最初に使用された過ヨウ素酸水溶液を繰り
返し使用することが可能となって、工業的にも極めて有
利にグリコール類を酸化することができる。
<Effects of the Invention> Thus, by following the method of the present invention, economical problems associated with the use of periodic acid aqueous solution in heavy storms and safety problems associated with transportation, which have traditionally been considered major problems, can be avoided. Furthermore, the problem of processing the by-product iodic acid aqueous solution was solved all at once, and it became possible to repeatedly use the periodic acid aqueous solution used initially, which was extremely advantageous from an industrial perspective. Can oxidize glycols.

〈実施例〉 以下、実施例により本発明を説明する。<Example> The present invention will be explained below with reference to Examples.

実施例1 (a)  酒石酸ジー!−←)−メンチルエステル(以
下酒石酸シメンチルと呼ぶ) l 07.8 fおよび
アセトニトリル107.89を攪拌機、温度計および還
流冷却器を装備したフラスコ内に仕込み、窒累ガスを通
じる、その中に過ヨウ素酸水溶液110.7F(過ヨウ
素酸含旭45.3%)を反応源pi20〜80℃に保ち
ながら滴下する。反応は2時間以内に完結する。反応終
了後、トルエン215.69を加え、攪拌したのち分液
する、トルエン層を炭酸ナトリウム水溶液で洗浄したの
ち濃縮し、グリオキシル酸!−(へ)−メンチルエステ
ル抱水体(以下グリオキシル酸メンチルと呼ぶ)120
F(含、1lit85.9%)を得る。グリオキシル酸
メンチルはn−ヘキサン−水系より結晶化し、精製する
ことができる。回収したヨウ素酸水溶液は121.8F
(ヨウ素酸含;m40.o%)であった。このヨウ素酸
水溶液を以下の方法で電解再生する。
Example 1 (a) Tartaric acid G! -←)-Menthyl ester (hereinafter referred to as cymentyl tartrate) l 07.8 f and acetonitrile 107.89 g were placed in a flask equipped with a stirrer, a thermometer and a reflux condenser, and nitrogen gas was passed through it. An iodic acid aqueous solution of 110.7 F (periodic acid content: 45.3%) is added dropwise while maintaining the reaction source pi at 20 to 80°C. The reaction is complete within 2 hours. After the reaction is complete, 215.69 g of toluene is added, stirred, and then separated. The toluene layer is washed with an aqueous sodium carbonate solution and concentrated to give glyoxylic acid! -(he)-menthyl ester hydrate (hereinafter referred to as menthyl glyoxylate) 120
F (contains 1 liter, 85.9%) is obtained. Menthyl glyoxylate can be crystallized from an n-hexane-water system and purified. The recovered iodic acid aqueous solution was 121.8F.
(Contains iodic acid; m40.o%). This iodic acid aqueous solution is electrolytically regenerated by the following method.

(b)  二酸化鉛電動(有効電極面積82d)、鉄電
極(有効m檎面槓82d)、フッ素樹脂系陽イオン交換
膜(セレミオンCMF :旭硝子社製、有効面Jf11
B2cj)を装備し、極間距離が20閣の電解セルを用
いて次の方法で反応を実施した。
(b) Lead dioxide electric (effective electrode area 82d), iron electrode (effective m-face 82d), fluororesin cation exchange membrane (Celemion CMF: manufactured by Asahi Glass Co., Ltd., effective surface Jf11)
The reaction was carried out in the following manner using an electrolytic cell equipped with B2cj) and having a distance between electrodes of 20 mm.

回収したヨウ崇酸水溶故を陽極側に、2N水酸化ナトリ
ウム水溶故1009を陰極側に加える。反応は4Aの定
電流電解で実施し、反応温度は20〜50°Cに保つ。
The recovered iodine aqueous solution is added to the anode side, and the 2N sodium hydroxide aqueous solution 1009 is added to the cathode side. The reaction is carried out using constant current electrolysis at 4 A, and the reaction temperature is maintained at 20-50°C.

理fiii電気賦の1.2倍を通じる。反応終了後、過
ヨウ累酸水溶液96.7F(金星47.6%)を得る。
It passes 1.2 times the electric charge. After the reaction is completed, an aqueous periodic acid solution of 96.7F (Venus 47.6%) is obtained.

(C)  かくして1川収された過ヨウ素酸水溶液を使
用し、先と同様の反応、回収処理を繰り返し行った。
(C) Using the periodic acid aqueous solution thus collected, the same reaction and recovery process as above was repeated.

表−1にリサイクル実験の結果を示す。Table 1 shows the results of the recycling experiment.

表  −1 実施例2 (a)  過ヨウ素酸水溶液105.7F(過ヨウ素酸
含旗49.8チ)を攪拌機、温度計、速流冷却器の装備
したフラスコ内に仕込み、窒素ガスを通じる。フラスコ
内温を00〜5°Cに保ち、フラスコ内に1−(8,4
−メチレンジオキシフェニル)プロパン−2,8−ジオ
ール(以下イソサフロールジオールと呼ぶ)60りを加
える。反応は2時間以内に完結する。
Table 1 Example 2 (a) A periodic acid aqueous solution of 105.7 F (49.8 F containing periodic acid) is charged into a flask equipped with a stirrer, a thermometer, and a rapid flow cooler, and nitrogen gas is passed through the flask. Keep the internal temperature of the flask between 00 and 5°C, and add 1-(8,4
60 g of -methylenedioxyphenyl)propane-2,8-diol (hereinafter referred to as isosafrol diol) are added. The reaction is complete within 2 hours.

反応終了後、トルエン150vを加え、攪拌したのち分
液する。トルエン層を炭酸ナトリウム水溶液で洗浄した
のちe縮し、8.4−メチレンジオキシベンズアルデヒ
ド(以下へりオトロピンと呼ぶ。)58.Of(含鰍6
B、8%)を得る。へりオトロビンは蒸留または重2(
ヨウ素酸含鍾87.0チ)であった。このヨウ振数水溶
液を以下の方法で電解再生する。
After the reaction is complete, 150v of toluene is added, stirred, and then separated. The toluene layer was washed with an aqueous sodium carbonate solution and then condensed to give 8.4-methylenedioxybenzaldehyde (hereinafter referred to as heliotropine)58. Of (includes 6
B, 8%). Heliotrobin is distilled or dehydrated (
The iodic acid content was 87.0%. This iodine frequency aqueous solution is electrolytically regenerated by the following method.

(b)  実施例1にて使用した電解セルを用いて次の
方法で反応を実施した。
(b) Using the electrolytic cell used in Example 1, a reaction was carried out in the following manner.

回収したヨウ素酸水溶教を11M極側に、2N水酸化ナ
トリウム水溶液100Fを陰極側に加える。反応は4A
の定電流電解で行ない、反応温度は20°〜50℃に保
つ。理論電気社の1.75倍1を通じる、反応終了後退
ヨウ素酸水溶液92.8F(含鑓45.8チ)を得る。
Add the recovered iodic acid aqueous solution to the 11M electrode side, and add 2N sodium hydroxide aqueous solution 100F to the cathode side. The reaction is 4A
The reaction temperature is maintained at 20° to 50°C. After the reaction, a 92.8 F (containing 45.8 F) aqueous solution of iodic acid was obtained using a 1.75-fold ratio manufactured by Riron Denkisha.

(C)  かくして回収された過ヨウ累酸水溶液を使用
し、先と同核の反応、回収処理を繰り返し行った。
(C) Using the periodic acid aqueous solution thus recovered, the same nuclear reaction and recovery treatment as above were repeated.

表−2にリサイクル実験の結果を示す。Table 2 shows the results of the recycling experiment.

表  −2Table-2

Claims (4)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼ (式中、R_1、R_2、R_3およびR_4は水素原
子、アルキル基、アリール基またはアルコキシ カルボニル基を示す。但し、R_1、R_2、R_3お
よびR_4が同時に水素原子またはアルコキシカルボニ
ル基であることはない。) で示されるグリコール類を過ヨウ素酸水溶液と反応させ
て、一般式 ▲数式、化学式、表等があります▼および▲数式、化学
式、表等があります▼ (上式中、R_1、R_2、R_3およびR_4は前記
と同じ意味を有する) で示される酸化生成物を得る工程、
(1) General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. (R_4 cannot be a hydrogen atom or an alkoxycarbonyl group at the same time.) By reacting the glycols represented by the following with an aqueous periodic acid solution, the general formulas ▲There are mathematical formulas, chemical formulas, tables, etc.▼ and ▲mathematical formulas, chemical formulas, tables, etc. etc. ▼ (In the above formula, R_1, R_2, R_3 and R_4 have the same meanings as above) A step of obtaining an oxidation product represented by
(2)酸化反応液から上記酸化生成物を分離する工程、(2) separating the oxidation product from the oxidation reaction solution; (3)(2)の工程により回収されるヨウ素酸水溶液を
電解酸化して過ヨウ素酸水溶液を再生させる工程、
(3) a step of electrolytically oxidizing the iodic acid aqueous solution recovered in step (2) to regenerate the periodic acid aqueous solution;
(4)(3)で得た過ヨウ素酸水溶散を(1)の工程に
循環使用する工程、 からなることを特徴とするグリコール類の酸化方法
(4) A method for oxidizing glycols, comprising the steps of recycling the periodic acid aqueous solution obtained in (3) to the step (1).
JP61031521A 1986-02-14 1986-02-14 Method for oxidizing glycols Expired - Lifetime JPH068262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61031521A JPH068262B2 (en) 1986-02-14 1986-02-14 Method for oxidizing glycols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61031521A JPH068262B2 (en) 1986-02-14 1986-02-14 Method for oxidizing glycols

Publications (2)

Publication Number Publication Date
JPS62190139A true JPS62190139A (en) 1987-08-20
JPH068262B2 JPH068262B2 (en) 1994-02-02

Family

ID=12333495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61031521A Expired - Lifetime JPH068262B2 (en) 1986-02-14 1986-02-14 Method for oxidizing glycols

Country Status (1)

Country Link
JP (1) JPH068262B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066594A (en) * 2018-10-24 2020-04-30 旭化成株式会社 Method for producing dialdehyde

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066594A (en) * 2018-10-24 2020-04-30 旭化成株式会社 Method for producing dialdehyde

Also Published As

Publication number Publication date
JPH068262B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US8796489B2 (en) Ketobenzofuran derivatives, method for synthesizing same, and intermediates
JPS62267486A (en) Oxidation of organic compound using cerium ion in aqueous methane sulfonic acid
FI80256C (en) Process for oxidation of an organic compound
JPH09286774A (en) 2-alkylmercapto-4-(trifluoromethyl) benzoic acid ester and its production
JPS62280384A (en) Oxidation of organic compound using serium ion in aqueous trifluoromethanesulfonic acid
JPS60500178A (en) Method for producing aldehydes
JP2588695B2 (en) Method for producing carbonyl group-containing compound
JPS62190139A (en) Oxidation of glycol
JPH045262A (en) Production of benzylamines
JPS6052586A (en) Manufacture of benzaldehyde dialkylacetal
US4492617A (en) Method of preparing tetrahalobenzene compounds
JPS6330992B2 (en)
JPS63143278A (en) Oxidation of organic compound using tallium ion
JPH0529341B2 (en)
US4336202A (en) 1,3-Cyclohexanedione derivatives
JP5138499B2 (en) Method for producing aliphatic diketone
US4493755A (en) Electrolytic preparation of orthoalkyl-2-halo-N-acylanilides
JPS5943551B2 (en) Method for producing 4-butanolides
JPH0228583B2 (en)
JPS62294191A (en) Production of alkoxy acetate
JPS5819654B2 (en) Production method of anisaldehyde
US4323708A (en) Method for preparing 2,4-diaminolphenol or 2,4-diamonophenol dihydrochloride
JPH0240047B2 (en)
JPS58207383A (en) Manufacture of 4-butanolides
JP3653590B2 (en) Process for producing bromo-substituted azetidinone compounds