JPS62189582A - Ct image aligning system - Google Patents

Ct image aligning system

Info

Publication number
JPS62189582A
JPS62189582A JP61030890A JP3089086A JPS62189582A JP S62189582 A JPS62189582 A JP S62189582A JP 61030890 A JP61030890 A JP 61030890A JP 3089086 A JP3089086 A JP 3089086A JP S62189582 A JPS62189582 A JP S62189582A
Authority
JP
Japan
Prior art keywords
smoothing
position deviation
vector
positional deviation
slice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61030890A
Other languages
Japanese (ja)
Inventor
Koichi Morishita
森下 孝一
Tetsuo Yokoyama
哲夫 横山
Kazuhiko Hamaya
和彦 浜谷
Kazuhiro Sato
一弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP61030890A priority Critical patent/JPS62189582A/en
Publication of JPS62189582A publication Critical patent/JPS62189582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Generation (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To obtain a high picture quality three-dimensional re-constitution image by extracting a position deviation vector in a position deviation detecting area set optionally between adjoining slices, smoothing the extracted position deviation vector in the slicing direction, thereafter, using the vectors before the smoothing and after the smoothing and executing the registration processing such as polynomial approximation. CONSTITUTION:When a position dislocation occurs, position deviation detecting areas 201 and 211 are set to adjoining slicing images 20 and 21, and the relative position deviation of central picture element 202 and 212 of respective areas is extracted. Concretely, while moving the area 201 in the area 211, a position deviation vector 32 is obtained by a template matching method, etc. For a full line graph 43 obtained by arranging the detected position deviation vector by obtaining the (x) component of the vector for the ordinate and a slicing position (slice No.) for the abscissa, a smoothing processing is executed, and the smooth position deviation vector is obtained like a dotted line 42. As the smoothing system at such a time, the processing to remove a peculiar action such as points 44 and 45 is executed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はCT像の三次元再構成処理に係り、特に全身用
CT像の如く体動による位置ずれの生じている場合に有
効な補正方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to three-dimensional reconstruction processing of CT images, and particularly relates to a correction method that is effective when positional displacement occurs due to body movement, such as in a whole-body CT image. .

〔発明の背景〕[Background of the invention]

CTスライス像間の体動補正方式として、上記特願昭5
8−209064号がある0本方式は、各スライス像か
ら輪郭を抽出し、スライス方向に輪郭線の平滑化を図り
、さらに平滑化前、後のデータを用いて座標変換を行い
1位置ずれを補正しようとするものである0本方式は、
体表の位置ずれをかなり軽減することができるが1輪郭
のみで位置ずれを検出しているためそれ以外の部分では
補正しきれないという問題があった。
As a body motion correction method between CT slice images, the above patent application
8-209064 extracts the contour from each slice image, smooths the contour line in the slice direction, and performs coordinate transformation using data before and after smoothing to eliminate one position shift. The 0-line method that we are trying to correct is
Although positional deviations on the body surface can be significantly reduced, there is a problem in that positional deviations are detected in only one contour, and correction cannot be completed in other areas.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記スライス間での位置合わせを、ス
ライス像の多数の領域について行い、より高画質の三次
元再構成像を提供することにある。
An object of the present invention is to provide a three-dimensional reconstructed image with higher image quality by performing the alignment between the slices in a large number of regions of the slice image.

〔発明の概要〕[Summary of the invention]

本発明は、隣接したCTスライス像間では画像が似通っ
ていること、又人体内の骨、Wa器等の形状は滑らかに
変化している点に着目し、隣接スライス間で任意に設定
した位置ずれ検出領域内の位置ずれベクトルを抽出し、
抽出した位置ずれベクトルをスライス方向に平滑化した
後、平滑化前と平滑化後のベクトルを用いて多項式近似
等のレジストレーション処理を行い、スライス間の位置
合わせを実現するものである。
The present invention focuses on the fact that images are similar between adjacent CT slice images and that the shapes of bones, Wa organs, etc. in the human body change smoothly, and the position is set arbitrarily between adjacent slices. Extract the positional deviation vector within the deviation detection area,
After smoothing the extracted positional deviation vector in the slice direction, registration processing such as polynomial approximation is performed using the vectors before and after smoothing to realize positioning between slices.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図〜第6図を用いて説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

第1図は、スライス像10〜14が各種体動により位置
ずれを生じている様子をあられしている。
FIG. 1 shows how the slice images 10 to 14 are displaced due to various body movements.

このように位置ずれが生じている時に第2図に示すよう
に隣接スライス像20.21に、位置ずれ検出領域20
1,211を設定し、各領域の中心画素202,212
の相対的な位置ずれを抽出する。具体的には、第3図に
示すように領域211中で領域201を動かしながらテ
ンプレートマツチング法等により位置ずれベクトル32
を求める。
When a positional shift occurs in this way, as shown in FIG. 2, a positional shift detection area 20.
1,211, and center pixel 202,212 of each area.
Extract the relative positional deviation of Specifically, as shown in FIG. 3, while moving the region 201 within the region 211, the positional deviation vector 32 is determined by a template matching method or the like.
seek.

上記処理を第4図に示すようにすべての隣接スライス間
について行う。同図で今、対象とする複数のスライス像
40の中にスライス401の如く体動に伴なうずれが生
じているものとする。各スライスにO〜8の番号をつけ
ると、スライス3と4゜4と5の間では、411,41
2に示すような位)ずれが検出される。検出した位置ず
れベクトルレ′を、縦軸にベクトルのX成分、横軸にス
ライス位置(スライスNα)を取って並べると、実線グ
ラフ43のようになる。そこで43に対して平滑化処理
を施こし、点線グラフ42の如く滑らかな位置ずれベク
トルを得る。この際の平滑化方式としては、点44.4
5の如く特異的な動きを取り除く(例えばMedian
フィルター)処理を行う。
The above processing is performed between all adjacent slices as shown in FIG. In the figure, it is now assumed that among the plurality of target slice images 40, a shift occurs in slice 401 due to body movement. If we number each slice from O to 8, between slices 3 and 4 and 4 and 5, there will be 411,41
2) A deviation as shown in Fig. 2) is detected. When the detected positional deviation vectors R' are arranged with the X component of the vector on the vertical axis and the slice position (slice Nα) on the horizontal axis, a solid line graph 43 is obtained. Therefore, a smoothing process is applied to 43 to obtain a smooth positional deviation vector as shown in the dotted line graph 42. The smoothing method in this case is point 44.4.
Remove specific movements like 5 (e.g. Median
filter) processing.

以上は、特定の位置ずれ検出領域に関する話であったが
、上記処理を第5図に示すように多数の領域を指定し、
第6図の如く隣接スライス像60゜61間で、領域60
0と601,610と611の組み合わせでマツチング
処理を行い、位置ずれベクトルを抽出する。以下、スラ
イス62.63についても同様の処理を行う。
The above discussion was about a specific positional deviation detection area, but the above process is performed by specifying a large number of areas as shown in Figure 5.
As shown in FIG. 6, between adjacent slice images 60° and 61
Matching processing is performed using combinations of 0 and 601 and 610 and 611 to extract positional deviation vectors. Hereinafter, similar processing is performed for slices 62 and 63.

このようにして抽出した位置ずれベクトルを、X方向、
y方向成分毎に、第7図に示すようにスライス方向に平
滑化を行い、例えば3番のスライス像では平滑化前のX
y3’成分70,72、平滑化後のXp y成分71.
73の如き組み合わせを(ub 、Vb )(k=1〜
n)とすると、座標変換式としては、例えば次のm次の
高次多項式が使用できる。
The positional deviation vector extracted in this way is
For each y-direction component, smoothing is performed in the slice direction as shown in FIG.
y3' component 70, 72, smoothed Xp y component 71.
Combinations like 73 (ub, Vb) (k=1~
n), the following m-th order high-order polynomial can be used as the coordinate transformation formula, for example.

上記座標変換式の係数は最小二乗法により決定する。即
ち、次式で示されるQ: を最小にする係数を次の正規方程式を解くことによって
算出する。
The coefficients of the above coordinate transformation formula are determined by the least squares method. That is, the coefficient that minimizes Q expressed by the following equation is calculated by solving the following normal equation.

F3nxs   aazz abzt  EJbst これにより、平滑化前のスライス像から平滑化後のスラ
イス像(つまりレジストレーション済の像)を得ること
ができる。
F3nxs aazz abzt EJbst As a result, a slice image after smoothing (that is, a registered image) can be obtained from a slice image before smoothing.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く1本発明によれば、スライス間での位置
合わせを、複数の位置ずれ検出領域を用いて精度良く行
うことが出来るため、高画質の三次元再構成画像を生成
できるという効果がある。
As described above, according to the present invention, alignment between slices can be performed with high accuracy using a plurality of misalignment detection areas, and therefore a high-quality three-dimensional reconstructed image can be generated. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、スライス間の体動、第2図はスライス間の位
置ずれ検出領域、第3図はテンプレートマツチングによ
る位置ずれ検出法、第4図は位置ずれベクトルの平滑化
、第5図は位置ずれ検出領域の設定法、第6図はスライ
ス間での位置ずれ検出領域の相対位置関係、第7図は平
滑化前、後の位置ずれベクトルを用いた座標変換法をそ
れぞれ説明する図である。 211・・・サーチ領域、201・・・テンプレート領
域、32・・・位置ずれベクトル、401・・・位置ず
れを起こしたスライス、41・・・位置ずれベクトル、
411゜412・・・特異ベクトル、43・・・平滑化
前の変化、42・・・平滑化後の変化、600,601
・・・位置ずれ検出領域の組、70.72・・・平滑化
前の位置すれ量(x+ y) 、71 、73・・・平
滑化後の位置ずれ量(X、y)。 代理人 弁理士 小川勝馬・□″ /り舶二二 菓 7 図
Figure 1 shows body movement between slices, Figure 2 shows the positional deviation detection area between slices, Figure 3 shows the positional deviation detection method using template matching, Figure 4 shows smoothing of the positional deviation vector, and Figure 5 6 is a diagram explaining the setting method of the displacement detection area, FIG. 6 is a diagram explaining the relative positional relationship of the displacement detection area between slices, and FIG. 7 is a diagram explaining the coordinate transformation method using the displacement vector before and after smoothing. It is. 211... Search area, 201... Template area, 32... Misalignment vector, 401... Slice that caused misalignment, 41... Misalignment vector,
411゜412...Singular vector, 43...Change before smoothing, 42...Change after smoothing, 600,601
... Set of positional deviation detection areas, 70.72 ... Positional deviation amount before smoothing (x+y), 71, 73... Positional deviation amount (X, y) after smoothing. Agent Patent attorney Katsuma Ogawa □″ / Nijika Riju 7 Figure

Claims (1)

【特許請求の範囲】[Claims] 複数枚の横断断層像(スライス像)より三次元像を再構
成する処理において、各スライス像に設定した任意の位
置ずれ検出領域より隣接スライス像間の位置ずれを検出
する手段、検出した位置ずれベクトルを平滑化する手段
、平滑化前の位置ずれベクトルと平滑化後の位置ずれベ
クトルとの間でレジストレーション処理を行う手段を設
けたことを特徴とするCT画像位置合わせ方式。
In the process of reconstructing a three-dimensional image from a plurality of transverse tomographic images (slice images), a means for detecting positional deviation between adjacent slice images from an arbitrary positional deviation detection area set in each slice image, and a detected positional deviation 1. A CT image positioning method comprising means for smoothing a vector and means for performing registration processing between a positional deviation vector before smoothing and a positional deviation vector after smoothing.
JP61030890A 1986-02-17 1986-02-17 Ct image aligning system Pending JPS62189582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61030890A JPS62189582A (en) 1986-02-17 1986-02-17 Ct image aligning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030890A JPS62189582A (en) 1986-02-17 1986-02-17 Ct image aligning system

Publications (1)

Publication Number Publication Date
JPS62189582A true JPS62189582A (en) 1987-08-19

Family

ID=12316318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030890A Pending JPS62189582A (en) 1986-02-17 1986-02-17 Ct image aligning system

Country Status (1)

Country Link
JP (1) JPS62189582A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260398A (en) * 2006-03-29 2007-10-11 Siemens Ag Method for reducing stepwise artifact in computer tomographic displaying of heart and memory medium
JP2010246862A (en) * 2009-03-24 2010-11-04 Japan Health Science Foundation Medical image generation apparatus and program
JP2013015665A (en) * 2011-07-04 2013-01-24 Nikon Corp Microscope device and image forming method
WO2013099140A1 (en) * 2011-12-27 2013-07-04 Canon Kabushiki Kaisha Image processing device, image processing method, and program
CN104359763A (en) * 2014-11-20 2015-02-18 深圳大学 Method for detecting internal crack developing of cement-based material under action of load

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260398A (en) * 2006-03-29 2007-10-11 Siemens Ag Method for reducing stepwise artifact in computer tomographic displaying of heart and memory medium
US8892187B2 (en) 2006-03-29 2014-11-18 Siemens Aktiengesellschaft Method for reducing step artifacts in a cardio CT representation
JP2010246862A (en) * 2009-03-24 2010-11-04 Japan Health Science Foundation Medical image generation apparatus and program
JP2013015665A (en) * 2011-07-04 2013-01-24 Nikon Corp Microscope device and image forming method
WO2013099140A1 (en) * 2011-12-27 2013-07-04 Canon Kabushiki Kaisha Image processing device, image processing method, and program
CN104359763A (en) * 2014-11-20 2015-02-18 深圳大学 Method for detecting internal crack developing of cement-based material under action of load

Similar Documents

Publication Publication Date Title
CN101896835B (en) Reduce the motion artifacts in MRI
US10469828B2 (en) Three-dimensional dense structure from motion with stereo vision
US6915003B2 (en) Method and apparatus for matching positions of images
JP2003132356A (en) Method and device for positioning two three-dimensional image data sets
JP2008528164A5 (en)
WO2010015957A1 (en) Automatic pre-alignment for registration of medical images
CN109978988B (en) Method for reconstructing a three-dimensional image data set, biplane X-ray device
JPS62189582A (en) Ct image aligning system
King et al. An adaptive and predictive respiratory motion model for image-guided interventions: theory and first clinical application
KR101118549B1 (en) Apparatus and Method for obtaining medical fusion image
DE112021005277T5 (en) Object key point detection
JPH06304153A (en) Image pickup device using mri device
Goffredo et al. A markerless sub-pixel motion estimation technique to reconstruct kinematics and estimate the centre of mass in posturography
JP2007260398A (en) Method for reducing stepwise artifact in computer tomographic displaying of heart and memory medium
CN111179409B (en) Respiratory motion modeling method, device and system
CN116797703A (en) Image-based concrete crack area strain distribution processing method
JP2005252482A (en) Image generating apparatus and three-dimensional distance information acquisition apparatus
JPS6120541A (en) Correction of strain of nuclear magnetic resonance image by breathing quickening
JP2006020937A (en) Method and device of positioning medical image
Haarman et al. Feasibility of reconstructing the glenohumeral center of rotation with a single camera setup
Qian et al. Elastic contour model-based analysis of structural deformations: toward time-sequenced regional lung parenchymal analysis
Georg et al. Simultaneous data volume reconstruction and pose estimation from slice samples
JPH04249746A (en) Reconstructing method of tomographic image
KR101548613B1 (en) Method of acquiring and processing medical image
JPH0476788A (en) Radiation digital image processor