JPS6218892B2 - - Google Patents

Info

Publication number
JPS6218892B2
JPS6218892B2 JP59018830A JP1883084A JPS6218892B2 JP S6218892 B2 JPS6218892 B2 JP S6218892B2 JP 59018830 A JP59018830 A JP 59018830A JP 1883084 A JP1883084 A JP 1883084A JP S6218892 B2 JPS6218892 B2 JP S6218892B2
Authority
JP
Japan
Prior art keywords
optical fiber
core
hollow hole
microhole
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59018830A
Other languages
Japanese (ja)
Other versions
JPS60173513A (en
Inventor
Kengo Imon
Yukinori Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59018830A priority Critical patent/JPS60173513A/en
Publication of JPS60173513A publication Critical patent/JPS60173513A/en
Publication of JPS6218892B2 publication Critical patent/JPS6218892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3887Anchoring optical cables to connector housings, e.g. strain relief features
    • G02B6/3888Protection from over-extension or over-compression

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は光フアイバコネクタ用中子への光フア
イバ心線の取り付け方法に関するものである。 (従来技術) 一般に光フアイバコネクタにおいては、外径精
度の良い中子の中心に設けられた微小孔に光フア
イバを挿入・固定し、この中子を2個、内面精度
の良い円筒状のスリーブの両側から差し込むこと
により、2個の中子に挿入された2本の光フアイ
バのコア中心が一致するように光フアイバを突き
合わせて接続する方法が用いられている。光フア
イバコネクタは室内のみならず屋外でも使用され
るために、厳しい温度条件下でも光フアイバの破
断を防止できる構造をもつ必要がある。 以下に第1図a,bを用いて前述の接続方法の
前工程としての中子に対する光フアイバ心線の取
り付け方法を説明する。第1図aは光フアイバコ
ネクタ用中子の断面図、第1図bは中子に取付け
る光フアイバ心線を示す図である。図中1は中子
で、所定長さの軸状をなし、その軸方向の後端面
1aから先端面1b近傍までの間に低損失石英ガ
ラスにて形成された標準径125μmの光フアイバ
6の外周を少なくとも標準断面積0.5mm2のナイロ
ン外被で覆つた光フアイバ心線5を挿入し得る中
空孔2を、また該中空孔2の終端2a側から前記
先端面1bに亙り前記光フアイバ心線5から外被
を取り除いた後の光フアイバ6を挿入する光フア
イバ位置決め用微小孔3を互いの軸心が一致する
よう貫通してなる。なお、4は接着剤を中空孔2
の内奥に行き亙らせるための空気抜き穴、7は光
フアイバ6をより強く中空孔2内に固定するため
のガラスパイプである。 このような構造の中子1に光フアイバ心線5を
取り付けるには、まず、光フアイバ心線5の先端
側の外被を取り除いて光フアイバ6を露出し、該
光フアイバ6にガラスパイプ7を挿着した後、接
着剤を中子1の中空孔2、光フアイバ心線5の先
端部、光フアイバ6、ガラスパイプ7に塗布す
る。次に中子1の軸心に設けられた中空孔2に光
フアイバ心線5、光フアイバ6及びガラスパイプ
7を挿入し、かつ、光フアイバ6の先端部6aを
微小孔3内に挿入し接着剤により固定する。 この様な取り付け方法においては前記微小孔3
の直径が126μm程度であるため、中空孔2の全
体に接着剤を行き亙らせるには困難であるととも
に、接着剤自体に空気等の気泡が含まれているた
め、接着剤が固まつた際、接着剤の中に空洞が生
じ、その空洞部に温度変化等に伴なう光フアイバ
6のひずみ力が作用して光フアイバ6が破断する
事例が発生している。 この様な空洞の発生を少なくし光フアイバ6と
接着剤の固定をより確実にするため、前述の如く
ガラスパイプ7が用いられているが、これでも空
洞の発生を完全に防止できないばかりか、光フア
イバ6にガラスパイプ7を通す際、両者ともガラ
スであるため光フアイバ6に傷をつけ、これが原
因となつて経時的に光フアイバ6が破断する事例
も発生している。 (発明の目的) 本発明の目的は前述した従来の問題点に鑑み、
低損失石英ガラスにて形成された光フアイバに傷
を発生させる恐れのあるガラスパイプを使用せず
に、温度変化に伴なう光フアイバ破断の発生を減
少させ得る低損失石英ガラスにて形成された標準
径125μmの光フアイバの外周を少なくとも標準
断面積0.5mm2のナイロン又は同等の弾性率を有す
る樹脂部材にて形成された外被で覆つた光フアイ
バ心線の取り付け法を提供しようとするものであ
る。 (発明の構成) 前記の目的を達成するため、第1の発明は低損
失石英ガラスにて形成された標準径125μmの光
フアイバの外周を少なくとも標準断面積0.5mm2
ナイロン又は同等の弾性率を有する樹脂部材にて
形成された外被で覆つてなる光フアイバ心線を所
定長さの軸状をなし、かつ、その軸方向の後端面
から先端近傍までの間に挿入する中空孔を、また
該中空孔の内奥端から前記先端面に亙り前記光フ
アイバ心線から外被を取り除いた後の光フアイバ
を挿入する光フアイバ位置決め用微小孔を互いの
軸心が一致するよう貫通してなる光フアイバコネ
クタ用中子を用い、前記光フアイバ心線を前記中
空孔に、前記光フアイバを前記微小孔にそれぞれ
挿入し、該光フアイバ心線の外周を前記中空孔の
内面に又該光フアイバの先端を該微小孔にそれぞ
れ接着剤により固定するようにした光フアイバ心
線取り付け方法において、前記光フアイバ心線か
ら外被を取除いた光フアイバ部分の全長から前記
微小孔の軸方向長さを引いた該光フアイバ部分の
長さが1.5mm以下となるように設定したことを特
徴とし、第2の発明は低損失石英ガラスにて形成
された標準径125μmの光フアイバの外周を少な
くとも標準断面積0.5mm2のナイロン又は同等の弾
性率を有する樹脂部材にて形成された外被で覆つ
てなる光フアイバ心線を所定長さの軸状をなし、
かつ、その軸方向の後端面から先端近傍までの間
に挿入する中空孔を、また該中空孔の内奥端から
前記先端面に亙り前記光フアイバ心線から外被を
取り除いた後の光フアイバを挿入する光フアイバ
位置決め用微小孔を互いの軸心が一致するよう貫
通してなる光フアイバコネクタ用中子を用い、前
記光フアイバ心線を前記中空孔に、前記光フアイ
バを前記微小孔にそれぞれ挿入し、該中子の後端
側に設けた光フアイバ心線の圧着・保持部材によ
り該光フアイバの端面から約30mmの位置を固定す
るようにした光フアイバ心線取り付け方法におい
て、前記光フアイバ心線から外被を取外した光フ
アイバ部分の全長から前記微小孔の軸方向長さを
引いた該光フアイバ部分の長さが3.5mm以下とな
るように設定したことを特徴とする。 (実施例) 第2図は本発明の一実施例を示すもので、図中
従来例と同一構成部分は同一符号をもつて表わ
す。すなわち、1は中子で、従来例で述べたもの
と同一構成であるので、その説明は省略する。5
は光フアイバ心線、6は光フアイバである。lは
光フアイバ位置決め用微小孔3の軸方向長さ、L
は光フアイバ6の全長である。前記中子1に対し
て光フアイバ心線5を取り付ける方法は、ガラス
パイプ7を使用しないこと、及びL―lの値(光
フアイバ6の中空孔3内部分の長さ)を以下に述
べる設定条件とすることを除いて、従来例と同様
で、接着剤を中子1の内周面、光フアイバ心線5
の先端部及び光フアイバ6に塗布する。以下にL
―lの値と光フアイバ6に働く力の関係を説明す
る。 光フアイバ心線5の断面構造を第3図に示す。
中心に低損失石英ガラスにより形成された標準外
径125μmの光フアイバ6中間にシリコンゴム、
UVキユア等低ヤング率の材料からなる緩衝層5
a、外側にナイロン被覆5b等を設けた構造とな
つており、ナイロン被覆5bと光フアイバ6とは
完全に密着していない。従つて光フアイバ心線製
造時に生じたナイロン被覆5bの歪の解放、温度
変化に伴なうナイロン被覆5bの収縮等によりナ
イロン被覆5bに長手方向の収縮応力が発生し、
光フアイバ6とナイロン被覆5bとの間に変位を
発生させようとする。ここで緩衝層5aはヤング
率が小さいため除外できる。ところが、ナイロン
被覆5bは接着剤により中子1に固定されており
かつ光フアイバ6の先端部6aは他のコネクタ1
0で固定されているので、ナイロン被覆5bに発
生した収縮応力は第2図に示す光フアイバ6を長
手方向に圧縮させる方向に働くこととなる。な
お、シリコンの接着性はよくないため、経時的に
光フアイバ6と接着剤が剥離してくる現象も認め
られている。このため光フアイバ心線5を中子1
に接着固定した際、接着剤が十分中子1の中空孔
2の内奥にまで注入されていないと、ある程度以
上の空洞が第2図に示す中空孔2内部に発生し前
述した圧縮力により容易に光フアイバ6が空洞の
近傍で破断することとなる。 第4図は、つき出し量の大きい低温状態(−20
℃)に種々の長さの光フアイバ心線を2週間放置
した後、光フアイバつき出し量を測定した結果を
表わすグラフである。この第4図に示すデータを
もとにして光フアイバ6に働く応力を求める。 今、長さδ(cm)の光フアイバ心線において、
εなる歪がナイロン被覆に生じており、低温時
のナイロンの弾性率、断面積をそれぞれEL、A
とすると、ナイロンの単位長さ当りにはε0ELA
なる収縮力及び温度変化に伴なう収縮力εtELA
が生ずる。ただしεtは温度変化による歪であ
る。また、緩衝層と光フアイバ間の摩擦力をλ
(Kg/mm)とし、光フアイバ心線の端末からの距離
をxとすると、xにおける摩擦力はλxとなる。
それらの関係を第5図に示す。光フアイバ心線が
長い場合にはxが大きくなると摩擦力が収縮力よ
り大きくなる。この場合、端末でのナイロン収縮
量を△δとすると △δ=∫x1 1/EA{(εo−εt)ELA−λx}dx =(εo−εt)A/2λ、ただしλx1=(εo−εt)ELA (1) となる。また光フアイバ心線が短い場合は全領域
でナイロン被覆が移動するため、光フアイバ端面
でのナイロン収縮量△δは(2)式で表わされる。 ところで、第4図よりδ=50mmの場合、△δ
=0.13mm、δ=500mmの場合、△δ=0.28mmで
あるので、各々の値を(2)式、(1)式に代入し、 εo−εt=6.01×10-3 (3) λ/EA=6.48×10-5 (4) を得る。光フアイバ心線の端面部分(x=0)で
光フアイバに働く応力Fは F=(εo−εt)ELA (5) で表わされる。EL=120Kg/mm2、A=0.51mm2より
F=368gとなる。 一般に光フアイバのような細長い棒に、ある一
定値以上の圧縮力が加わつた場合、棒は座屈を起
すことが知られている。こ座屈がおきる荷重(オ
イラーの座屈荷重)Pは(6)式で表わされる。 P=πEI/(L−l) (6) ただし、Eは光フアイバの弾性率、Iは断面2
次モーメントである。光フアイバの半径をrとす
ると E=7200Kg/mm2、I=π/4r4、r=0.0625mmより 座屈荷重Pは P=852×1/(L−l)(g) (7) で表わされる。(7)式のグラフを第6図に示す。こ
こで座屈荷重Pと光フアイバに働く応力Fが等し
いとすると 368=852×1/(L−l) (8) より L−l=1.52mm となる。よつて光フアイバ心線から外被を取り除
いた光フアイバ部分の長さLから中子に設けた光
フアイバ位置決め用の微小孔の長さlを引いた値
を1.5mm以下に設定すれば、光フアイバに傷がな
い限り接着剤の有無にかかわらず光フアイバは温
度変化に伴うフアイバつき出し現象により破断す
ることはない。 第7及び8図は接着剤を用いずに中子の後端側
に設けた光フアイバ心線の圧着・保持部材によ
り、光フアイバ心線を中子に取り付ける方法の実
施例を示すものである。この実施例に用いる中子
21は所定長さの軸状をなし、その軸方向の後端
面21aから先端面21b近傍までの間に光フア
イバ心線5を挿入し得る中空孔22を、また該中
空孔22の終端22a側から前記先端面21bに
亙り前記光フアイバ心線5から外被を取り除いた
後の光フアイバ6を挿入する光フアイバ位置決め
用微小孔23を互いの軸心が一致するよう貫通し
てなり、中子21のさらに後端側には中空孔22
に挿入した光フアイバ心線5の外周を圧着、保持
する圧着・保持部材25が設けられている。この
圧着・保持部材25は、外周にオネジ26aを刻
設した後記外筒の螺合部26と、後端面21aの
外周縁部より後端側へ徐々に小径となる如く延設
された円筒状のかしめ部27と、先端内側に前記
オネジ26aと螺合するメネジ28aを刻設しか
つ後端内側に前記かしめ部27の外周面に当接し
て先端側への移動とともにかしめ部27の後端部
を内側へ押し込むための段部28bを設けた外筒
28とからなる。なお、前記かしめ部27の軸方
向の全長及びこれに隣接した中子21の一部に亙
り周方向に間隔をおいて複数の割れ目29が設け
られている。 この様な構造の中子21に対して光フアイバ心
線5を取り付けるには、まず外筒28を取り外し
従来と同様に光フアイバ心線5を中空孔22内
に、光フアイバ6の先端部6aを微小孔23に挿
入した後、再び外筒28を螺合部26に螺合すれ
ばよい。これにより、外筒28の段部28bがか
しめ部27の後端部を内側に押し込むため、該後
端部が光フアイバ心線5の外周に圧着しこれを保
持することとなる。 第9図にこの実施例における中子21の光フア
イバ心線に働く力を示す。第5図と比較してかし
めによる摩擦力fが生じており、fの働く方向は
光フアイバに生ずる応力を減少させる方向であ
る。光フアイバ心線の端面からかしめ位置までの
距離をとすると、において働くナイロン外被
の応力Fは(9)式で表わされる。 F=(εo−εt)ELA−λ−f (9) εo、εt、HL、A、λについては(5)式と同
様である。 かしめ部27によりナイロン外被を固定しかつ
先端部も他のコネクタ10により固定されている
ため(9)式で表わされる力は光フアイバ6に対して
圧縮力として作用する。 ところで、(3)、(4)式より εo−εt=6.01×10-3(Kg/mm2) β=3.97(g/mm) であるので(9)式は、次式のように表わされる。 F=368−3.97―f(g) (10) また試作した光コネクタにおいての値は30mm
であるので、(10)式は次式で表わされる。 F=248.9―f (11) このようにかしめ力により光フアイバ6に対し
て働く圧縮力を軽減することができる。なお、光
フアイバ6部分の全長Lから中子21に設けた光
フアイバ位置決め用微小孔23の長さlを引いた
値(L―l)と光フアイバの座屈荷重との関係は
(7)式と同様である。 次に第7図及び第8図に示す構成をもつ中子2
1を用いた光フアイバコネクタを試作しL―lの
値を変えた場合について実験も行なつたので、そ
の結果を説明する。 L―lの値、温度サイクルによる光フアイバの
破断状況、及び(7)式により計算した座屈荷重を第
表に示す。第10図に温度サイクルの1サイク
ルにおける温度変化を示す。1サイクル6時間で
60℃から−20℃へ温度変化を与えている。
(Technical Field) The present invention relates to a method for attaching an optical fiber core to a core for an optical fiber connector. (Prior art) Generally, in optical fiber connectors, an optical fiber is inserted and fixed into a microhole provided in the center of a core with good outer diameter precision, and two of these cores are connected to a cylindrical sleeve with good inner diameter precision. A method is used in which the two optical fibers inserted into the two cores are inserted from both sides so that the core centers of the two fibers coincide with each other and the fibers are butted and connected. Since optical fiber connectors are used not only indoors but also outdoors, they must have a structure that can prevent the optical fibers from breaking even under severe temperature conditions. The method of attaching the optical fiber core to the core as a pre-step of the above-mentioned connection method will be described below with reference to FIGS. 1a and 1b. FIG. 1a is a sectional view of a core for an optical fiber connector, and FIG. 1b is a diagram showing an optical fiber core wire attached to the core. In the figure, reference numeral 1 denotes a core, which has a shaft shape of a predetermined length, and has an optical fiber 6 with a standard diameter of 125 μm formed of low-loss quartz glass between the rear end surface 1a in the axial direction and the vicinity of the front end surface 1b. A hollow hole 2 into which an optical fiber core 5 whose outer periphery is covered with a nylon jacket having a standard cross-sectional area of at least 0.5 mm 2 can be inserted, and the optical fiber core extends from the terminal end 2a side of the hollow hole 2 to the tip surface 1b. The optical fiber positioning microhole 3 into which the optical fiber 6 is inserted after removing the jacket from the wire 5 is penetrated so that the axes thereof coincide with each other. Note that 4 is the adhesive in the hollow hole 2.
The air vent hole 7 is a glass pipe for more firmly fixing the optical fiber 6 inside the hollow hole 2. In order to attach the optical fiber core 5 to the core 1 having such a structure, first, the outer sheath on the tip side of the optical fiber core 5 is removed to expose the optical fiber 6, and a glass pipe 7 is attached to the optical fiber 6. After inserting the core 1, adhesive is applied to the hollow hole 2 of the core 1, the tip of the optical fiber core 5, the optical fiber 6, and the glass pipe 7. Next, the optical fiber core 5, the optical fiber 6, and the glass pipe 7 are inserted into the hollow hole 2 provided at the axis of the core 1, and the tip 6a of the optical fiber 6 is inserted into the microhole 3. Fix with adhesive. In such a mounting method, the micro hole 3
Since the diameter of the hollow hole 2 is approximately 126 μm, it is difficult to spread the adhesive throughout the hollow hole 2, and since the adhesive itself contains air bubbles, it is difficult for the adhesive to harden. In this case, there have been cases where a cavity is created in the adhesive, and the strain force of the optical fiber 6 due to temperature change acts on the cavity, causing the optical fiber 6 to break. In order to reduce the occurrence of such cavities and to more securely fix the optical fiber 6 and the adhesive, the glass pipe 7 is used as described above, but even this cannot completely prevent the occurrence of cavities. When passing the glass pipe 7 through the optical fiber 6, since both are made of glass, the optical fiber 6 is scratched, and this may cause the optical fiber 6 to break over time. (Object of the invention) The object of the present invention is to solve the above-mentioned conventional problems.
It is made of low-loss quartz glass that can reduce the occurrence of optical fiber breakage due to temperature changes, without using a glass pipe that may damage the optical fiber, which is made of low-loss quartz glass. The present invention aims to provide a method for attaching an optical fiber core wire in which the outer periphery of an optical fiber having a standard diameter of 125 μm is covered with a jacket made of nylon having a standard cross-sectional area of at least 0.5 mm 2 or a resin material having an equivalent modulus of elasticity. It is something. (Structure of the Invention) In order to achieve the above-mentioned object, the first invention provides an optical fiber having a standard diameter of 125 μm made of low-loss quartz glass, and the outer periphery of the optical fiber made of nylon having a standard cross-sectional area of 0.5 mm 2 or an elastic modulus equivalent to that of at least 0.5 mm 2. An optical fiber core wire covered with a jacket formed of a resin member having a shaft shape of a predetermined length, and a hollow hole inserted between the rear end surface in the axial direction and the vicinity of the tip, Further, from the innermost end of the hollow hole to the tip surface, the optical fiber positioning microhole into which the optical fiber is inserted after removing the outer sheath from the optical fiber core wire is penetrated so that the axes of the optical fiber are aligned with each other. Using a core for an optical fiber connector made of In an optical fiber attachment method in which the tips of the fibers are fixed to each of the microholes with an adhesive, the length in the axial direction of the microhole is determined from the total length of the optical fiber portion after removing the jacket from the optical fiber core. The second invention is characterized in that the length of the optical fiber portion is set to be 1.5 mm or less after subtracting the length of the optical fiber. A cored optical fiber is formed into a shaft shape of a predetermined length and covered with an outer sheath made of nylon with a standard cross-sectional area of 0.5 mm 2 or a resin material with an equivalent modulus of elasticity.
and a hollow hole to be inserted between the rear end surface in the axial direction and the vicinity of the tip, and an optical fiber after removing the outer sheath from the optical fiber core wire from the innermost end of the hollow hole to the tip surface. Using an optical fiber connector core formed by penetrating a microhole for positioning the optical fiber into which the fiber is inserted so that their axes coincide with each other, the core of the optical fiber is inserted into the hollow hole, and the optical fiber is inserted into the microhole. In the method for attaching an optical fiber, the optical fiber is inserted into the core and fixed at a position approximately 30 mm from the end surface of the optical fiber by a crimp/holding member for the optical fiber provided on the rear end side of the core. The present invention is characterized in that the length of the optical fiber portion obtained by subtracting the axial length of the microhole from the total length of the optical fiber portion from which the jacket is removed from the fiber core wire is set to be 3.5 mm or less. (Embodiment) FIG. 2 shows an embodiment of the present invention, in which the same components as those of the conventional example are denoted by the same reference numerals. That is, 1 is a core, which has the same configuration as that described in the conventional example, so its explanation will be omitted. 5
is an optical fiber core wire, and 6 is an optical fiber. l is the axial length of the optical fiber positioning microhole 3, L
is the total length of the optical fiber 6. The method of attaching the optical fiber core 5 to the core 1 requires not using the glass pipe 7, and setting the value of L-l (the length of the inner portion of the hollow hole 3 of the optical fiber 6) as described below. The conditions are the same as in the conventional example except that the adhesive is applied to the inner peripheral surface of the core 1 and the optical fiber core 5.
and the optical fiber 6. Below is L
- Explain the relationship between the value of l and the force acting on the optical fiber 6. A cross-sectional structure of the optical fiber core wire 5 is shown in FIG.
Optical fiber 6 with a standard outer diameter of 125 μm made of low-loss quartz glass in the center 6 with silicone rubber in the middle.
Buffer layer 5 made of material with low Young's modulus such as UV cure
a. It has a structure in which a nylon coating 5b etc. is provided on the outside, and the nylon coating 5b and the optical fiber 6 are not in complete contact with each other. Therefore, shrinkage stress in the longitudinal direction is generated in the nylon coating 5b due to the release of strain in the nylon coating 5b that occurs during the production of the optical fiber core, contraction of the nylon coating 5b due to temperature changes, etc.
An attempt is made to generate a displacement between the optical fiber 6 and the nylon coating 5b. Here, the buffer layer 5a can be excluded because its Young's modulus is small. However, the nylon coating 5b is fixed to the core 1 with adhesive, and the tip 6a of the optical fiber 6 is attached to another connector 1.
Since the stress is fixed at 0, the shrinkage stress generated in the nylon coating 5b acts in a direction that compresses the optical fiber 6 shown in FIG. 2 in the longitudinal direction. It should be noted that since the adhesion of silicon is not good, it has been observed that the optical fiber 6 and the adhesive peel off over time. For this reason, the optical fiber core 5 is connected to the core 1.
If the adhesive is not injected sufficiently deep into the hollow hole 2 of the core 1, a certain amount of void will be generated inside the hollow hole 2 as shown in Fig. 2, and due to the compressive force mentioned above. The optical fiber 6 will easily break near the cavity. Figure 4 shows the low temperature state (-20
3 is a graph showing the results of measuring the amount of optical fiber protrusion after leaving optical fiber cores of various lengths at a temperature of 10.degree. C. for two weeks. Based on the data shown in FIG. 4, the stress acting on the optical fiber 6 is determined. Now, in an optical fiber core wire of length δ (cm),
A strain of ε 0 occurs in the nylon coating, and the elastic modulus and cross-sectional area of nylon at low temperature are expressed as E L and A, respectively.
Then, per unit length of nylon, ε 0 E L A
The contraction force due to temperature change and the contraction force due to temperature change εtE L A
occurs. However, εt is the strain due to temperature change. In addition, the frictional force between the buffer layer and the optical fiber is λ
(Kg/mm) and the distance from the end of the optical fiber to x, the frictional force at x is λx.
The relationship between them is shown in FIG. When the optical fiber is long, the frictional force becomes larger than the contraction force as x becomes larger. In this case , if the amount of nylon shrinkage at the terminal is △δ 1 , then δ 1 = /2λ, where λx 1 =(εo−εt)E L A (1). Furthermore, when the optical fiber core wire is short, the nylon coating moves over the entire region, so the amount of nylon shrinkage Δδ 2 at the end face of the optical fiber is expressed by equation (2). By the way, from Fig. 4, when δ=50mm, △δ 2
= 0.13 mm and δ = 500 mm, △δ 1 = 0.28 mm, so substitute each value into equations (2) and (1), and get εo−εt=6.01×10 -3 (3) λ /ELA=6.48×10 -5 (4) is obtained. The stress F acting on the optical fiber at the end face portion (x=0) of the optical fiber core wire is expressed as F=(εo−εt)E L A (5). From E L = 120Kg/mm 2 and A = 0.51mm 2 , F = 368g. It is generally known that when a compressive force exceeding a certain value is applied to a long and thin rod such as an optical fiber, the rod will buckle. The load at which buckling occurs (Euler's buckling load) P is expressed by equation (6). P=π 2 EI/(L-l) 2 (6) where E is the elastic modulus of the optical fiber and I is the cross section 2
This is the next moment. If the radius of the optical fiber is r, E=7200Kg/mm 2 , I=π/4r 4 , r=0.0625mm, so the buckling load P is P=852×1/(L-l) 2 (g) (7) It is expressed as A graph of equation (7) is shown in Figure 6. Assuming that the buckling load P and the stress F acting on the optical fiber are equal, 368=852×1/(L−l) 2 (8) gives L−l=1.52 mm. Therefore, if the value obtained by subtracting the length l of the microhole for positioning the optical fiber provided in the core from the length L of the optical fiber part obtained by removing the outer sheath from the optical fiber core wire is set to 1.5 mm or less, the optical fiber As long as the fiber is not damaged, the optical fiber will not break due to the fiber extrusion phenomenon caused by temperature changes, regardless of the presence or absence of adhesive. Figures 7 and 8 show an example of a method for attaching the optical fiber to the core by using the optical fiber core crimping/holding member provided on the rear end side of the core without using adhesive. . The core 21 used in this embodiment has a shaft shape with a predetermined length, and has a hollow hole 22 into which the optical fiber core 5 can be inserted between the rear end surface 21a in the axial direction and the vicinity of the front end surface 21b. The optical fiber positioning microhole 23 into which the optical fiber 6 is inserted after removing the jacket from the optical fiber core wire 5 from the terminal end 22a side of the hollow hole 22 to the tip surface 21b is made so that their axes coincide with each other. The core 21 has a hollow hole 22 at its rear end.
A crimping/holding member 25 is provided for crimping and holding the outer periphery of the optical fiber core 5 inserted therein. This crimping/holding member 25 has a threaded portion 26 of an outer cylinder (described later) having a male thread 26a carved on its outer periphery, and a cylindrical shape extending from the outer periphery of the rear end surface 21a so as to gradually become smaller in diameter toward the rear end. The caulking part 27 and a female thread 28a that engages with the male screw 26a are carved on the inner side of the tip, and the rear end of the caulking part 27 comes into contact with the outer peripheral surface of the caulking part 27 on the inside of the rear end and moves toward the tip side. It consists of an outer cylinder 28 provided with a stepped part 28b for pushing the parts inward. A plurality of cracks 29 are provided at intervals in the circumferential direction over the entire axial length of the caulked portion 27 and a portion of the core 21 adjacent thereto. To attach the optical fiber core 5 to the core 21 having such a structure, first remove the outer tube 28, insert the optical fiber core 5 into the hollow hole 22 in the same way as in the conventional case, and insert the tip 6a of the optical fiber 6 into the hollow hole 22. After inserting into the microhole 23, the outer cylinder 28 may be screwed into the threaded portion 26 again. As a result, the stepped portion 28b of the outer tube 28 pushes the rear end portion of the caulking portion 27 inward, so that the rear end portion is crimped onto the outer periphery of the optical fiber core wire 5 and held therein. FIG. 9 shows the force acting on the optical fiber core of the core 21 in this embodiment. Compared to FIG. 5, a frictional force f is generated due to caulking, and the direction in which f acts is a direction that reduces the stress generated in the optical fiber. If the distance from the end face of the optical fiber core wire to the caulking position is taken as the distance, the stress F in the nylon jacket acting at is expressed by equation (9). F=(εo−εt)E L A−λ−f (9) εo, εt, H L , A, and λ are the same as in equation (5). Since the nylon jacket is fixed by the caulking portion 27 and the tip end is also fixed by another connector 10, the force expressed by equation (9) acts on the optical fiber 6 as a compressive force. By the way, from equations (3) and (4), εo−εt=6.01×10 -3 (Kg/mm 2 ) β=3.97 (g/mm), so equation (9) can be expressed as follows. . F=368−3.97−f(g) (10) Also, the value of the prototype optical connector is 30mm
Therefore, equation (10) can be expressed as the following equation. F=248.9−f (11) In this way, the compressive force acting on the optical fiber 6 can be reduced by the crimping force. The relationship between the value (L-l) obtained by subtracting the length l of the optical fiber positioning microhole 23 provided in the core 21 from the total length L of the optical fiber 6 portion and the buckling load of the optical fiber is as follows.
This is the same as equation (7). Next, the core 2 having the configuration shown in FIGS. 7 and 8
Experiments were also conducted on the case where an optical fiber connector using 1 was fabricated and the value of L-l was changed, and the results will be explained below. Table 1 shows the value of L-l, the state of optical fiber breakage due to temperature cycles, and the buckling load calculated using equation (7). FIG. 10 shows the temperature change in one cycle of the temperature cycle. 1 cycle in 6 hours
The temperature is changed from 60℃ to -20℃.

【表】 L―lの値が13mmの場合、3サンプルで実験し
たところ、第1サンプルは2サイクル、第2サン
プルは1サイクル、第3サンプルは3サイクル目
で破断をおこした。表には平均をとり2サイク
ル目で破断したと表示している。このように、L
―lの値が大きい場合は光コネクタとして長期の
信頼性か確保することができない。ところが座屈
荷重が70g以上であるL―lの値が3.5mm以下の
場合では、28サイクルの温度変化を与えても破断
は発生していない。さらに、温度変化28サイクル
中に、本コネクタの接続損失変動をモニタしたと
ころいずれもその変動幅が0.1dB以下であつた。
このようにL―lの値を3.5mm以下にすることに
より十分長期信頼性を確保できるものと結論でき
る。 第2図に示すタイプの中子と比べて、第7図及
び第8図に示すタイプの中子において長期信頼性
をもつために必要なL―lの値が長くなつている
のは以下の理由による。○…埜
[Table] When the value of L-l was 13 mm, an experiment was conducted using three samples, and the first sample broke in the second cycle, the second sample in the first cycle, and the third sample in the third cycle. In the table, the average is taken and it is shown that the breakage occurred in the second cycle. In this way, L
- If the value of l is large, long-term reliability as an optical connector cannot be ensured. However, when the buckling load is 70 g or more and the L-l value is 3.5 mm or less, no fracture occurs even after 28 cycles of temperature change. Furthermore, when we monitored the connection loss fluctuations of this connector during 28 cycles of temperature change, the fluctuation range was less than 0.1 dB in all cases.
Thus, it can be concluded that sufficient long-term reliability can be ensured by setting the value of L-l to 3.5 mm or less. Compared to the type of core shown in Figure 2, the L-l value required for the type of core shown in Figures 7 and 8 to have long-term reliability is longer because: Depends on the reason. ○...Ni

Claims (1)

【特許請求の範囲】 1 低損失石英ガラスにて形成された標準径125
μmの光フアイバの外周を少なくとも標準断面積
0.5mm2のナイロン又は同等の弾性率を有する樹脂
部材にて形成された外被で覆つてなる光フアイバ
心線を所定長さの軸状をなし、かつ、その軸方向
の後端面から先端近傍までの間に挿入する中空孔
を、また該中空孔の内奥端から前記先端面に亙り
前記光フアイバ心線から外被を取り除いた後の光
フアイバを挿入する光フアイバ位置決め用微小孔
を互いの軸心が一致するように貫通してなる光フ
アイバコネクタ用中子を用い、前記光フアイバ心
線を前記中空孔に、前記光フアイバを前記微小孔
にそれぞれ挿入し、該光フアイバ心線の外周を前
記中空孔の内面に又該光フアイバの先端を該微小
孔にそれぞれ接着剤により固定するようにした光
フアイバ心線取り付け方法において、前記光フア
イバ心線から外被を取除いた光フアイバ部分の全
長から前記微小孔の軸方向長さを引いた該光フア
イバ部分の長さが1.5mm以下となるように設定し
たことを特徴とする光フアイバ心線取り付け方
法。 2 低損失石英ガラスにて形成された標準径125
μmの光フアイバの外周を少なくとも標準断面積
0.5mm2のナイロン又は同等の弾性率を有する樹脂
部材にて形成された外被で覆つてなる光フアイバ
心線を所定長さの軸状をなし、かつ、その軸方向
の後端面から先端近傍までの間に挿入する中空孔
を、また該中空孔の内奥端から前記先端面に亙り
前記光フアイバ心線から外被を取り除いた後の光
フアイバを挿入する光フアイバ位置決め用微小孔
を互いの軸心が一致するよう貫通してなる光フア
イバコネクタ用中子を用い、前記光フアイバ心線
を前記中空孔に、前記光フアイバを前記微小孔に
それぞれ挿入し、該中子の後端側に設けた光フア
イバ心線の圧着・保持部材により該光フアイバ心
線の端面から約30mmの位置を固定するようにした
光フアイバ心線取り付け方法において、前記光フ
アイバ心線から外被を取外した光フアイバ部分の
全長から前記微小孔の軸方向長さを引いた該光フ
アイバ部分の長さが3.5mm以下となるように設定
したことを特徴とする光フアイバ心線取り付け方
法。
[Claims] 1. Standard diameter 125 made of low-loss quartz glass.
The outer circumference of an optical fiber is at least standard cross-sectional area of μm.
An optical fiber core wire covered with an outer sheath made of 0.5 mm 2 nylon or a resin material having an equivalent elastic modulus is formed into a shaft shape of a specified length, and from the rear end surface in the axial direction to the vicinity of the tip. The hollow hole into which the optical fiber is inserted between the ends of the hollow hole and the optical fiber positioning microhole into which the optical fiber is inserted after removing the outer sheath from the optical fiber core from the innermost end of the hollow hole to the tip surface are mutually connected. The optical fiber core is inserted into the hollow hole and the optical fiber is inserted into the micro hole using a core for an optical fiber connector which is penetrated so that the axes of the optical fiber core coincide with each other. In the method for attaching an optical fiber, the outer periphery of the optical fiber is fixed to the inner surface of the hollow hole and the tip of the optical fiber is fixed to the microhole with an adhesive, and the optical fiber is removed from the outer sheath from the optical fiber. 1. A method for attaching an optical fiber core, characterized in that the length of the optical fiber portion, which is calculated by subtracting the axial length of the microhole from the total length of the portion, is set to be 1.5 mm or less. 2 Standard diameter 125 made of low loss quartz glass
The outer circumference of an optical fiber is at least standard cross-sectional area of μm.
An optical fiber core wire covered with an outer sheath made of 0.5 mm 2 nylon or a resin material having an equivalent elastic modulus is formed into a shaft shape of a specified length, and from the rear end surface in the axial direction to the vicinity of the tip. The hollow hole into which the optical fiber is inserted between the ends of the hollow hole and the optical fiber positioning microhole into which the optical fiber is inserted after removing the outer sheath from the optical fiber core from the innermost end of the hollow hole to the tip surface are mutually connected. Using an optical fiber connector core formed by penetrating the core so that their axes coincide with each other, insert the optical fiber core into the hollow hole and the optical fiber into the microhole, and In an optical fiber attachment method in which a position approximately 30 mm from the end face of the optical fiber is fixed by a crimp/holding member for the optical fiber, the jacket is removed from the optical fiber. 1. A method for attaching an optical fiber core, characterized in that the length of the optical fiber portion, which is calculated by subtracting the axial length of the microhole from the total length of the optical fiber portion, is set to be 3.5 mm or less.
JP59018830A 1984-02-03 1984-02-03 Installing method of optical fiber core wire Granted JPS60173513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59018830A JPS60173513A (en) 1984-02-03 1984-02-03 Installing method of optical fiber core wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59018830A JPS60173513A (en) 1984-02-03 1984-02-03 Installing method of optical fiber core wire

Publications (2)

Publication Number Publication Date
JPS60173513A JPS60173513A (en) 1985-09-06
JPS6218892B2 true JPS6218892B2 (en) 1987-04-24

Family

ID=11982478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59018830A Granted JPS60173513A (en) 1984-02-03 1984-02-03 Installing method of optical fiber core wire

Country Status (1)

Country Link
JP (1) JPS60173513A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814948A (en) * 1987-07-02 1989-03-21 Yasuo Hasegawa Light-emitting-end mounting mechanism in optical display panel
FR2629925B1 (en) * 1988-04-11 1992-02-07 Cabloptic Sa OPTICAL FILTER HOLDER END PIECE AND METHOD FOR IMMOBILIZING OPTICAL FIBER IN SUCH AN END PIECE
WO2018198367A1 (en) * 2017-04-28 2018-11-01 株式会社ミクニ Vane pump

Also Published As

Publication number Publication date
JPS60173513A (en) 1985-09-06

Similar Documents

Publication Publication Date Title
US4648688A (en) Connector for fiber optic member including polishing fixture and method of terminating same
JP3347399B2 (en) Optical connector
KR910006773B1 (en) Plastic optical fiber cord withe ferrule
US5621835A (en) Optical fiber assembly and manufacturing method for the same
EP0209759A3 (en) Fiber optic connector
US5140662A (en) Method of assembling connector and cable
US4097129A (en) Coupling device for protectively jacketed fibers
JPS6218892B2 (en)
EP0735391B1 (en) Optical fiber assembly and manufacturing method for the same
JP2706908B2 (en) Optical fiber assembly and method of manufacturing the same
JPH0151807B2 (en)
JPS63104005A (en) Ferrule for optical fiber
JPS60186811A (en) Optical connector
JPH0750219B2 (en) Optical connector terminal structure
JPS6060608A (en) Fixing method of optical fiber to optical connector
JPH02193108A (en) Terminal structure of optical connector
EP0131742A2 (en) A method for coupling the end section of an optical fiber cable to an optical connector
JP2003344700A (en) Optical fiber pig tail and its assembling method
JPH1090555A (en) Optical connector
JPH08211248A (en) Terminal structure of optical fiber
JP3402008B2 (en) Connection structure between optical fiber and ferrule
JPS6238684B2 (en)
JPH0792537B2 (en) Ferrule for optical connector
JPS59160112A (en) Structure for fixing optical fiber of optical connector
JPH0423214Y2 (en)