JPS62189339A - Fuel supply control method for internal combustion engine at starting and accelerating - Google Patents

Fuel supply control method for internal combustion engine at starting and accelerating

Info

Publication number
JPS62189339A
JPS62189339A JP61030108A JP3010886A JPS62189339A JP S62189339 A JPS62189339 A JP S62189339A JP 61030108 A JP61030108 A JP 61030108A JP 3010886 A JP3010886 A JP 3010886A JP S62189339 A JPS62189339 A JP S62189339A
Authority
JP
Japan
Prior art keywords
throttle valve
valve opening
value
fuel
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61030108A
Other languages
Japanese (ja)
Other versions
JPH0577864B2 (en
Inventor
Kazunari Toshimitsu
利光 一成
Tadashi Umeda
正 梅田
Hisashi Igarashi
五十嵐 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61030108A priority Critical patent/JPS62189339A/en
Priority to US07/008,241 priority patent/US4805579A/en
Priority to GB8701965A priority patent/GB2186713B/en
Priority to CA000528595A priority patent/CA1286556C/en
Priority to DE19873703016 priority patent/DE3703016A1/en
Publication of JPS62189339A publication Critical patent/JPS62189339A/en
Publication of JPH0577864B2 publication Critical patent/JPH0577864B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase a fuel quantity in accurate response to a degree of depression of an accelerator pedal, by conducting an additional fuel increase correction in the case that a fuel increase correction has not been ended with a throttle valve opening reaches a reference value. CONSTITUTION:When a throttle valve opening sensor 4 detects that a throttle valve 3' of an internal combustion engine 1 is opened from its substantially full closed position, ECU 5 corrects to increase a fundamental fuel quantity depending upon a steady state of the engine 1. When the opening operation of the throttle valve 3' from its substantially full closed position is detected, a predetermined value is added to a detected opening value to set a reference value. Then, in the case that the increase correction of the fundamental fuel quantity as conducted upon detection of the valve opening operation has not been ended when the detected opening value reaches the reference value, a fuel quantity is increased in addition to the fundamental fuel quantity. In this manner, asynchronous acceleration fuel increases correction is conducted in proper response to the minute valve opening operation of the throttle valve 3'.

Description

【発明の詳細な説明】 (技術分野) 本発明は、内燃エンジンの発進及び加速時の燃料供給制
御方法に関し、特に発進又は燃料供給遮断後の加速の際
にスロットル弁を開弁じたときの燃料供給制御方法に関
する。
[Detailed Description of the Invention] (Technical Field) The present invention relates to a fuel supply control method for starting and accelerating an internal combustion engine, and in particular for controlling fuel supply when a throttle valve is opened during starting or accelerating after cutting off fuel supply. Relating to a supply control method.

(発明の技術的背景とその問題点) 一般に、アクセルペダルを踏み込んでスロットル弁を略
全閉位置から開弁させて車両を発進させる場合、アクセ
ルペダルの踏み込み方がゆるやかであれば、それほどの
加速は要求されておらず、階、激であれば、急加速が要
求されていることになる。しかしながら、スロットル弁
の開弁時に単に一定量の燃料を増量するのみでは、この
ようなアクセルペダルの踏み込み方に応じた燃料の増量
制御が行なわれず所望の加速性能が得られないという問
題があった。また、これと同様の問題が燃料供給遮断後
に加速を行う場合にも生じている。
(Technical background of the invention and its problems) Generally, when starting a vehicle by depressing the accelerator pedal and opening the throttle valve from a substantially fully closed position, if the accelerator pedal is pressed gently, the acceleration will not be that much. is not required, and if the acceleration is severe, then rapid acceleration is required. However, if the amount of fuel is simply increased by a certain amount when the throttle valve is opened, there is a problem in that the amount of fuel is not controlled in accordance with the way the accelerator pedal is depressed, making it impossible to obtain the desired acceleration performance. . A similar problem also occurs when acceleration is performed after the fuel supply is cut off.

(発明の目的) 本発明は上記事情に鑑みてなされたもので、スロットル
弁が略全開位置からのアクセルペダルの踏み込み方、即
ち、スロットル弁開度の変化の種々の態様にきめ細かく
対応した燃料増量を行い得るようにした内燃エンジンの
発進及び加速時の燃料供給制御方法を提供することを目
的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned circumstances, and provides an increase in fuel amount that corresponds precisely to various aspects of how the accelerator pedal is depressed from the substantially fully open position of the throttle valve, that is, changes in the throttle valve opening. It is an object of the present invention to provide a method for controlling fuel supply during starting and acceleration of an internal combustion engine.

(発明の構成) 上記目的を達成するために本発明に依れば、内燃エンジ
ンのスロットル弁が略全閉位置から開弁された事を検知
したとき、前記エンジンの定常運転状態に応じて決まる
基本燃料量を増量補正する内燃エンジンの発進及び加速
時の燃料供給制御方法において、前記スロットル弁の略
全閉位置からの開弁を検知したときスロットル弁開度の
検出値に所定値を加算してスロットル弁開度の基準値を
設定し、スロットル弁開度の検出値が前記基準値に達し
たときに、前記スロットル弁の開弁を検知したときに行
った基本燃料量の増量補正が終了していない場合には、
前記増量補正された基本燃料量を更に追加増量補正する
ことを特徴とする内燃エンジンの発進及び加速時の燃料
供給制御方法が提供される。
(Structure of the Invention) In order to achieve the above object, according to the present invention, when it is detected that the throttle valve of an internal combustion engine is opened from a substantially fully closed position, the determination is made according to the steady operating state of the engine. In a fuel supply control method during starting and acceleration of an internal combustion engine that increases the basic fuel amount, when the opening of the throttle valve from a substantially fully closed position is detected, a predetermined value is added to the detected value of the throttle valve opening. When the detected value of the throttle valve opening reaches the reference value, the increase correction of the basic fuel amount performed when the opening of the throttle valve is detected is completed. If you haven't,
There is provided a fuel supply control method during starting and acceleration of an internal combustion engine, characterized in that the basic fuel amount that has been corrected to increase is further corrected to increase.

(発明の実施例) 以下本発明の実施例を図面を参照して説明する。(Example of the invention) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を適用した燃料供給制御装置の全
体構成図であり、符号1は例えば4気筒の内燃エンジン
を示し、エンジン1には吸気管2が接続されている。吸
気管2の途中にはスロットルボディ3が設けられ、内部
にスロットル弁3′が設けられている。スロットル弁3
′にはスロットル弁開度(θth)センサ4が連設され
てスロットル弁3′の弁開度を電気的信号に変換し電子
コントロールユニット(以下rEcU」という)5に送
るようにされている。
FIG. 1 is an overall configuration diagram of a fuel supply control device to which the method of the present invention is applied. Reference numeral 1 indicates, for example, a four-cylinder internal combustion engine, and an intake pipe 2 is connected to the engine 1. A throttle body 3 is provided in the middle of the intake pipe 2, and a throttle valve 3' is provided inside. Throttle valve 3
A throttle valve opening (θth) sensor 4 is connected to the throttle valve 3' to convert the valve opening of the throttle valve 3' into an electrical signal and send it to an electronic control unit (hereinafter referred to as rEcU) 5.

吸気管2のスロットルボディ3の少し上流には燃料噴射
弁6が設けられ、内燃エンジン1の全気筒に燃料を供給
するようにしている。燃料噴射弁6は図示しない燃料ポ
ンプに接続されていると共にECU3に電気的に接続さ
れており、ECU3からの信号によって燃料噴射弁6の
開弁時間が制御される。
A fuel injection valve 6 is provided in the intake pipe 2 slightly upstream of the throttle body 3 to supply fuel to all cylinders of the internal combustion engine 1. The fuel injection valve 6 is connected to a fuel pump (not shown) and electrically connected to the ECU 3, and the opening time of the fuel injection valve 6 is controlled by a signal from the ECU 3.

一方、前記スロットルボディ3のスロットル弁3′の下
流には管7を介して絶対圧(PBA)センサ8が設けら
れており、この絶対圧センサ81こよって電気的信号に
変換された絶対圧信号は前記ECU3に送られる。
On the other hand, an absolute pressure (PBA) sensor 8 is provided downstream of the throttle valve 3' of the throttle body 3 via a pipe 7, and this absolute pressure sensor 81 generates an absolute pressure signal converted into an electrical signal. is sent to the ECU 3.

エンジン1本体にはエンジン冷却水温センサ(以下rT
wセンサ」という)9が設けられ、Twセンサ9はサー
ミスタ等からなり、冷却水が充満したエンジン気筒周壁
内に挿着されて、その検出水温信号をECU3に供給す
る。エンジン回転数センサ(以下r N eセンサ」と
いう)10がエンジンの図示しないカム軸周囲又はクラ
ンク軸周囲に取り付けられており、Neセンサ10はエ
ンジンのクランク軸180°回転毎に所定のクランク角
度位置で、即ち、各気筒の吸気行程開始時の上死点(T
 D C)に関し所定クランク角度前のクランク角度位
置でクランク角度位置信号(以下これをrTDC信号」
という)を出力するものであり、このTDC信号はEC
U3に送られる。
The engine cooling water temperature sensor (rT) is installed on the engine 1 body.
Tw sensor 9 (referred to as "w sensor") 9 is provided, and Tw sensor 9 is made of a thermistor or the like, and is inserted into the circumferential wall of the engine cylinder filled with cooling water, and supplies its detected water temperature signal to ECU 3. An engine rotation speed sensor (hereinafter referred to as "rN e sensor") 10 is attached around the camshaft or crankshaft (not shown) of the engine, and the Ne sensor 10 detects a predetermined crank angle position every 180° rotation of the engine crankshaft. In other words, the top dead center (T) at the start of the intake stroke of each cylinder
Regarding D C), a crank angle position signal (hereinafter referred to as "rTDC signal") is generated at a crank angle position before a predetermined crank angle.
This TDC signal outputs EC
Sent to U3.

エンジン1の排気管11には三元触媒12が配置され排
気ガス中のHC,Go、NOx成分の浄化作用を行う。
A three-way catalyst 12 is disposed in the exhaust pipe 11 of the engine 1 to purify HC, Go, and NOx components in the exhaust gas.

この三元触媒12の上流側には08センサ13が排気管
11に挿着され、このセンサ13は排気中の酸素濃度を
検出し、0□濃度信号をECU3に供給する。
An 08 sensor 13 is inserted into the exhaust pipe 11 upstream of the three-way catalyst 12, and this sensor 13 detects the oxygen concentration in the exhaust gas and supplies a 0□ concentration signal to the ECU 3.

更に、ECU3には例えば大気圧センサ等の他のパラメ
ータセンサ14が接続されており、他のパラメータセン
サ14はその検出値信号をECU3に供給する。
Furthermore, other parameter sensors 14 such as an atmospheric pressure sensor are connected to the ECU 3, and the other parameter sensors 14 supply their detected value signals to the ECU 3.

EC1J5は各種センサからの入力信号波形を整形し、
電圧レベルを所定レベルに修正し、アナログ信号値をデ
ジタル信号値に変換する等の機能を有する入力回路5a
、中央演算処理回路(以下rCPUJという)5b、C
PU5bで実行される各種演算プログラム及び演算結果
等を記憶する記憶手段5c、及び前記燃料噴射弁6に駆
動信号を供給する出力回路5d等から構成される。
EC1J5 shapes input signal waveforms from various sensors,
An input circuit 5a having functions such as correcting the voltage level to a predetermined level and converting analog signal values into digital signal values.
, central processing circuit (hereinafter referred to as rCPUJ) 5b, C
It is comprised of a storage means 5c for storing various calculation programs and calculation results executed by the PU 5b, an output circuit 5d for supplying a drive signal to the fuel injection valve 6, and the like.

CPtJ5bは前記TDC信号が入力する毎に入力回路
5aを介して供給された前述の各種センサからのエンジ
ンパラメータ信号に基づいて、次式で与えられる燃料噴
射弁6の燃料噴射時間T 0IJTを算出する。
Each time the TDC signal is input, the CPtJ5b calculates the fuel injection time T0IJT of the fuel injection valve 6 given by the following equation based on the engine parameter signals from the various sensors described above supplied via the input circuit 5a. .

ToUr=Ti XK、+TAOc+に、−(1)ここ
に、Tiは燃料噴射弁6の噴射時間の基準値であり、エ
ンジン回転数Neと吸気管内絶対圧PBAに応じて決定
される。TAccはTDC信号に同期した燃料の加速増
量(同期加速増量)を行うための増量補正値である。K
1及びに2は夫々前述の各センサからのエンジンパラメ
ータ信号によりエンジン運転状態に応じた始動特性、排
気ガス特性、燃費特性、加速特性等の諸特性が最適なも
のとなるように所定の演算式に基づいて算出される補正
係数又は補正変数である。
ToUr=Ti TAcc is an increase correction value for increasing the amount of fuel for acceleration in synchronization with the TDC signal (synchronous acceleration increase). K
1 and 2 are predetermined calculation formulas so that various characteristics such as starting characteristics, exhaust gas characteristics, fuel efficiency characteristics, acceleration characteristics, etc., depending on the engine operating condition are optimized based on engine parameter signals from each of the above-mentioned sensors. It is a correction coefficient or correction variable calculated based on .

CPU5bは上述のようにして求めた燃料噴射時間TO
υ丁に基づいて燃料噴射弁6を開弁させる駆動信号を出
力回路5dを介して燃料噴射弁6に供給する。
The CPU 5b calculates the fuel injection time TO obtained as described above.
A drive signal for opening the fuel injection valve 6 based on υ is supplied to the fuel injection valve 6 via the output circuit 5d.

また、CPU5bは後に詳述するようにTDC信号に同
期しない加速制御用の燃料増量(以下r非同期加速増量
」という)を行うべく、一定周期で発生するタイマ信号
が入力する毎に前記各センサからのエンジンパラメータ
信号に基づいて、燃料の増量のための燃料噴射弁6の開
弁時間TMAを算出し、該開弁時間TMAに基づいて燃
料噴射弁6を開弁させる駆動信号を燃料噴射弁6に供給
する。
In addition, the CPU 5b sends signals from each of the sensors each time a timer signal generated at a constant cycle is input in order to increase the amount of fuel for acceleration control that is not synchronized with the TDC signal (hereinafter referred to as "asynchronous acceleration increase") as will be described in detail later. The valve opening time TMA of the fuel injection valve 6 for increasing the amount of fuel is calculated based on the engine parameter signal of supply to.

上記非同期加速増量は例えば発進加速時や急加速時のよ
うにTDC信号に応じた同期加速増量における不足分を
補充するために行なうものであり、特に、TDC信号の
パルス発生間隔が長い、エンジンの低回転時に非同期の
加速増量を必要とする。
The above-mentioned asynchronous acceleration increase is performed to make up for the shortfall in the synchronous acceleration increase according to the TDC signal, such as during starting acceleration or sudden acceleration, and is particularly useful for engines where the pulse generation interval of the TDC signal is long. Requires asynchronous acceleration increase at low speeds.

次に、上述したECU3のCPU5bによる燃料噴射弁
6の開弁時間制御のうち、非同期加速増量制御について
説明する。
Next, of the valve opening time control of the fuel injection valve 6 by the CPU 5b of the ECU 3 described above, the asynchronous acceleration increase control will be described.

第2図は第1図のCPUBb内で実行される非同期加速
増量補正サブルーチンのプログラムフローチャートを示
し、このプログラムは所定周期tT大(例えば10 m
5ec)の前記タイマ信号に同期して実行される。
FIG. 2 shows a program flowchart of the asynchronous acceleration increase correction subroutine executed in CPUBb of FIG.
5ec) is executed in synchronization with the timer signal.

先ず、第2図のステップ1では、変数値iに値1を加算
する。尚、この変数値iは初期状態では0に設定されて
いる。次のステップ2では、前記i値が値4と等しいか
否かを判別し、その答が肯定(Yes)のときには、i
値をOに設定して後述するステップ4以降が実行される
。また、ステップ2の判別結果が否定(No)のときに
は、後述するステップ21.23及び13乃至15が実
行される(図中A−+A)。即ち、4tr*(例えば4
0 m5ec)毎にステップ4以降が実行され、その他
の場合に、ステップ21.23及び13乃至15が実行
される。
First, in step 1 of FIG. 2, the value 1 is added to the variable value i. Note that this variable value i is set to 0 in the initial state. In the next step 2, it is determined whether the i value is equal to the value 4, and if the answer is affirmative (Yes), the i value is equal to the value 4.
The value is set to O, and Step 4 and subsequent steps described below are executed. Further, when the determination result in step 2 is negative (No), steps 21.23 and 13 to 15, which will be described later, are executed (A-+A in the figure). That is, 4tr* (for example, 4tr*
Steps 4 onwards are executed every 0 m5ec), otherwise steps 21.23 and 13 to 15 are executed.

ステップ4では、エンジン回転数Neが所定の非同期加
速判別回転数NεA(たとえば2800rpm)より大
きいか否かを判別する。エンジン回転数Neが高くなる
とTDC信号のパルス発生間隔も短かくなるため、加速
時のエンジンへの供給燃料の増量はTDC信号の同期加
速増量だけで十分加速応答性のよい結果が得られるので
エンジン回転数Neが前記所定回転数Nl1A以上にな
ると非同期加速増量を停止するものである。従って、上
記判別の結果が肯定(Yes)のときには、後述するス
テップ6で判別するFASyを0にリセットしくステッ
プ7)、後述するステップ14及び15を実行し、本プ
ログラムを終了する。
In step 4, it is determined whether the engine rotational speed Ne is larger than a predetermined asynchronous acceleration determination rotational speed NεA (for example, 2800 rpm). As the engine speed Ne increases, the pulse generation interval of the TDC signal also becomes shorter, so increasing the amount of fuel supplied to the engine during acceleration can be achieved by simply increasing the amount of synchronous acceleration of the TDC signal. When the rotational speed Ne becomes equal to or higher than the predetermined rotational speed Nl1A, the asynchronous acceleration increase is stopped. Therefore, when the result of the above determination is affirmative (Yes), FASy determined in step 6, which will be described later, is reset to 0 (step 7), steps 14 and 15, which will be described later, are executed, and this program is ended.

ステップ4の判別結果が否定(NO)のときには、次の
ステップ5で今回ルニプ時の検出スロットル弁開度θT
HA8 ynを読み込む。次のステップ6では、前記フ
ラグFAsyが1にセットされているか否かを判別し、
その答が否定(No)のときには、前記ステップ5で読
み込んだ今回ループ時の検出スロットル弁開度θT H
AS ynと前回ループ時に前記ステップ5で読み込ん
だ前回ループ時の検出スロットル弁開度θT )IAs
 ’in−□どの差(微分値)ΔθrHASy(θTH
ASy−θT )lAs y n −x)が所定の値G
A”(例えば20°/5ec)より大であるか否かを判
別する(ステップ8)。この答が肯定(Yes)のとき
には、前記フラグFAsyを1にセットしくステップ9
)、今回ループ時のスロットル弁開度θTHAS yn
をθAcc、値とする(ステップ10)、次に、この0
Acc0値に所定値へ〇ACC工を加算した第1の基準
値θAcc1を設定し、更にこの第1の基準値θAQ 
Q、に所定値ΔθAcC,を加算した第2の基準値θA
Qc2を設定する(ステップ11)、その後、後述する
非同期の燃料噴射弁6の開弁パルス数nAAccをエン
ジン水温Twに応じた所定値nAA(例えば、暖機完了
後は4、その他の場合は6)としくステップ12)、次
のステップ137\進む。この開弁パルス数nAAcc
は、所定時間間隔(例えば10 m5ec)で連続して
発生される燃料噴射弁6の開弁パルス信号のパルス数で
ある。
When the determination result in step 4 is negative (NO), in the next step 5 the detected throttle valve opening θT at this time of lunip operation is performed.
Load HA8 yn. In the next step 6, it is determined whether the flag FAsy is set to 1,
If the answer is negative (No), the detected throttle valve opening θT H for the current loop read in step 5
AS yn and the detected throttle valve opening degree θT in the previous loop read in step 5 in the previous loop) IAs
'in-□ Which difference (differential value) ΔθrHASy(θTH
ASy-θT ) lAs y n -x) is a predetermined value G
A” (for example, 20°/5ec) (step 8). If the answer is affirmative (Yes), set the flag FAsy to 1 (step 9).
), throttle valve opening degree θTHAS yn during this loop
Let θAcc be the value (step 10), then this 0
A first reference value θAcc1 is set by adding 〇ACC engineering to a predetermined value to the Acc0 value, and further this first reference value θAQ is set.
A second reference value θA obtained by adding a predetermined value ΔθAcC to Q.
Qc2 is set (step 11), and then the number of valve opening pulses nAAcc of the asynchronous fuel injection valve 6, which will be described later, is set to a predetermined value nAA according to the engine water temperature Tw (for example, 4 after warm-up is completed, and 6 in other cases). ) and then step 12) and proceed to the next step 137\. This number of valve opening pulses nAAcc
is the number of pulses of the valve opening pulse signal of the fuel injection valve 6 that is continuously generated at a predetermined time interval (for example, 10 m5ec).

ステップ13では第3図に示すテーブルより吸気管内絶
対圧PoAに応じた基準時間TjApsを読み出し、ま
た第4図に示すテーブルより前記スロットル弁開度の微
分値ΔθTHAsyに応じた基準時間TiADTHを読
み出し、これらの基準時間TiArB及びTi、B+t
Hより次式(2)に基づいて非同期加速増量基準値Ti
A値を算出する。
In step 13, a reference time TjAps corresponding to the intake pipe absolute pressure PoA is read from the table shown in FIG. 3, and a reference time TiADTH corresponding to the differential value ΔθTHAsy of the throttle valve opening is read from the table shown in FIG. These reference times TiArB and Ti, B+t
Based on the following formula (2) from H, the asynchronous acceleration increase reference value Ti
Calculate the A value.

T iA= ”riA、 a 十TiADT s・・・
(2)次に、前記パルス数nAAccから値1を減算し
くステップ14)、前記式(2)で算出したTiA値よ
り次式(3)に基づいて燃料噴射弁6の開弁時間TMA
を算出する(ステップ15)。
T iA= “riA, a 10 TiADT s...
(2) Next, the value 1 is subtracted from the pulse number nAAcc (step 14), and the valve opening time TMA of the fuel injection valve 6 is calculated based on the TiA value calculated using the above equation (2) based on the following equation (3).
is calculated (step 15).

TMA=TiAXK’ 、−(3) ここに、K′1はエンジン水温7w等に応じて求められ
る補正係数である。
TMA=TiAXK', -(3) Here, K'1 is a correction coefficient determined according to engine water temperature 7w, etc.

ステップ9の判別結果が肯定(Yes)のときには、ス
テップ17に進む。ステップ6におけるフラグFAsy
の判別結果によりステップ9乃至12が1度実行される
と、ステップ7又は23が実行されなければ、ステップ
9乃至12は再び実行されないようにされる。
If the determination result in step 9 is affirmative (Yes), the process proceeds to step 17. Flag FAsy in step 6
Once steps 9 to 12 are executed based on the determination result, steps 9 to 12 are not executed again unless step 7 or 23 is executed.

また、ステップ8の判別結果が否定(No)のときには
、前回ループ時のスロットル弁開度θTHAsyn+1
が減速フューエルカット条件のスロットル弁開度θpc
(略全閉位置)以下で且つ今回ループ時のスロットル弁
開度θT )lA8 ynが減速フューエルカット条件
のスロットル弁開度θFQ以上であるか否かを判別する
(ステップ16)。
Further, when the determination result in step 8 is negative (No), the throttle valve opening degree θTHAsyn+1 during the previous loop
is the throttle valve opening θpc under the deceleration fuel cut condition
It is determined whether or not the throttle valve opening θT)lA8 yn during the current loop is equal to or less than the (approximately fully closed position) and is equal to or greater than the throttle valve opening θFQ of the deceleration fuel cut condition (step 16).

この判別結果が肯定(Yes)のときには、前記ステッ
プ9に進み、前述したようにステップ9乃至15が実行
される。この場合、ステップ10におけるθACc、値
はフューエルカット時のスロットル弁開度と略等しい開
度θTHAsyn(4θpc)に設定される。
If the result of this determination is affirmative (Yes), the process proceeds to step 9, and steps 9 to 15 are executed as described above. In this case, the value θACc in step 10 is set to an opening θTHAsyn (4θpc) that is approximately equal to the throttle valve opening at the time of fuel cut.

このようにして、ステップ8又は16の判別結果が肯定
(Yes)となったとき、第5図又は第6図に示すよう
なnAAcc個の非同期の開弁パルス信号が燃料噴射弁
6へ出力され始める。また、ステップ17以降では、以
後のスロットル弁開度θTHAS yの変化が例えば第
5図の直線工または■に示されるものか第6図の曲線■
又は■に示されるものか等に応じてパルス数nAAcc
の増加数を求め、燃料噴射弁6の非同期な開弁回数を決
定する。
In this way, when the determination result in step 8 or 16 is affirmative (Yes), nAAcc asynchronous valve opening pulse signals as shown in FIG. 5 or 6 are output to the fuel injection valve 6. start. In addition, from step 17 onward, whether the subsequent change in the throttle valve opening θTHAS y is as shown in the straight line work or the curve in FIG.
Or the number of pulses nAAcc depending on whether it is shown in ■, etc.
, and determines the number of asynchronous valve openings of the fuel injection valve 6.

ステップ17ではスロットル弁開度θTHAsyが第1
の基準値e A Q cl又は第2の基準値θAcc2
を超えたか否かを判別し、その答が否定(NO)のとき
にはステップ20へ進む。ステップ17の判別結果が肯
定(Yes)のときには、ステップ12で設定されたパ
ルス数nAAccが0より大きいか否か、即ち、ステッ
プ9乃至15の実行時に開始された非同期加速増量補正
が継続しているか否か(即ち、当該補正が終了していな
いか否か)を判別する(ステップ18)、この判別結果
が肯定(Yes)のときには、今回ループ時の残パルス
数nAAccに前記所定値nAAを加算、即ち、燃料噴
射弁6の非同期な開弁回数を増加させる(ステップ19
)。また、ステップ18の判別結果が否定(No)のと
きには、直ちにステップ20へ進む。
In step 17, the throttle valve opening θTHAsy is set to the first
Reference value e A Q cl or second reference value θAcc2
If the answer is negative (NO), the process proceeds to step 20. When the determination result in step 17 is affirmative (Yes), it is determined whether the number of pulses nAAcc set in step 12 is greater than 0, that is, whether the asynchronous acceleration increase correction started when executing steps 9 to 15 continues. (In other words, whether the correction has not been completed or not) (step 18). If the result of this determination is affirmative (Yes), the predetermined value nAA is set to the number of remaining pulses nAAcc in the current loop. addition, that is, increasing the number of asynchronous valve openings of the fuel injection valve 6 (step 19
). Further, when the determination result in step 18 is negative (No), the process immediately proceeds to step 20.

ステップ20では、前記スロットル弁開度θTHAIy
の微分値ΔθTHAS yが負の所定値GA−(例えば
−0,5@/40m5ec)より小さいか否か、即ち、
アクセルペダルが急に放されてスロットル弁開度θTH
AS yが急激に減少したか否かを判別する。この判別
結果が肯定(Yes)のときには、今回ループ時の残パ
ルス数nAACCを0にリセットしくステップ22)、
フラグFASyをOにリセットしくステップ23) 、
TiA値の算出を行わずにOのままステップ15へ進み
、本プログラムを終了する。この結果、ステップ15で
TMA値がOとなり、燃料噴射弁6へ開弁パルスが出力
されなくなり、即ち、非同期加速増量補正が中断される
In step 20, the throttle valve opening θTHAIy
Whether the differential value ΔθTHAS y is smaller than a negative predetermined value GA- (for example, -0,5@/40m5ec), that is,
When the accelerator pedal is suddenly released, the throttle valve opening θTH
Determine whether AS y has decreased rapidly. When this determination result is affirmative (Yes), the number of remaining pulses nAACC in the current loop is reset to 0 (step 22);
Step 23): Reset the flag FASy to O.
The process proceeds to step 15 without calculating the TiA value, leaving the value O, and ends the program. As a result, the TMA value becomes O in step 15, and the valve opening pulse is no longer output to the fuel injection valve 6, that is, the asynchronous acceleration increase correction is interrupted.

ステップ20の判別結果が否定(NO)のときには、前
記ステップ18と同様にパルス数nAAccがOより大
きいか否かを判別する(ステップ21)。
If the determination result in step 20 is negative (NO), it is determined whether the number of pulses nAAcc is greater than O, similarly to step 18 (step 21).

この判別結果が背定(Yes)のときには、前記ステッ
プ13乃至15を実行し、非同期加速増量補正を継続し
、本プログラムを終了する。一方、ステップ21の判別
結果が否定(NO)のときには、前記ステップ23及び
15を実行し、TiA値及びTMA値をOとして非同期
加速増量補正を終了し、本プログラムを終了する。
When the determination result is positive (Yes), steps 13 to 15 are executed, the asynchronous acceleration increase correction is continued, and the program is ended. On the other hand, when the determination result in step 21 is negative (NO), steps 23 and 15 are executed, the TiA value and the TMA value are set to O, the asynchronous acceleration increase correction is ended, and this program is ended.

尚、上述のような制御手順において、例えばスロットル
弁開度θTl(Asyが第5図の直線Iに示すように緩
やかに増加した場合について説明する。
In the above-described control procedure, a case will be described in which, for example, the throttle valve opening θTl (Asy) gradually increases as shown by the straight line I in FIG. 5.

スロットル弁開度θTHAS3’の微分値ΔθTHAs
yが所定値GA′を超えるか又はスロットル弁開度θT
HAS yが略全閉位置から開弁されて第1及び第2の
基準値θAcc1及びθAcc2が決定された時点t1
から所定数nAA(例えば4(暖機完了後))回の非同
期加速増量補正が開始される。もし、この増量補正がス
ロットル弁開度θTHAsyが第1の基準値θACa、
に達する前に終了しくステップ18の判別結果が否定(
No))、この間にエンジン回転数Neが所定数NIE
A以上となれば、加速状態が継続されていれば同時に実
行されている通常の同期加速増量補正のみが行われる。
Differential value ΔθTHAs of throttle valve opening θTHAS3'
y exceeds a predetermined value GA' or throttle valve opening θT
Time t1 when HAS y is opened from the substantially fully closed position and the first and second reference values θAcc1 and θAcc2 are determined
A predetermined number nAA (for example, 4 (after warm-up)) of asynchronous acceleration increase corrections are started. If this increase correction is performed when the throttle valve opening θTHAsy is set to the first reference value θACa,
If the determination result in step 18 is negative (
No)), during this period the engine speed Ne reaches a predetermined number NIE.
If the value exceeds A, only the normal synchronous acceleration increase correction that is being executed at the same time as long as the acceleration state continues is performed.

また、例えばスロットル弁開度θTHAS yが第5図
の直線■に示すように急激に増加した場合には、時点t
工と同様の時点t2から所定数nAA回の非同期加速増
量補正が開始される。この増量補正はスロットル弁開度
θTHA8 yが急激に増加するため。
Furthermore, for example, if the throttle valve opening θTHAS y increases rapidly as shown by the straight line ■ in FIG.
The asynchronous acceleration increase correction is started a predetermined number of times nAA from time t2, which is the same as in the step. This increase correction is due to the sudden increase in the throttle valve opening θTHA8y.

スロットル弁開度θTHAS yが第1の基準値 θA
cc1に達しても継続している(ステップ]8の判別結
果が肯定(Yes))。この結果、パルス数nAAcc
に更に所定数nAAが追加され(ステップ19)、全部
でnAA×2回の非同期加速増量補正が行われる。図示
例では、この増量補正はスロットル弁開度θT HAS
 ’/が更に急激に増加するため、スロットル弁開度θ
THAS yが第2の基準値θACC,に達しても継続
しく再びステップ18の判別結果が肯定(Yes))、
パルス数nAAccに更に所定数71AAが追加され(
ステップ19)、結局全部でnAA×3回の非同期加速
増量補正が行われる。従って、直線■に示されるような
急激なスロットル弁開度の増加に適応した非同期加速増
量補正が行われる。
Throttle valve opening θTHAS y is the first reference value θA
The process continues even after reaching cc1 (the determination result in step 8 is affirmative (Yes)). As a result, the number of pulses nAAcc
A predetermined number nAA is further added to (step 19), and a total of nAA×2 asynchronous acceleration increase corrections are performed. In the illustrated example, this increase correction is based on the throttle valve opening θT HAS
'/ increases rapidly, so the throttle valve opening θ
Even if THAS y reaches the second reference value θACC, the determination result in step 18 continues to be affirmative (Yes),
A predetermined number of 71AA is further added to the number of pulses nAAcc (
In step 19), a total of nAA×3 asynchronous acceleration increase corrections are performed. Therefore, an asynchronous acceleration increase correction is performed that is adapted to the sudden increase in the throttle valve opening as shown by the straight line {circle around (2)}.

また、例えばスロットル弁開度θT )JAS yが第
6図の曲線■に示すように増加した場合には、時点tl
等と同様の時点t、から所定数nAA回の非同期加速増
量補正が開始され、この増量補正はスロットル弁開度θ
THAsyが第1の基準値θAcc1に達する前に終了
する(ステップ18の判別結果が否定(No)、この間
にエンジン回転数Neが所定値N、9以上となれば、以
後スロットル弁開度θT HAsyが急激に増加しても
、この増加に対する補正は同期加速増量補正のみが行わ
れる。また、例えばスロットル弁開度θToAsyが第
6図の曲線■に示すように増加した場合には、時点tl
等と同様の時点t4から所定数nAA回の非同期加速増
量補正が開始され、この増量補正はスロットル弁開度F
) T )lA8 yが第1の基準値θAcc1に達し
ても継続しくステップ18の判別結果が肯定(Yes)
)、パルス数nAAccに更に所定数nAAが追加され
(ステップ19)、最終的に全部でnAA×2回の非同
期加速増量補正が行われる。この増量補正はスロットル
弁開度θT HAsyが第2の基準値に達する前に終了
しくステップ18の判別結果が否定(No))、この間
にエンジン回転数Neが所定値NBA以上となれば、以
後の加速状態では通常の同期加速増社補正のみが行われ
る。
Further, for example, when the throttle valve opening degree θT) JAS y increases as shown in the curve ■ in FIG.
etc., a predetermined number nAA times of asynchronous acceleration increase correction is started from time t, which is similar to
The process ends before THAsy reaches the first reference value θAcc1 (if the determination result in step 18 is negative (No), and during this period the engine speed Ne becomes equal to or greater than the predetermined value N, 9, the throttle valve opening θT HAsy Even if there is a sudden increase in
etc., a predetermined number nAA times of asynchronous acceleration increase correction is started from time t4, and this increase correction is performed based on the throttle valve opening F.
) T ) lA8 Even if y reaches the first reference value θAcc1, the determination result in step 18 continues to be affirmative (Yes).
), a predetermined number nAA is further added to the pulse number nAAcc (step 19), and finally a total of nAA×2 asynchronous acceleration increase corrections are performed. This increase correction ends before the throttle valve opening θT HAsy reaches the second reference value (the determination result in step 18 is negative (No)), and if the engine speed Ne becomes equal to or higher than the predetermined value NBA during this period, then In the accelerated state, only the normal synchronous accelerated company increase correction is performed.

以上のようにして、スロットル弁の微妙な開弁動作に適
切に対応した非同期加速増量補正が行われる。
In the manner described above, the asynchronous acceleration increase correction that appropriately corresponds to the delicate opening operation of the throttle valve is performed.

(発明の効果) 以上詳述したように、本発明の内燃エンジンの発進及び
加速時の燃料供給制御方法に依れば、内燃エンジンのス
ロットル弁が略全閉位置から開弁された事を検知したと
き、前記エンジンの定常運転状態に応じて決まる基本燃
料量を増量補正する内燃エンジンの発進及び加速時の燃
料供給制御方法において、前記スロットル弁の略全閉位
置からの開弁を検知したときスロットル弁開度の検出値
に所定値を加算してスロットル弁開度の基準値を設定し
、スロットル弁開度の検出値が前記基準値に達したとき
に、前記スロットル弁の開弁を検知したときに行った基
本燃料量の増量補正が終了していない場合には、前記増
量補正された基本燃料量を更に追加増量補正するように
したので、スロットル弁の略全閉位置からのアクセルペ
ダルの踏み込み方、即ち、スロットル弁開度の変化の種
々の態様にきめ細かく対応した燃料の増量補正を行うこ
とができる。
(Effects of the Invention) As detailed above, according to the fuel supply control method during starting and acceleration of an internal combustion engine of the present invention, it is detected that the throttle valve of the internal combustion engine is opened from the substantially fully closed position. In the fuel supply control method during starting and acceleration of an internal combustion engine, which increases the basic fuel amount determined according to the steady operating state of the engine, when the opening of the throttle valve from a substantially fully closed position is detected. A reference value of the throttle valve opening is set by adding a predetermined value to the detected value of the throttle valve opening, and when the detected value of the throttle valve opening reaches the reference value, the opening of the throttle valve is detected. If the increase correction of the basic fuel amount performed at the time of the change is not completed, the increased basic fuel amount is further increased, so that when the accelerator pedal is pressed from the almost fully closed position of the throttle valve. It is possible to perform fuel increase correction that corresponds precisely to various aspects of how the throttle valve is depressed, that is, changes in the opening degree of the throttle valve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する内燃エンジンの燃料供給
制御装置の全体構成図、第2図は第1図の電子コントロ
ールユニット(ECU)で実行される非同期加速増量補
正サブルーチンのプログラムフローチャート、第3図は
吸気管内絶対圧に対応した基準開弁時間を示すテーブル
図、第4図はスロットル弁開度の変化量に対応した基準
開弁時間を示すテーブル図、第5図及び第6図はそれぞ
れスロットル弁開度の変化量に対応した燃料噴射弁の開
弁パルスの発生回数を示すグラフである。 l・・・内燃エンジン、3′・・・スロットル弁、4・
・・スロットル弁開度センサ、5・・・電子コントロー
ルユニット(ECU)、5b−CPU、5 c −記憶
手段、6・・・燃料噴射弁、8・・・吸気管内絶対圧セ
ンサ、10・・・エンジン回転数センサ。
1 is an overall configuration diagram of a fuel supply control device for an internal combustion engine that implements the method of the present invention; FIG. 2 is a program flowchart of an asynchronous acceleration increase correction subroutine executed by the electronic control unit (ECU) of FIG. 1; Figure 3 is a table diagram showing the standard valve opening time corresponding to the absolute pressure in the intake pipe, Figure 4 is a table diagram showing the standard valve opening time corresponding to the amount of change in the throttle valve opening, and Figures 5 and 6 are the table diagram showing the standard valve opening time corresponding to the amount of change in the throttle valve opening. 3 is a graph showing the number of times a valve opening pulse of a fuel injection valve is generated corresponding to the amount of change in throttle valve opening. l... Internal combustion engine, 3'... Throttle valve, 4.
...Throttle valve opening sensor, 5...Electronic control unit (ECU), 5b-CPU, 5c-storage means, 6...Fuel injection valve, 8...Intake pipe absolute pressure sensor, 10...・Engine speed sensor.

Claims (1)

【特許請求の範囲】 1、内燃エンジンのスロットル弁が略全閉位置から開弁
された事を検知したとき、前記エンジンの定常運転状態
に応じて決まる基本燃料量を増量補正する内燃エンジン
の発進及び加速時の燃料供給制御方法において、前記ス
ロットル弁の略全閉位置からの開弁を検知したときスロ
ットル弁開度の検出値に所定値を加算してスロットル弁
開度の基準値を設定し、スロットル弁開度の検出値が前
記基準値に達したときに、前記スロットル弁の開弁を検
知したときに行った基本燃料量の増量補正が終了してい
ない場合には、前記増量補正された基本燃料量を更に追
加増量補正することを特徴とする内燃エンジンの発進及
び加速時の燃料供給制御方法。 2、前記追加増量補正はエンジンの所定クランク角度位
置で発生するクランク角度信号と非同期に行なうことを
特徴とする特許請求の範囲第1項記載の内燃エンジンの
発進及び加速時の燃料供給制御方法。 3、前記追加増量補正は燃料噴射弁への駆動信号のパル
ス数を増加させることにより行なうことを特徴とする特
許請求の範囲第2項記載の内燃エンジンの発進及び加速
時の燃料供給制御方法。
[Scope of Claims] 1. Starting the internal combustion engine, when it is detected that the throttle valve of the internal combustion engine is opened from a substantially fully closed position, the basic fuel amount determined according to the steady operating state of the engine is corrected to increase the amount. In the fuel supply control method during acceleration, when the opening of the throttle valve from a substantially fully closed position is detected, a predetermined value is added to the detected value of the throttle valve opening to set a reference value of the throttle valve opening. , when the detected value of the throttle valve opening reaches the reference value, if the increase correction of the basic fuel amount performed when the opening of the throttle valve was detected has not been completed, the increase correction is performed. A fuel supply control method during starting and acceleration of an internal combustion engine, characterized in that the basic fuel amount is further corrected to increase the amount. 2. The fuel supply control method during starting and acceleration of an internal combustion engine according to claim 1, wherein the additional increase correction is performed asynchronously with a crank angle signal generated at a predetermined crank angle position of the engine. 3. The fuel supply control method during starting and acceleration of an internal combustion engine according to claim 2, wherein the additional increase correction is performed by increasing the number of pulses of a drive signal to the fuel injection valve.
JP61030108A 1986-01-31 1986-02-14 Fuel supply control method for internal combustion engine at starting and accelerating Granted JPS62189339A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61030108A JPS62189339A (en) 1986-02-14 1986-02-14 Fuel supply control method for internal combustion engine at starting and accelerating
US07/008,241 US4805579A (en) 1986-01-31 1987-01-29 Method of controlling fuel supply during acceleration of an internal combustion engine
GB8701965A GB2186713B (en) 1986-01-31 1987-01-29 Method of controlling fuel supply during starting and acceleration of an internal combustion engine
CA000528595A CA1286556C (en) 1986-01-31 1987-01-30 Method of controlling fuel supply during starting and acceleration of an internal combustion engine
DE19873703016 DE3703016A1 (en) 1986-01-31 1987-02-02 METHOD FOR CONTROLLING THE FUEL FEED DURING STARTING AND ACCELERATING AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030108A JPS62189339A (en) 1986-02-14 1986-02-14 Fuel supply control method for internal combustion engine at starting and accelerating

Publications (2)

Publication Number Publication Date
JPS62189339A true JPS62189339A (en) 1987-08-19
JPH0577864B2 JPH0577864B2 (en) 1993-10-27

Family

ID=12294581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030108A Granted JPS62189339A (en) 1986-01-31 1986-02-14 Fuel supply control method for internal combustion engine at starting and accelerating

Country Status (1)

Country Link
JP (1) JPS62189339A (en)

Also Published As

Publication number Publication date
JPH0577864B2 (en) 1993-10-27

Similar Documents

Publication Publication Date Title
JPH07247892A (en) Fuel injection control device for internal combustion engine
JPH0286936A (en) Air-fuel ratio feedback control method for internal combustion engine
US4589390A (en) Air-fuel ratio feedback control method for internal combustion engines
JPS62170743A (en) Air-fuel ratio atomospheric pressure compensating method for internal combustion engine
JPS61223247A (en) Fuel feed control method for internal-combustion engine in acceleration
JP6313814B2 (en) Control device for internal combustion engine
US5899192A (en) Fuel supply control system for internal combustion engines
JPS63167049A (en) After-starting fuel supply control method for internal combustion engine
JPS63117137A (en) Method for controlling fuel injection under acceleration of internal combustion engine
JPS62157252A (en) Method of feedback controlling air-fuel ratio of internal combustion engine
JPH0692757B2 (en) Bypass air amount control method for internal combustion engine
JPH07208249A (en) Control device of internal combustion engine
JP2869820B2 (en) Air-fuel ratio control method for internal combustion engine
JPH04124439A (en) Air fuel ratio control method for internal combustion engine
JPS62189339A (en) Fuel supply control method for internal combustion engine at starting and accelerating
JP2017020417A (en) Control device of internal combustion engine
JPH028130B2 (en)
JPH04124436A (en) Air-fuel ratio control method for internal combustion engine
JPS6062627A (en) Method of correcting fuel injection amount
JP2559782Y2 (en) Ignition timing control device for internal combustion engine
JPS63246435A (en) Air fuel ratio feedback control method for internal combustion engine
JPH06102999B2 (en) Fuel supply control method for internal combustion engine
JP2572409Y2 (en) Fuel supply control device for internal combustion engine
JPS614842A (en) Fuel supply feedback control under cooling of internal-combustion engine
JP2545549B2 (en) Fuel supply control method during acceleration of an internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees