JPS62189356A - Air preheater - Google Patents

Air preheater

Info

Publication number
JPS62189356A
JPS62189356A JP61030135A JP3013586A JPS62189356A JP S62189356 A JPS62189356 A JP S62189356A JP 61030135 A JP61030135 A JP 61030135A JP 3013586 A JP3013586 A JP 3013586A JP S62189356 A JPS62189356 A JP S62189356A
Authority
JP
Japan
Prior art keywords
combustion
annular
air preheater
air
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61030135A
Other languages
Japanese (ja)
Inventor
Tsutomu Sakuma
勉 佐久間
Shigemi Nagatomo
長友 繁美
Takashi Komagine
駒木根 隆
Ichiro Hongo
一郎 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61030135A priority Critical patent/JPS62189356A/en
Publication of JPS62189356A publication Critical patent/JPS62189356A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE:To make the air preheater of a stirling engine an efficient device having a better sealing quality by forming it through a stack of annular plates provided with a number of bores formed in the circumferential direction and mutually separated from others at annular projecting parts formed in the middle of annular parts. CONSTITUTION:On the occasion of forming an air preheater surrounding the combustion chamber 15 of a stirling engine, a number of annular plates 31 having center holes of combustion-chamber space are formed through stacking. The annular plate 31 is equipped with a number of holes 34a in outer perimeter and a number of holes 33a in inner perimeter, and it has an annular projection 32 between them and through stacking at the annular projection part 32, each annular plate 31 is provided with an interval and at the same time a combustion air passage is formed by a hole 34a, and also a combustion gas passage by a hole 33a. A space between respective passages 34a and 33a is sealed by the annular projection 32.

Description

【発明の詳細な説明】 :T?、明の目的1 (産業上の利用分野) 本発明は空気予熱器に係り、特にスターリングエンジン
のヒータ等において燃焼用空気を予熱するのに好適な空
気予熱器に関する。
[Detailed description of the invention] :T? The present invention relates to an air preheater, and more particularly to an air preheater suitable for preheating combustion air in a Stirling engine heater or the like.

(従来の技術) 最近、省エネルギーの一環としてスターリングエンジン
が注目されている。スターリングエンジンは種々の方式
のものがあるが、例えば2ピストン方式のものを例にと
ると、それぞれ膨張シリンダと圧縮シリンダ間に再生器
を接続し、この再生器と膨張シリンダ間の流路において
作動流体を加熱し、再生器と圧縮シリンダ間の流路で作
vJ流体を冷却する構成となっている。このm関は理論
的熱効率が轟く、あらゆる熱源を使用できるという特徴
を持つ。
(Prior Art) Recently, Stirling engines have been attracting attention as a part of energy conservation. There are various types of Stirling engines, but for example, in a two-piston type, a regenerator is connected between the expansion cylinder and the compression cylinder, and the engine operates in the flow path between the regenerator and the expansion cylinder. The structure is such that the fluid is heated and the fluid is cooled in the flow path between the regenerator and the compression cylinder. This m-sensor has the characteristics of high theoretical thermal efficiency and the ability to use any heat source.

ところで、スターリングエンジンにおける作動流体の加
熱器は通常、ガスまたは液体燃料により燃焼火炎を形成
する燃焼室と、この燃焼室内にJ′5いて輻射および対
流により作all流体に熱を伝える熱交換器と、燃焼室
に導く燃焼用空気を燃焼排力スとの熱交換により予熱す
る空気予熱器とで構成される。
By the way, the working fluid heater in a Stirling engine usually includes a combustion chamber that forms a combustion flame using gas or liquid fuel, and a heat exchanger located within the combustion chamber that transfers heat to all the fluids by radiation and convection. , and an air preheater that preheats the combustion air introduced into the combustion chamber by heat exchange with combustion exhaust gas.

スターリングエンジンの場合、加熱器による作動流体の
加熱温度が高く、冷却器での冷却水温が低いほど効率が
向上するが、冷却水温を下げることには限界があるので
、燃焼火炎の温度をできるだけ高くする必要がある。こ
のためには空気予熱器で燃焼排ガスの熱を効率よく回収
し、燃焼用空気をできるだけ高温にしなければならない
。従って、空気予熱器の伝熱面積の増大を図ることが望
まれるが、伝熱面積の増大は一般に空気予熱器の大型化
と放熱損失の増加につながり、加熱器の効率低下を招く
In the case of a Stirling engine, the higher the heating temperature of the working fluid by the heater and the lower the cooling water temperature in the cooler, the higher the efficiency, but there is a limit to lowering the cooling water temperature, so the temperature of the combustion flame is raised as much as possible. There is a need to. To achieve this, it is necessary to efficiently recover the heat from the combustion exhaust gas using an air preheater to make the combustion air as high as possible. Therefore, it is desirable to increase the heat transfer area of the air preheater, but an increase in the heat transfer area generally leads to an increase in the size of the air preheater and an increase in heat radiation loss, leading to a decrease in the efficiency of the heater.

そこで、本発明者らは燃焼室を取囲むように形成した環
状空間内に、段付きの環状板を積層するか、または環状
凸部を介して環状板を積層して伝熱体を構成し、この伝
熱体の段部または環状凸部で隔離された内周側および外
周側に、各環状板をn通する流体通路をそれぞれ形成し
、これらの流体通路のいずれか一方に燃焼用空気を通流
させ、他方に燃焼排ガスを通流させる構造の空気予熱器
をi案シテイル(特願昭60−159339号)。
Therefore, the present inventors constructed a heat transfer body by stacking stepped annular plates in an annular space formed to surround a combustion chamber, or by stacking annular plates via an annular convex portion. , fluid passages passing through each annular plate are formed on the inner and outer periphery sides separated by the stepped portion or annular convex portion of this heat transfer body, and combustion air is supplied to either one of these fluid passages. An air preheater with a structure in which one side is made to pass through the combustion exhaust gas, and the other is made to pass the combustion exhaust gas, is proposed by I-Plan (Japanese Patent Application No. 159339/1982).

この空気予熱器は伝熱体が環状板を積層した構造となっ
ているため、小型でありながら伝熱面積が大きく、また
環状板を薄板状にすることで熱損失を低減させることが
できるという優れた利点を1)つ。
This air preheater has a structure in which the heat transfer body is made of stacked annular plates, so it has a large heat transfer area even though it is small, and by making the annular plates into a thin plate, it is possible to reduce heat loss. 1) Excellent advantages.

(発明が解決しようとする問題点) 上述した積層構造の空気予熱器では、伝熱体の構成部材
である環状板として熱容量を十分に低減するために例え
ば0.3j*程度の薄板を使用する必要がある。ところ
が、このような薄い環状板を段部または環状凸部を介し
て積層すると、積層状態で弾性が生じるため、環状板相
互を段部または環状突部の位置で強く密着させることが
難しい。
(Problems to be Solved by the Invention) In the air preheater with the laminated structure described above, a thin plate of, for example, about 0.3j* is used as the annular plate that is a component of the heat transfer body in order to sufficiently reduce the heat capacity. There is a need. However, when such thin annular plates are stacked together via a step or annular protrusion, elasticity occurs in the stacked state, making it difficult to bring the annular plates into strong contact with each other at the step or annular protrusion.

従って燃焼用空気および燃焼排ガスが通流する両流体通
路間のシールを十分に行なうことができず、燃焼用空気
と燃焼排ガスとが一部混ざり合うことにより、熱交換効
率が低下するという問題がある。
Therefore, it is not possible to provide a sufficient seal between the two fluid passages through which combustion air and combustion exhaust gas flow, resulting in a problem that the combustion air and combustion exhaust gas partially mix, resulting in a decrease in heat exchange efficiency. be.

本発明はこのような問題点を解決するためになされたも
ので、小型化および熱損失の低減を図りながら伝熱面積
の増大を達成するとともに、燃焼用空気および燃焼排ガ
スがそれぞれ通流する流体通路間のシールを確実にして
高効率化した空気予熱器を提供することを目的とする。
The present invention has been made to solve these problems, and it achieves an increase in heat transfer area while reducing size and heat loss, and also improves the fluid flow through which combustion air and combustion exhaust gas flow. It is an object of the present invention to provide an air preheater that is highly efficient by ensuring sealing between passages.

[発明の構成] (問題点を解決するための手段) 本発明は上記目的を達成するため、燃焼室の周囲に形成
された環状空間に、半径方向の中間部に一方の面側に突
出する屈曲部が周方向に沿って連続的に形成されるとと
もに、該屈曲部より内周側および外周側に互いにwAm
された流体通路を形成する複数の孔をそれぞれ有する環
状板を該屈曲部が互いに噛合うように複数枚積層して構
成された伝熱体を設け、この伝熱体における環状板屈曲
部より内周側および外周側の流体通路のいずれか一方に
、燃焼室内に導く燃焼用空気を通流させ、他方に燃焼用
空気を熱交換により予熱するための燃焼排ガスを通流さ
せるようにしたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention includes an annular space formed around the combustion chamber, which protrudes toward one side in the radial middle part. A bent portion is formed continuously along the circumferential direction, and wAm is formed on the inner and outer circumferential sides of the bent portion.
A heat transfer body is provided in which a plurality of annular plates each having a plurality of holes each forming a fluid passage are laminated so that the bent portions are interlocked with each other. The combustion air introduced into the combustion chamber is allowed to flow through one of the peripheral and outer fluid passages, and the combustion exhaust gas for preheating the combustion air through heat exchange is allowed to flow through the other. Features.

(作用) 本発明に係る空気予熱器においては、燃焼用空気は伝熱
体の内周側および外周側の流体通路のいずれか一方を通
流し、その他方を通流する燃焼排ガスの熱によって予熱
された後、燃焼室に導かれる。
(Function) In the air preheater according to the present invention, combustion air is passed through one of the fluid passages on the inner circumference side and the outer circumference side of the heat transfer body, and is preheated by the heat of the combustion exhaust gas flowing through the other side. After that, it is guided into the combustion chamber.

ここで、伝熱体においては積層された各環状板における
屈曲部が積層状態で互いに噛合うことにより、両流体通
路間を隔離、つまりシールする。
Here, in the heat transfer body, the bent portions of the laminated annular plates mesh with each other in a laminated state, thereby isolating, that is, sealing, the two fluid passages.

このシール作用は屈曲部の噛合い、すなわち環状板の屈
曲部の凸側か隣接する環状板の屈曲部の凹側に圧入する
ことによるものであるため、段部または環状突起のよう
に接触圧にのみ依存するものに比べ、より確実なものと
なる。
This sealing effect is due to the meshing of the bent parts, that is, by press-fitting into the convex side of the bent part of the annular plate or the concave side of the bent part of the adjacent annular plate. It is more reliable than one that relies only on

(実施例) 以下、本発明の実茄例を図面を参照して説明する。第1
図は本発明の一実施例に係る空気予熱器を組込んだスタ
ーリングエンジンの概略構成を示す断面図である。
(Example) Hereinafter, practical examples of the present invention will be described with reference to the drawings. 1st
FIG. 1 is a sectional view showing a schematic configuration of a Stirling engine incorporating an air preheater according to an embodiment of the present invention.

第1図に示すように、このスターリングエンジンは作動
流体を膨張させるためのパワーシリンダ(膨張シリンダ
)1およびM3脹シリンダ1内に摺動自在に装着された
パワーピストン(膨張ピストン)2と、作動流体を圧縮
させるためのシリンダ(圧縮シリンダ)3および圧縮シ
リンダ3内に摺動自在に装着されたピストン(圧縮ピス
トン)4との間に、加熱器5.再生器6および冷却器7
を配置し、さらに膨張ピストン2および圧縮ピストン4
にそれぞれコネクティングロッド8.9およびクランク
軸10.11を介して出力軸12を連結した構造の2ピ
ストン式スターリングエンジンである。
As shown in Fig. 1, this Stirling engine includes a power cylinder (expansion cylinder) 1 for expanding working fluid, a power piston (expansion piston) 2 slidably mounted in the M3 expansion cylinder 1, and A heater 5. Regenerator 6 and cooler 7
, and an expansion piston 2 and a compression piston 4
This is a two-piston Stirling engine having a structure in which an output shaft 12 is connected to the output shaft 12 through a connecting rod 8.9 and a crankshaft 10.11, respectively.

加熱器5は膨張シリンダ1のヘッド13を取り囲むよう
に内側断熱材14を介して配置された燃焼室15と、こ
の燃焼室15内に配置された複数の熱交換器16と、燃
焼室15に臨んで配置されたガスノズル17と、燃焼1
15を取り囲んで配置され、燃焼用空気を燃焼排ガスと
の熱交換により予熱する空気予熱器18とで構成されて
いる。
The heater 5 includes a combustion chamber 15 arranged via an inner heat insulating material 14 so as to surround the head 13 of the expansion cylinder 1, a plurality of heat exchangers 16 arranged in the combustion chamber 15, and a plurality of heat exchangers 16 arranged in the combustion chamber 15. Gas nozzle 17 and combustion 1
15, and an air preheater 18 that preheats combustion air by heat exchange with combustion exhaust gas.

熱交換器16は全体として漏斗状に配置され、それぞれ
の内部に形成された流体通路の一端側が先脹シリンダ1
の頂部に、他端側がヘッド13内に形成されたマニホル
ド1つおよび接続管20を介して再生器6にそれぞれ連
通している。そして、膨張シリンダ1と膨張ピストン2
とで囲まれI:空間、熱交換器16.マニホルド19.
接続管20゜再生器6.冷却器7.および圧縮シリンダ
3と圧縮ピストン4とで囲まれた空間に作動流体、例え
ばHeが封入されている。
The heat exchangers 16 are arranged in the shape of a funnel as a whole, and one end of the fluid passage formed inside each of the heat exchangers 16 is connected to the inflated cylinder 1.
The other end is connected to the regenerator 6 via a manifold formed in the head 13 and a connecting pipe 20, respectively. Then, the expansion cylinder 1 and the expansion piston 2
Surrounded by I: space, heat exchanger 16. Manifold 19.
Connecting pipe 20° regenerator 6. Cooler7. A working fluid, for example He, is sealed in a space surrounded by the compression cylinder 3 and the compression piston 4.

なお、第1図において21は′tIJ清油が所定レベル
まで収容されたクランク!、22.23はリニアベアリ
ング、24.25は冷却器7の冷媒を案内する配管、2
6は断熱材をそれぞれ示している。
In addition, in Fig. 1, 21 is a crank in which 'tIJ pure oil has been accommodated to a predetermined level! , 22.23 is a linear bearing, 24.25 is a pipe that guides the refrigerant of the cooler 7, 2
6 indicates a heat insulating material.

次に、本発明に係る空気予熱器18について説明する。Next, the air preheater 18 according to the present invention will be explained.

第2図は空気予熱11!18の拡大断面図であり、燃焼
室15の周囲で内側断熱材14の外側に、外側断熱材2
7で囲まれた環状空間28を形成する筒状のケース29
を設け、この環状空間28内に第3図に示す構造の伝熱
体30を配置したものである。
FIG. 2 is an enlarged sectional view of the air preheater 11!
A cylindrical case 29 forming an annular space 28 surrounded by 7
In this annular space 28, a heat transfer body 30 having the structure shown in FIG. 3 is arranged.

伝熱体30は0.3m+程度の薄板からなる環状板31
を21m程度の間隔で多数枚積層して構成される。この
伝熱体30を構成する各環状板31は、その半径方向の
中間部に、一方の面側(図では上面側)に突出した屈曲
部32を周方向に沿って連続的に形成し、さらに該屈曲
部32より内周側および外周側に、流体通路33.34
となる複数の孔33a、34aを形成したものであり、
屈曲部32が互いに噛合うように積層されている。すな
わち、屈曲部32はテーバ状面を有するように断面形状
がほぼV字状に形成され、屈曲部32が互いに噛合った
状態ではその凸側が隣接する環状板の屈曲部の凹側に圧
入される。これら屈曲部32の噛合い部分により、流体
通路33.34間が隔離、つまりシールされている。
The heat transfer body 30 is an annular plate 31 made of a thin plate of about 0.3 m+.
It is constructed by stacking a large number of layers at intervals of about 21 meters. Each annular plate 31 constituting the heat transfer body 30 has a bent part 32 protruding toward one surface (in the figure, the upper surface) continuously formed along the circumferential direction at its radially intermediate portion. Furthermore, fluid passages 33 and 34 are provided on the inner and outer circumferential sides of the bent portion 32.
A plurality of holes 33a and 34a are formed,
The bent portions 32 are stacked so as to mesh with each other. That is, the bent portions 32 are formed in a substantially V-shaped cross section with tapered surfaces, and when the bent portions 32 are in mesh with each other, the convex sides thereof are press-fitted into the concave sides of the bent portions of the adjacent annular plates. Ru. The meshing portions of these bent portions 32 isolate or seal the fluid passages 33 and 34.

そして、これら環状板31の積層体からなる伝熱体3o
の上方に、伝熱体31の内周側および外周側両流体通路
33.34と対向した位置に流体通過孔35.36を有
する上部7ランジ37が、下方に伝熱体30の内周側流
体通路33と対向した位置に流体通過孔38を有し、か
つ最下部の環状板31の屈曲部32の凹側に圧入される
突部を有する下部フランジ39がそれぞれ設けられ、こ
れらのフランジ37.39とケース29とによって伝熱
体30内の気密性が保たれている。
A heat transfer body 3o made of a laminate of these annular plates 31
An upper 7 flange 37 having a fluid passage hole 35.36 at a position facing both the inner and outer fluid passages 33,34 of the heat transfer body 31 is provided above, and the upper 7 flange 37 has a fluid passage hole 35. Lower flanges 39 each having a fluid passage hole 38 at a position facing the fluid passage 33 and a protrusion that is press-fitted into the concave side of the bent portion 32 of the lowermost annular plate 31 are provided, and these flanges 37 .39 and the case 29 maintain airtightness within the heat transfer body 30.

加熱器5にはさらに伝熱体30内の外周側流体通路34
に燃焼用空気を導入するための空気人口40と、伝熱体
30内の外周側流体通路34において内周側流体通路3
3を通る燃焼排ガスとの熱交換により予熱された後、内
側断熱材14と外側断熱材27間の空気通路を通って送
られた燃焼用空気を燃焼室15内へ旋回供給するスワラ
−41と、燃焼用空気を予熱した後の燃焼排ガスを外気
へ放出する排気l1l142が備えられている。
The heater 5 further includes an outer peripheral fluid passage 34 in the heat transfer body 30.
an air population 40 for introducing combustion air into the inner circumferential fluid passage 3 in the outer circumferential fluid passage 34 in the heat transfer body 30;
a swirler 41 that swirls and supplies combustion air, which has been preheated by heat exchange with the combustion exhaust gas passing through the combustion chamber 3 and then sent through the air passage between the inner insulation material 14 and the outer insulation material 27, into the combustion chamber 15; , an exhaust l1l142 is provided for discharging the combustion exhaust gas to the outside air after preheating the combustion air.

次に、上記のように構成されたスターリングエンジンの
作用を説明する。燃焼室15内にガスノズル17からガ
ス燃料を噴射するとともに、スワラ−41から燃焼用空
気を供給することによって燃焼火炎が形成され、さらに
配管24.25によって冷媒を通流させている状態で、
出力軸12を外部動力源によって一時的に回転させると
、クランク軸10.11およびコネクティングロッド8
゜9を介して膨張ピストン2および圧縮ピストン4があ
る位相差をもって往復動する。この往復動によって膨張
ピストン2が圧縮行程に移ると、膨張シリンダ1内の作
動流体(He)が熱交換器16゜マニホルド19.接続
管20.再生器6および冷却器7を介して圧縮シリンダ
3内に流入し、膨張ピストン2が上死点に達した時点で
作動流体のほとんどが圧縮シリンダ3内に流れ込む。こ
のとき。
Next, the operation of the Stirling engine configured as described above will be explained. A combustion flame is formed by injecting gas fuel into the combustion chamber 15 from the gas nozzle 17 and supplying combustion air from the swirler 41, and furthermore, with the refrigerant flowing through the pipes 24 and 25,
When the output shaft 12 is temporarily rotated by an external power source, the crankshaft 10.11 and the connecting rod 8
9, the expansion piston 2 and the compression piston 4 reciprocate with a certain phase difference. When the expansion piston 2 moves to the compression stroke due to this reciprocating movement, the working fluid (He) in the expansion cylinder 1 is transferred to the heat exchanger 16° manifold 19. Connecting pipe 20. The working fluid flows into the compression cylinder 3 via the regenerator 6 and the cooler 7, and most of the working fluid flows into the compression cylinder 3 when the expansion piston 2 reaches the top dead center. At this time.

作動流体は再生器6を通過する間にその保有している熱
が再生器6に奪われ、次いで冷却器7によって冷却され
る。出力軸120回転に伴なって圧縮ピストン4が下死
点から上死点に向けて移動を開始すると、圧縮シリンダ
3内の低温の作動流体が圧縮され、それまでとは逆の経
路で膨張シリンダ1内に流入する。このとき、作動流体
は再生器6を通過する間に吸熱して高温に加熱され、次
に熱交換器16を通過する際さらに加熱される。膨張シ
リンダ1内に流入した高温の作動流体は、膨張して膨張
ピストン2を押し下げる。以後、上述した動作が繰返さ
れ、外部動力源を断った状態でも出力軸12が回転を継
続し、スフ−リングエンジンとしての動作がなされる。
While passing through the regenerator 6, the working fluid loses its retained heat to the regenerator 6, and is then cooled by the cooler 7. When the compression piston 4 starts moving from the bottom dead center toward the top dead center as the output shaft rotates 120 times, the low-temperature working fluid in the compression cylinder 3 is compressed, and the fluid is moved to the expansion cylinder in the opposite path. 1. At this time, the working fluid absorbs heat while passing through the regenerator 6 and is heated to a high temperature, and then is further heated when passing through the heat exchanger 16. The high temperature working fluid that has flowed into the expansion cylinder 1 expands and pushes down the expansion piston 2. Thereafter, the above-mentioned operation is repeated, and even when the external power source is cut off, the output shaft 12 continues to rotate, and the engine operates as a swing engine.

このスターリングエンジンの運転状態において、本発明
に係る空気予熱器18は次のような作用を行なう。ガス
ノズル17がら噴射されるガス燃料を燃焼させるのに必
要な燃焼用空気は、第2図に実線矢印で示すように空気
入口40〜空気予熱2;18における筒状ケース29の
下端壁に設(づられた流体通過孔〜伝熱体30の外周側
流体通路34〜上部フランジ37の外周側流体通過孔3
6〜スワラ−41〜燃焼v15の経路で、燃焼室15内
に供給される。
In this operating state of the Stirling engine, the air preheater 18 according to the present invention performs the following actions. The combustion air necessary to burn the gas fuel injected from the gas nozzle 17 is provided at the lower end wall of the cylindrical case 29 between the air inlet 40 and the air preheater 2; 18, as shown by solid arrows in FIG. Slanted fluid passage hole - outer circumferential fluid passage 34 of heat transfer body 30 - outer circumferential fluid passage hole 3 of upper flange 37
It is supplied into the combustion chamber 15 through a route from 6 to swirler 41 to combustion v15.

一方、燃焼室15内で生成された燃焼ガスは。On the other hand, the combustion gas generated within the combustion chamber 15 is.

破線矢印で示すように熱交換器16を介して作動流体を
加熱した後、燃焼排ガスとなって伝熱体30の下部フラ
ンジ39の流体通過孔38〜内周側流体通路33〜〜上
部フランジ37の内周側流体通過孔35〜排気筒42の
経路で、大気中に蔵出される。
After the working fluid is heated through the heat exchanger 16 as shown by the broken line arrow, it becomes combustion exhaust gas and flows from the fluid passage hole 38 of the lower flange 39 of the heat transfer body 30 to the inner fluid passage 33 to the upper flange 37. It is discharged into the atmosphere through a path from the inner circumferential fluid passage hole 35 to the exhaust pipe 42.

従って、燃焼排ガスは伝熱体30の内周側流体通路33
を通過する藺に、外周側流体通路34を通過する燃焼用
空気に熱を与える。この場合、内周側流体通路33と外
周側流体通路34は伝熱体30を構、成する環状板31
の屈曲部32の噛合い部分によりシールされているため
、燃焼用空気と燃焼排ガスとが混ざるようなことはない
。これのようにして燃焼用空気は空気加熱器18におい
て燃焼排ガスとの熱交換により予熱された後、スワラ−
41により燃焼室15内に供給されることになる。
Therefore, the combustion exhaust gas is transferred to the inner fluid passage 33 of the heat transfer body 30.
Heat is applied to the combustion air passing through the outer peripheral fluid passage 34. In this case, the inner circumferential side fluid passage 33 and the outer circumferential side fluid passage 34 constitute the heat transfer body 30, and the annular plate 31
Since the combustion air and the combustion exhaust gas are sealed by the meshing portion of the bent portion 32, there is no possibility that the combustion air and combustion exhaust gas will mix. In this way, the combustion air is preheated by heat exchange with the combustion exhaust gas in the air heater 18, and then passed through the swirler.
41 into the combustion chamber 15.

上述した本発明に係る空気予熱器18は、薄い環状板3
1を積層した構造の伝熱体30により構成されているた
め、小型でありながら伝熱面積が大きく、また熱損失が
小さい。さらに、この空気予熱器は伝熱体の構成部材で
ある環状板に屈曲部を形成し、該屈曲部の噛合いにより
内周側および外周側の流体通路を互いにシールしている
ため、積層状態における弾性によらずシール作用が確実
で、燃焼用空気と燃焼排ガスとが混ざり合うことがなく
、高い熱交換効率が得られる。
The air preheater 18 according to the present invention described above includes a thin annular plate 3
Since the heat transfer body 30 has a laminated structure, the heat transfer area is large even though it is small, and the heat loss is small. Furthermore, in this air preheater, a bent part is formed in the annular plate that is a component of the heat transfer body, and the fluid passages on the inner and outer circumferential sides are sealed from each other by the engagement of the bent parts, so that the laminated state is maintained. The sealing action is reliable regardless of the elasticity of the combustion air, and combustion air and combustion exhaust gas do not mix, resulting in high heat exchange efficiency.

なお、本発明は上記実施例に限定されるものではなく、
例えば実施例では伝熱体30における内周側流体通路3
3に燃焼排ガスを通流させ、外周側流体通路34に燃焼
用空気を通流させたが、逆に内周側流体通路33に燃焼
用空気を通流させ、外周側流体通路34に燃焼排ガスを
通流させる構成としてもよい。
Note that the present invention is not limited to the above embodiments,
For example, in the embodiment, the inner peripheral fluid passage 3 in the heat transfer body 30
3, and combustion air was made to flow through the outer fluid passage 34, but conversely, combustion air was made to flow through the inner fluid passage 33, and combustion exhaust gas was passed through the outer fluid passage 34. It may also be configured to allow the flow of water.

また、実施例で伝熱体30における流体通路33.34
を形成する流体通過孔33a、34aの形状を周囲が閉
じた孔としたが°、切欠した孔であってもよい。その他
、本発明は要旨を逸勝しない範囲で種々変形して実施す
ることができる。
In addition, in the embodiment, fluid passages 33 and 34 in the heat transfer body 30
Although the fluid passage holes 33a and 34a forming the periphery are closed in shape, they may be cut-out holes. In addition, the present invention can be implemented with various modifications without departing from the gist.

[発明の効果] 本発明によれば、小型化および熱損失の低減を図りなが
ら伝熱面積を大きくでき、しかも燃焼用空気および燃焼
排ガスがそれぞれ通流する流体通路間のシールを確実に
して、予熱のための熱交換効率の^い空気予熱器を提供
することができる。
[Effects of the Invention] According to the present invention, the heat transfer area can be increased while reducing the size and heat loss, and the sealing between the fluid passages through which combustion air and combustion exhaust gas flow, respectively, is ensured. An air preheater with high heat exchange efficiency for preheating can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る空気予熱器を組込んだ
スターリングエンジンの縦断面図、第2図は同実施例に
あける空気予熱器の構成を示す断面図、第3図は同空気
加熱器における伝熱体の構成を示す一部切欠した斜視図
である。 1・・・膨張シリンダ、2・・・膨張ピストン、3・・
・圧縮シリンダ、4・・・圧縮ピストン、5・・・加熱
器、6・・・再生器、7・・・冷却器、8.9・・・コ
ネクティングロッド、10.11・・・クランク軸、1
2・・・出力軸、13・・・シリンダヘッド、14・・
・内側断熱材、15・・・燃焼!、16・・・熱交換器
、17・・・ガスノズル、18・・・空気予熱器、19
・・・マニホルド、20・・・接続管、21・・・クラ
ンク至、22.23・・・リニアベアリング、24.2
5・・・冷媒配管、26・・・下部断熱材、27・・・
外側断熱材、28・・・環状空間、29・・・筒状ケー
ス、30・・・伝熱体、31・・・環状板、32・・・
屈曲部、33a、34a・・・流体通過孔、33・・・
内周側流体通路、34・・・外周側流体通路、35.3
6・・・流体通過孔、37・・・上部フランジ、38・
・・流体通過孔、39・・・下部フランジ、/10・・
・空気入口、41・・・スワラ−142・・・U1気筒
FIG. 1 is a longitudinal sectional view of a Stirling engine incorporating an air preheater according to an embodiment of the present invention, FIG. 2 is a sectional view showing the configuration of the air preheater in the same embodiment, and FIG. 3 is the same. FIG. 2 is a partially cutaway perspective view showing the configuration of a heat transfer body in the air heater. 1... Expansion cylinder, 2... Expansion piston, 3...
・Compression cylinder, 4... Compression piston, 5... Heater, 6... Regenerator, 7... Cooler, 8.9... Connecting rod, 10.11... Crankshaft, 1
2... Output shaft, 13... Cylinder head, 14...
・Inner insulation material, 15...combustion! , 16... Heat exchanger, 17... Gas nozzle, 18... Air preheater, 19
... Manifold, 20... Connection pipe, 21... Crank to, 22.23... Linear bearing, 24.2
5... Refrigerant piping, 26... Lower insulation material, 27...
Outer heat insulating material, 28... Annular space, 29... Cylindrical case, 30... Heat transfer body, 31... Annular plate, 32...
Bent portions, 33a, 34a...Fluid passage holes, 33...
Inner circumference side fluid passage, 34...Outer circumference side fluid passage, 35.3
6... Fluid passage hole, 37... Upper flange, 38...
...Fluid passage hole, 39...Lower flange, /10...
・Air inlet, 41...Swirler-142...U1 cylinder.

Claims (1)

【特許請求の範囲】[Claims] 燃焼室に導かれる燃焼用空気を燃焼排ガスとの熱交換に
より予熱する空気予熱器において、前記燃焼室の周囲に
環状空間を形成するケースと、このケース内の前記環状
空間に設けられ、半径方向の中間部に一方の面側に突出
する屈曲部が周方向に沿って連続的に形成されるととも
に、該屈曲部より内周側および外周側に互いに隔離され
た流体通路を形成する複数の孔をそれぞれ有する環状板
を該屈曲部が互いに噛合うように複数枚積層して構成さ
れた伝熱体と、この伝熱体の前記屈曲部より内周側およ
び外周側の流体通路のいずれか一方に前記燃焼用空気を
通流させる手段および他方に前記燃焼排ガスを通流させ
る手段を備えたことを特徴とする空気予熱器。
In an air preheater that preheats combustion air introduced into a combustion chamber by heat exchange with combustion exhaust gas, the air preheater includes a case that forms an annular space around the combustion chamber, and a case that is provided in the annular space within the case and that extends in the radial direction. A bent portion protruding toward one surface is formed continuously along the circumferential direction in the middle portion of the bending portion, and a plurality of holes forming fluid passages isolated from each other on the inner and outer circumferential sides of the bent portion. A heat transfer body configured by laminating a plurality of annular plates each having a plurality of annular plates such that their bent portions mesh with each other, and either one of a fluid passage on an inner circumferential side or an outer circumferential side of the bent portions of the heat transfer body. An air preheater comprising means for passing the combustion air through one and means for passing the combustion exhaust gas through the other.
JP61030135A 1986-02-14 1986-02-14 Air preheater Pending JPS62189356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61030135A JPS62189356A (en) 1986-02-14 1986-02-14 Air preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030135A JPS62189356A (en) 1986-02-14 1986-02-14 Air preheater

Publications (1)

Publication Number Publication Date
JPS62189356A true JPS62189356A (en) 1987-08-19

Family

ID=12295325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030135A Pending JPS62189356A (en) 1986-02-14 1986-02-14 Air preheater

Country Status (1)

Country Link
JP (1) JPS62189356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230918A (en) * 1987-11-30 1989-09-14 Kanai Jiyuuyou Kogyo Kk Combustion air preheater for thermal application machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230918A (en) * 1987-11-30 1989-09-14 Kanai Jiyuuyou Kogyo Kk Combustion air preheater for thermal application machine

Similar Documents

Publication Publication Date Title
CA2478108A1 (en) Stirling engine having platelet heat exchanging elements
JP2662612B2 (en) Stirling engine
JPS62189356A (en) Air preheater
US4671064A (en) Heater head for stirling engine
US4483143A (en) Integral finned heater and cooler for stirling engines
JPH0291463A (en) Stirling engine
JPS62190391A (en) Heat exchanger
JPS6220660A (en) Air preheater
US9140208B1 (en) Heat engine
EP0174504B1 (en) Stirling engine and stirling engine heater
JPH08105353A (en) Heat drive device
JPS63227944A (en) Air preheater
JPS629184A (en) Heat exchanger
JPH01240760A (en) Regenerator for stirling engine
JPH01142250A (en) Regenerator for stirling engine
JPH01240759A (en) Regenerator for stirling engine
JPH01244151A (en) High temperature heat exchanger for stirling engine
JPS61237874A (en) Heat exchanger of displacer type stirling engine
KR101738871B1 (en) Thermal to mechanical engine module
SK9783Y1 (en) Stirling engine
JPS6235046A (en) Heat exchanger for stirling engine
JP2006169986A (en) Energy conversion system
JPS629186A (en) Air preheater
JPS6155353A (en) Stirling engine
JPS61226548A (en) High temperature heatexchanger for stirling engine