JPS6218919A - Digital distance relay - Google Patents

Digital distance relay

Info

Publication number
JPS6218919A
JPS6218919A JP15748185A JP15748185A JPS6218919A JP S6218919 A JPS6218919 A JP S6218919A JP 15748185 A JP15748185 A JP 15748185A JP 15748185 A JP15748185 A JP 15748185A JP S6218919 A JPS6218919 A JP S6218919A
Authority
JP
Japan
Prior art keywords
zero
line
current
sequence
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15748185A
Other languages
Japanese (ja)
Other versions
JPH0458258B2 (en
Inventor
松沢 邦夫
和芳 吉田
薫 高田
孝幸 横山
山浦 充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP15748185A priority Critical patent/JPS6218919A/en
Publication of JPS6218919A publication Critical patent/JPS6218919A/en
Publication of JPH0458258B2 publication Critical patent/JPH0458258B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ディジタル距離継電器、特に零相補償電流を
用いたディジタル距離継電器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a digital distance relay, and particularly to a digital distance relay using a zero-sequence compensation current.

〔発明の技術的背景〕[Technical background of the invention]

最近の系統事故現象では、電圧、電流の波形歪が増大す
る傾向にあり、従来の定常状態のインピーダンスに着目
した距離継電器を適用する場合には、歪を十分に除去す
るだめのフィルタによる動作速度の低下、歪成分の影響
による測距誤差の増大が問題となる。そしてこの種の方
式に対しては、例えば特公昭53−31747号公報に
示されるものが提案されている。
In recent power grid failure phenomena, waveform distortion of voltage and current tends to increase, so when applying conventional distance relays that focus on steady state impedance, the operating speed of filters is required to sufficiently remove distortion. The problem is a decrease in distance measurement error and an increase in distance measurement error due to the influence of distortion components. For this type of system, for example, the one shown in Japanese Patent Publication No. 53-31747 has been proposed.

以下簡単に説明する。即ち、保護継電装置の距離測定方
式として、送電線の電圧V、電流工、抵抗R,インダク
タンスLの間に成立する微分方程式、 を用いる方式である。そして(1)式は定常状態及び過
渡状態においても成立することから、同式に立脚した距
離測定方式を適用することにより、上記した波形歪に対
する距離継電器の問題を改善することができる。即ち、
(1)式のインダクタンスL値及び抵抗R値を求めるこ
とにより、距離測定を行なうものである。(1)式には
インダクタンスLと抵抗Rとの2つの未知数があるため
、連立方程式として解く必要がある。ここで、考慮して
いる時間内において、インダクタンスL、抵抗Rが一定
の場合は、異なる時点m及びnにおいて次式が成立する
This will be briefly explained below. That is, as a distance measurement method of the protective relay device, a differential equation that is established between the voltage V of the power transmission line, the electric current, the resistance R, and the inductance L is used. Since Equation (1) holds true both in steady state and transient state, by applying a distance measurement method based on Equation (1), it is possible to improve the problem of distance relays with respect to waveform distortion described above. That is,
The distance is measured by determining the inductance L value and resistance R value of equation (1). Since equation (1) has two unknowns, inductance L and resistance R, it is necessary to solve it as simultaneous equations. Here, if the inductance L and resistance R are constant within the time under consideration, the following equation holds true at different times m and n.

この連立方程式を解くと、インダクタンスL及び抵抗R
は、各々下式となる。
By solving this simultaneous equation, inductance L and resistance R
are each expressed as below.

上記(3)式で求められたL値及びR値を用いて距離測
定がなされる。
Distance measurement is performed using the L value and R value determined by the above equation (3).

次に、この方式について第2図を用いて説明する。Next, this method will be explained using FIG. 2.

第2図は微分方程式に立脚した距離継電器を、マイクロ
コンピュータ応用のディジタル距離継電器により構成し
た場合のハードウェアを示し、1は保護対象の送電線、
2は変成器、3は変流器、4は入力変換回路、5はA/
D変換回路(アナログ/ディジタル変換回路)、6は演
算処理部である。
Figure 2 shows the hardware when a distance relay based on differential equations is configured with a digital distance relay applied with a microcomputer. 1 indicates the power transmission line to be protected;
2 is a transformer, 3 is a current transformer, 4 is an input conversion circuit, 5 is an A/
A D conversion circuit (analog/digital conversion circuit), 6 is an arithmetic processing section.

そして系統電圧は変成器2を介して導入され、入力変換
回路4で適当な電圧レベルに変換後、前置フィルタを経
て出カマ及びV。等となる。系統電流も略同様に、変流
器3を介して導入され、入力変換回路4を経て出力1及
びl。等となる。これら両出力はA/D変換回路5にて
一定間隔で同時にサンプリングされ、順次ディジタル量
に変換され、電圧データ、電流データとしてマイクロコ
ンピュータヨシなる演算処理部6に入力される。
The system voltage is then introduced via the transformer 2, converted to an appropriate voltage level by the input conversion circuit 4, and then passed through a pre-filter to the output voltage and V. etc. In substantially the same way, the grid current is also introduced via the current transformer 3, passes through the input conversion circuit 4, and is output to outputs 1 and 1. etc. Both of these outputs are simultaneously sampled at regular intervals by the A/D conversion circuit 5, sequentially converted into digital quantities, and inputted as voltage data and current data to an arithmetic processing unit 6 such as a microcomputer.

第3図は演算処理部6における処理内容を示す機能ブロ
ック図である。第3図において、13は電圧演算手段、
14は電流微分演算手段、15は電流演算手段、16は
L値演算手段、17はR値演算手段、18は継電器動作
判定手段である。なお、電流微分演算手段14は入力電
流データから電流微分値Jを算出する手段で、同じく電
圧演算手段13及び電流演算手段15は各々電圧値V。
FIG. 3 is a functional block diagram showing the processing contents in the arithmetic processing section 6. As shown in FIG. In FIG. 3, 13 is voltage calculation means;
14 is a current differential calculation means, 15 is a current calculation means, 16 is an L value calculation means, 17 is an R value calculation means, and 18 is a relay operation determination means. Note that the current differential calculation means 14 is a means for calculating a current differential value J from input current data, and similarly, the voltage calculation means 13 and the current calculation means 15 each calculate a voltage value V.

電流値■を得る手段である。L値演算手段16は、上記
各演算手段より求められた電流微分値J1電圧値v1電
流値■を用い。(3)式によi)L値を算出する手段で
、R値演算手段17も、同様に(3)式よりR値を算出
する手段である。求められたL値、R値は継電器動作判
定手段18に導入され、継電器動作判定手段18では、
L値、R値により距離継電器の特性に応じた動作判定を
行ない、出力を導出する。以上が微分方程式に立脚する
距離測定方式の説明である。
This is a means to obtain the current value ■. The L value calculating means 16 uses the current differential value J1 voltage value v1 current value (■) obtained by each of the above-mentioned calculating means. (3) is a means for calculating the L value i), and the R value calculation means 17 is also a means for calculating the R value from the equation (3). The obtained L value and R value are introduced into the relay operation determination means 18, and the relay operation determination means 18,
The L value and R value are used to determine the operation according to the characteristics of the distance relay, and the output is derived. The above is an explanation of the distance measurement method based on differential equations.

ここで、平行2回線送電線における従来の地絡距離継電
器について説明する。この場合、地絡故障の距離測定で
は、次に説明する零相補償により、公知の測距誤差の問
題がある。
Here, a conventional ground fault distance relay for a parallel two-circuit power transmission line will be explained. In this case, when measuring the distance to a ground fault, there is a known distance measurement error problem due to zero-sequence compensation, which will be described next.

第4図はF点でのa相−線地絡故障時の平行2回線系統
図である。
FIG. 4 is a parallel two-circuit system diagram at the time of an a-phase-line ground fault at point F.

第4図において、 zoは自回線零相インピーダンス 2、は自回線正相インピーダンス z2は自回線逆相インピーダンス zMは回線間零相相互インピーダンス Roは自回線零相電流分 R1は自回線正相抵抗分 RMは回線間零相相互抵抗分 Xoは自回線零相インダクタンス分 X、は自回線正相インダクタンス分 XMは回線間零相相互インダクタンス分11は自回線a
相電流 1.1は隣回線a相電流 loは自回線零相電流 lo′は隣回線零相電流 19は自回線継電器である。
In Figure 4, zo is the own line zero-sequence impedance 2, own line positive-sequence impedance z2 is the own line negative-sequence impedance zM is the zero-sequence mutual impedance between lines Ro is the own line zero-sequence current R1 is the own line positive-sequence resistance RM is the zero-sequence mutual resistance between lines, Xo is the own line zero-sequence inductance X, is the own line positive-sequence inductance
The phase current 1.1 is the adjacent line a-phase current lo, and the own line zero-sequence current lo' is the adjacent line zero-sequence current 19, which is the own line relay.

平行2回線送電線では、地絡故障時、自回線零相インピ
ーダンス2゜と回線間零相相互インピーダンスzMの影
響があるため、故障点までの距離を正確に測距するため
には、継電器の入力電流は、相電流1&だけでは不充分
であυ、自回線及び隣回線の零相電流による補償をかけ
る必要がある。
In a parallel two-line power transmission line, when a ground fault occurs, the zero-sequence impedance of the own line 2° and the inter-line zero-sequence mutual impedance zM are affected, so in order to accurately measure the distance to the fault point, it is necessary to As for the input current, the phase current 1& alone is not sufficient υ, and it is necessary to compensate with the zero-sequence current of the own line and the adjacent line.

即ち、A端子自回線継電器19の継電器設置点における
故障時の電圧v1は、以下に示す(4)式となる、 =Z、(ilL+Kio+に’io’)    −・・
・・・(4)〔背景技術の問題点〕 上記説明による各インピーダンス2゜iZ4.ZMは一
般に角度が異なるので、(4)式中のK 、 K’は複
素数であり4、シたがってベクトル補償とすべきもので
ある。しかし従来の継電器でベクトル補償を行うために
は、線路定数に応じたりアクドル等の移相手段が必要と
なり、現実的でないため、2o、21,2Mのりアクタ
ンス成分、又はその絶対値を用いて、Kおよびに′を実
数扱いとして零相電流との積を求め、継電器入力電流の
スカラ補償を行なっていた。よってインピーダンス2の
抵抗分も、リアクタンス成分も同一の補償係数を用いて
補償してしまうため、2相地絡故障時における地絡距離
継電器のオーバーリーチ(詳細は、電気協同研究、第3
7巻、第1号)等の問題があった。この零相補償による
地絡継電器の測距誤差の傾向は、ケーブル系において、
特に著しいことは周知の通りである。
That is, the voltage v1 at the time of failure at the relay installation point of the A terminal own line relay 19 is expressed by the following equation (4): =Z, (ilL+Kio+'io') -...
...(4) [Problems with background art] Each impedance 2°iZ4. according to the above explanation. Since ZM generally has different angles, K and K' in equation (4) are complex numbers, 4, and therefore should be vector compensated. However, in order to perform vector compensation with a conventional relay, phase shifting means such as an accelerator or the like is required depending on the line constant, which is not practical. Scalar compensation of the relay input current was performed by treating K and N' as real numbers and calculating their product with the zero-sequence current. Therefore, both the resistance component and the reactance component of impedance 2 are compensated using the same compensation coefficient.
There were problems such as (Volume 7, No. 1). The tendency of distance measurement errors of ground fault relays due to this zero-phase compensation is that in cable systems,
It is well known that this is particularly remarkable.

尚、以上の説明では保護対象として平行2回線系統図を
とりあげたが、単一回線送電線についても同様に問題と
なっていた。
Incidentally, in the above explanation, a parallel two-circuit system diagram has been taken up as the object to be protected, but problems also arise for single-circuit power transmission lines as well.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決するためになされたものであ
り、地絡故障に際して、測距性能を向上させたディジタ
ル距離継電器を提供することを目的としている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a digital distance relay with improved distance measurement performance in the event of a ground fault.

〔発明の概要〕[Summary of the invention]

本発明では、系統の電圧V、電流I、抵抗R。 In the present invention, the system voltage V, current I, and resistance R.

インダクタンスLとの間に成立する微分方程式V = 
L −+ RIを用いて距離測定を行なう距離継t 電器において、地絡距離測定演算に際し、抵抗R分、イ
ンダグ2フ15分に対して、各々個別に零相補償した電
流量を適用することにより、距離測定を行なうようにし
たものである。
Differential equation established between inductance L =
Distance relay t that measures distance using L - + RI In electric appliances, when calculating ground fault distance, apply the amount of current that has been compensated for zero phase separately for resistance R and induction 2F 15 minutes. The distance is measured using the following method.

〔発明の基本的な考え方〕[Basic idea of invention]

先ず、系統の抵抗R1インダクタンスLに対して個別に
零相補償することを骨子とする。
First, the main point is to perform zero-phase compensation individually for the resistance R1 and inductance L of the system.

したがって第4図に示す系統のA端子自回線継電器19
に着目し、継電器設置点におけるa相−線地絡故障時の
故障電圧マ1を、微分方程式で表わすと次のようになる
Therefore, the A terminal own circuit relay 19 of the system shown in FIG.
Focusing on this, the fault voltage M1 at the time of a phase-a line ground fault at the relay installation point can be expressed as follows using a differential equation.

但し、 ia ;i a−1o、 :モード量 1B=1.+KoR1o+KMBio’ :抵抗8分零
相補償電流1L=1.+KOLio+KMLiQ’  
:インダクタンスL分零相補償電流L1;自回線正相イ
ンダクタンス分 Lo;自回線零相インダクタンス分 LM;回線間零相相互インダクタンス分このようにして
各定数R,Lを各々零相補償すると共に、前記各定数の
補償電流 1L=1a十KOL1o十KMLlo′及びl、 = 
1.十Koi’o +KMR’O’を夫々求め、異なる
時点tm及びtnでの電圧演算値vIam ”&n、電
流演算値工Rm、IILn及び電流微分値Jt、m ’
 JL”を求めて、(2)式に順じて表わすと下記(6
)式となる。
However, ia ; ia-1o, :mode amount 1B=1. +KoR1o+KMBio': Resistance 8 minutes zero-phase compensation current 1L=1. +KOLio+KMLiQ'
: inductance L minute zero-phase compensation current L1; own line positive-sequence inductance Lo; own line zero-phase inductance LM; inter-line zero-phase mutual inductance In this way, each constant R and L are each zero-phase compensated, and Compensation current 1L for each of the above constants = 1a + KOL 1o + KMLlo' and l, =
1. 10Koi'o +KMR'O' are respectively obtained, and the voltage calculation values vIam''&n, the current calculation values Rm, IILn, and the current differential values Jt, m' at different times tm and tn are obtained.
JL" and express it according to equation (2), we get the following (6
).

したがって(6)式の連立方程式を解くことにより、イ
ンダクタンスL、値、抵抗R1値は以下の(7)式とな
る。
Therefore, by solving the simultaneous equations of equation (6), the inductance L, value, and resistance R1 value become the following equation (7).

以上が基本的な考え方である。The above is the basic idea.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して実施例を説明する。第1図は本発明
による距離継電器の一実施例を説明する機能ブロック図
である。なおハードウェア構成は第2図と同様であるの
で、説明は省略する。又、第3図と同一部分については
同一符号を付して説明を省略する。
Examples will be described below with reference to the drawings. FIG. 1 is a functional block diagram illustrating an embodiment of a distance relay according to the present invention. Note that the hardware configuration is the same as that in FIG. 2, so a description thereof will be omitted. Also, the same parts as those in FIG. 3 are given the same reference numerals, and the description thereof will be omitted.

第1図において、7は自回線零相電流補償演算手段(イ
ンダグ2フ15分)で、入力された自回線零相電流l。
In FIG. 1, reference numeral 7 denotes own-line zero-sequence current compensation calculation means (input 2 f 15 minutes), which calculates the own-line zero-sequence current l input.

と自回線インダクタンスR分の零相補償係1j1.Ko
Lとの乗算を行ないK。Lloを導出する。
and zero-sequence compensation coefficient 1j1 for own line inductance R. Ko
Multiply by L and K. Derive Llo.

8は前記7と同様な自回線零相電流補償手段(抵抗R分
)で、入力された自回線零相電流1゜と自回線抵抗8分
零相補償係数K。Bとの乗算を行ないKoRloを導出
する。又、9は隣回線零相電流補償演算子R(インダグ
2フ15分)で、入力された隣回線零相電流1゜′と隣
回線インダクタンス5分零相補償係数KMLとの乗算を
行ないKMLlo′を導出する。10は前記した9と同
様な隣回線零相電流補償演算手段(抵抗R分)で、入力
された隣回線零相電流i。′を隣回線抵抗8分零相補償
係数KMRとの乗算を行ないKMR1o′を導出する。
Reference numeral 8 denotes own line zero-sequence current compensating means (resistance R portion) similar to 7 above, and input own line zero-sequence current 1° and own line resistance 8 minutes zero-sequence compensation coefficient K. Multiply with B to derive KoRlo. In addition, 9 is an adjacent line zero-sequence current compensation operator R (Indeg 2F 15 minutes) which multiplies the inputted adjacent line zero-sequence current 1°' by the adjacent line inductance 5 minutes zero-sequence compensation coefficient KML to obtain KMLlo. ′ is derived. 10 is an adjacent line zero-sequence current compensation calculation means (resistance R portion) similar to 9 described above, and an inputted adjacent line zero-sequence current i. ' is multiplied by the adjacent line resistance 8-minute zero-sequence compensation coefficient KMR to derive KMR1o'.

11は零相補償電流演算手段(インダグ2フ15分)で
、入力されたa相電流11と前記演算手段7で得られた
演算値K。Ll。及び前記演算手段9で得られた演算値
Kw L 10’の3つを加算して、零相補償電流IL
を導出する手段である。12は前記した演算手段11と
同様な零相補償電流演算手段(抵抗R分)で、入力され
たa相電流j、と演算手段8で得られた演算値K。Rl
o及び演算手段9で得られた演算値KMR1o′の3つ
を加算して、零相補償電流IRを導出する手段である。
Reference numeral 11 denotes a zero-phase compensation current calculation means (input 2 times 15 minutes), which receives the input a-phase current 11 and the calculation value K obtained by the calculation means 7. Ll. and the calculated value Kw L 10' obtained by the calculation means 9 are added to obtain the zero-phase compensation current IL.
It is a means of deriving the Reference numeral 12 denotes a zero-phase compensation current calculation means (resistance R portion) similar to the calculation means 11 described above, which calculates the input a-phase current j and the calculation value K obtained by the calculation means 8. Rl
This is means for deriving the zero-phase compensation current IR by adding three values: o and the calculated value KMR1o' obtained by the calculation means 9.

演算手段11.12にて求められた演算値(補償電流)
 tL、 iRは、夫々電流微分演算手段14及び電流
演算手段15に入力され、更に電圧演算手段13で得ら
れた量と共に、L値演算手段16及びR値演算手段17
に入力されて、(7)式によりL値及びR値が求められ
る。そして求められたL値及びR値は、継電器動作判定
手段18に導入されて動作判定がなされる。
Calculated value (compensation current) obtained by calculation means 11.12
tL and iR are input to the current differential calculation means 14 and the current calculation means 15, respectively, and are further input to the L value calculation means 16 and the R value calculation means 17 together with the amount obtained by the voltage calculation means 13.
is input, and the L value and R value are determined by equation (7). The obtained L value and R value are then introduced into the relay operation determining means 18 to determine the operation.

なお、上記実施例において、隣回線抵抗R分零相補償係
数KMB%隣回線零相補償係数KMLをKMR=O2K
ML= 0とすれば、抵抗R分、インダクタンスL分零
相補償電流1R,iLは、下記(8)式となり、自回線
零相補償電流のみ、あるいは単一送電線の零相補償のみ
となることは明らかである。
In the above embodiment, the adjacent line resistance R minute zero-sequence compensation coefficient KMB% adjacent line zero-phase compensation coefficient KML is expressed as KMR=O2K
If ML = 0, the zero-sequence compensation current 1R, iL for the resistance R and inductance L will be the following formula (8), and will be only the own line zero-sequence compensation current or only the zero-sequence compensation of a single transmission line. That is clear.

〔発明の効果〕〔Effect of the invention〕

以上説明し九如く、本発明によれば送電線の電圧V、電
流I、抵抗R,インダクタンスLの間にI 成立する微分方程式V=Lπ+RIを用いて距離測定を
行なう距離継電器において、系統の地絡故障の距離測定
演算に適用する電流量として、抵抗R分、インダクタン
スL分の各々を個別に零相補償した電流量を用いるよう
構成したので、測距性能の改善されたディジタル距離継
電器を提供できる。
As explained above, according to the present invention, in a distance relay that measures distance using the differential equation V=Lπ+RI that holds between voltage V, current I, resistance R, and inductance L of a power transmission line, As the amount of current applied to the distance measurement calculation for short circuit failure, the amount of current obtained by separately compensating for the zero phase of each of the resistance R and the inductance L is used, thereby providing a digital distance relay with improved distance measurement performance. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による距離継電器の一実施例を説明する
ための機能ブロック図、第2図は一般的な距離継電器の
ハードウェア構成図、第3図は微分方程式に立脚する距
離測定方式を用いた距離継電器の従来の演算処理部の機
能ブロック図、第4図はa相−線地絡故障時の平行2回
送電系統図である。 1・・・送電線、      2・・・変成器、3・・
・変流器、      4・・・入力変換回路、5・・
・A/D変換回路、   6・・・演算処理部、7・・
・自回線零相電流補償演算手数(インダクタンスL分)
、8・・・自回線零相電流補償演算手段(抵抗R分)、
9・・・隣回線零相電流補償演算手段(インダクタンス
L分)、10・・・隣回線零相電流補償演算手段(抵抗
R分)11・−・零相補償電流演算手段(インメタタフ
25分)、12・・・零相補償電流演算手段(抵抗R分
)、13・・・電圧演算手段、 14・・・電流微分演算手段、 15・・・電流演算手段、  16・・・L値演算手段
、17・・・R値演算手段、 18・・・継電器動作判定手段、 19・・・自回線継電器。
Fig. 1 is a functional block diagram for explaining one embodiment of the distance relay according to the present invention, Fig. 2 is a hardware configuration diagram of a general distance relay, and Fig. 3 shows a distance measurement method based on differential equations. FIG. 4 is a functional block diagram of the conventional arithmetic processing section of the distance relay used, and is a diagram of a parallel two-way power transmission system at the time of an a-phase-line ground fault. 1...Power transmission line, 2...Transformer, 3...
・Current transformer, 4...Input conversion circuit, 5...
・A/D conversion circuit, 6... Arithmetic processing unit, 7...
- Own line zero-phase current compensation calculation time (inductance L)
, 8... Self-line zero-phase current compensation calculation means (resistance R portion),
9... Adjacent line zero-sequence current compensation calculation means (inductance L portion), 10... Adjacent line zero-sequence current compensation calculation means (resistance R portion) 11... Zero-phase compensation current calculation means (in-meta-tough 25 minutes) , 12...Zero phase compensation current calculation means (resistance R portion), 13...Voltage calculation means, 14...Current differential calculation means, 15...Current calculation means, 16...L value calculation means , 17...R value calculation means, 18...Relay operation determination means, 19... Own line relay.

Claims (3)

【特許請求の範囲】[Claims] (1)電力系統からの複数の電気量をディジタル量に変
換して導入し、微分方程式に立脚する距離測定手段を介
してリレー出力を導出する距離継電器において、上記電
力系統が平行2回線送電線であるとき、その平行2回線
送電線の内で当該距離継電器の保護対象となる回線(以
降、自回線と称す)の零相電流と、自回線抵抗分零相補
償係数との積値と、自回線に対しての隣の回線(以降、
隣回線と称す)の零相電流と、隣回線抵抗分零相補償係
数との積値を求め、これら両者の和を求める第1の手段
と、自回線の各相電流と上記第1の手段からの出力との
和を求めて抵抗分零相補償電流を得る第2の手段、及び
自回線零相電流と自回線インダクタンス分零相補償係数
との積値と、隣回線零相電流と隣回線インダクタンス分
零相補償係数との積値を求め、これら両者の和を求める
第3の手段と、自回線の各相電流と上記第3の手段から
の出力との和を求めてインダクタンス分零相補償電流を
得る第4の手段、その第4の手段により得られた電流の
微分量を求める第5の手段と、上記電力系統の電圧量と
第2の手段からの出力及び第5の手段からの各出力から
送電線のインダクタンス分を求める第6の手段と、上記
電力系統の電圧量と第2の手段からの出力及び第5の手
段からの出力から送電線の抵抗分を求める第7の手段と
からなることを特徴とするディジタル距離継電器。
(1) In a distance relay that converts a plurality of electrical quantities from a power system into digital quantities and derives a relay output via a distance measuring means based on a differential equation, the power system is connected to a parallel two-circuit transmission line. , the product value of the zero-sequence current of the line to be protected by the distance relay (hereinafter referred to as the own line) among the parallel two-line transmission line and the zero-sequence compensation coefficient for the own line resistance, The line next to your own line (hereinafter,
a first means for calculating the product value of the zero-sequence current of the adjacent line (referred to as an adjacent line) and a zero-sequence compensation coefficient for the adjacent line resistance, and calculating the sum of the two; A second means for obtaining the resistance component zero-sequence compensation current by calculating the sum of the output from the own line zero-sequence current and the own line inductance component zero-sequence compensation coefficient; A third means for calculating the product of the line inductance and the zero-phase compensation coefficient and calculating the sum of the two; A fourth means for obtaining a phase compensation current, a fifth means for obtaining a differential amount of the current obtained by the fourth means, a voltage amount of the power system, an output from the second means, and the fifth means. a seventh means for determining the inductance of the power transmission line from each output from the power system; and a seventh means for determining the resistance of the power transmission line from the voltage amount of the power system, the output from the second means, and the output from the fifth means. A digital distance relay characterized in that it consists of means.
(2)第1の手段は、自回線零相電流と自回線抵抗分零
相補償係数との積値を求める手段であり、第3の手段は
、自回線零相電流と自回線インダクタンス分零相補償係
数との積値を求める手段であることを特徴とする特許請
求の範囲第1項記載のディジタル距離継電器。
(2) The first means is a means for calculating the product value of the own line zero-sequence current and the own line resistance component zero-sequence compensation coefficient, and the third means is a means for calculating the product value of the own line zero-sequence current and the own line inductance component zero. The digital distance relay according to claim 1, characterized in that the digital distance relay is means for calculating a product value with a phase compensation coefficient.
(3)電力系統からの複数の電気量をディジタル量に変
換して導入し、微分方程式に立脚する距離測定手段を介
してリレー出力を導出する距離継電器において、上記電
力系統が単一送電線であるとき、送電線の零相電流と送
電線の抵抗分零相補償係数との積値を求める第1の手段
と、送電線の各相電流と上記第1の手段からの出力との
和を求めて抵抗分零相補償電流を得る第2の手段、及び
送電線の零相電流と送電線のインダクタンス分零相補償
係数との積値を求める第3の手段と、送電線の各相電流
と上記第3の手段からの出力との和を求めてインダクタ
ンス分零相補償電流を得る第4の手段、その第4の手段
により得られた電流の微分量を求める第5の手段と、上
記電力系統の電圧量と第2の手段からの出力及び第5の
手段からの各出力から送電線のインダクタンス分を求め
る第6の手段と、上記電力系統の電圧量と第2の手段か
らの出力及び第5の手段からの出力から送電線の抵抗分
を求める第7の手段とからなることを特徴とするディジ
タル距離継電器。
(3) In a distance relay that converts multiple electrical quantities from a power system into digital quantities and derives a relay output via a distance measuring means based on a differential equation, the power system is connected to a single transmission line. At some point, the first means for calculating the product value of the zero-sequence current of the power transmission line and the zero-sequence compensation coefficient for the resistance of the power transmission line, and the sum of each phase current of the power transmission line and the output from the first means. a second means for obtaining a resistance component zero-phase compensation current; a third means for determining the product value of a zero-phase current of the power transmission line and an inductance component zero-phase compensation coefficient of the power transmission line; and the output from the third means to obtain the inductance zero-sequence compensation current, and a fifth means to obtain the differential amount of the current obtained by the fourth means; sixth means for determining the inductance of the power transmission line from the voltage amount of the power system, the output from the second means, and each output from the fifth means; and the voltage amount of the power system and the output from the second means. and seventh means for determining the resistance of the power transmission line from the output from the fifth means.
JP15748185A 1985-07-17 1985-07-17 Digital distance relay Granted JPS6218919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15748185A JPS6218919A (en) 1985-07-17 1985-07-17 Digital distance relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15748185A JPS6218919A (en) 1985-07-17 1985-07-17 Digital distance relay

Publications (2)

Publication Number Publication Date
JPS6218919A true JPS6218919A (en) 1987-01-27
JPH0458258B2 JPH0458258B2 (en) 1992-09-17

Family

ID=15650619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15748185A Granted JPS6218919A (en) 1985-07-17 1985-07-17 Digital distance relay

Country Status (1)

Country Link
JP (1) JPS6218919A (en)

Also Published As

Publication number Publication date
JPH0458258B2 (en) 1992-09-17

Similar Documents

Publication Publication Date Title
CN111141995A (en) Line double-end steady-state distance measuring method and system based on amplitude comparison principle
JPS6039312A (en) Protective relaying device
KR100425417B1 (en) Method for detecting line to line fault location for power systems
JPS6218919A (en) Digital distance relay
JPH0373825B2 (en)
JPS60180424A (en) Shorting distance relay
JP2863952B2 (en) Ground fault fault location method and device, ground fault distance relay
RU2059257C1 (en) Method for checking deformation in windings of power transformers
JPH04225176A (en) Ground distance detecting method, ground distance detector and ground distance relay
JPS607886B2 (en) Ground fault distance determination method
JPH0374344B2 (en)
JP2715090B2 (en) Fault location device
JPS637349B2 (en)
JPS631810B2 (en)
SU436301A1 (en) METHOD FOR DETERMINING THE PLACE OF DAMAGE TO HIGH-VOLTAGE AIR LINES / ELECTRICAL TRANSMISSION
JPH0113293B2 (en)
JP2721166B2 (en) Ground fault distance relay method
JPH0374345B2 (en)
JPS63224627A (en) Distance relay
JPH0510632B2 (en)
JPS634406B2 (en)
JPH0374346B2 (en)
JPS59127526A (en) Method of protecting transmission line of current differential type
JPH08126190A (en) Digital protection of electric system
JPH0367184A (en) Accident point locating device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term