JPS62188392A - Low current semiconductor laser - Google Patents
Low current semiconductor laserInfo
- Publication number
- JPS62188392A JPS62188392A JP3041586A JP3041586A JPS62188392A JP S62188392 A JPS62188392 A JP S62188392A JP 3041586 A JP3041586 A JP 3041586A JP 3041586 A JP3041586 A JP 3041586A JP S62188392 A JPS62188392 A JP S62188392A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- active region
- band side
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 29
- 230000010355 oscillation Effects 0.000 claims abstract description 14
- 230000002269 spontaneous effect Effects 0.000 claims abstract description 6
- 230000007704 transition Effects 0.000 claims description 4
- 230000031700 light absorption Effects 0.000 claims description 2
- 230000005672 electromagnetic field Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 3
- 238000010521 absorption reaction Methods 0.000 abstract description 2
- 230000027756 respiratory electron transport chain Effects 0.000 abstract 1
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
技 術 分 野
本発明は、光エレクトロニクス分野で用いられる半導体
レーザについて、特に発振しきい値電流を低減させ、電
流から光出力への変換効率を改善させるようにしたもの
である。[Detailed Description of the Invention] Technical Field The present invention relates to a semiconductor laser used in the field of optoelectronics, in which the oscillation threshold current is particularly reduced and the conversion efficiency from current to optical output is improved. be.
従 来 技 術
従来からのダブルへテロ接合構造半導体レーザの構成を
第1図に示す。活性領域N1と外側領域層2および同層
3を積層して結晶成長し、上部に電極4と下部に電極5
を取り付け、軸方向Zに垂直なX−Y断面でへき開し、
へき開面を反射鏡面として、レーザ発振をさせている。Prior Art Figure 1 shows the configuration of a conventional double heterojunction semiconductor laser. The active region N1, the outer region layer 2, and the same layer 3 are laminated and crystal grown, and an electrode 4 is formed on the upper part and an electrode 5 is formed on the lower part.
Attach and cleave in the X-Y cross section perpendicular to the axial direction Z,
Laser oscillation is performed using the cleavage plane as a reflecting mirror surface.
従来の半導体レーザでは、この厚さ方向Yでの積層構造
として、第1図および第2図のようなダブルへテロ接合
、あるいは第3図のような量子井戸構造が用いられてき
ている。In conventional semiconductor lasers, a double heterojunction as shown in FIGS. 1 and 2, or a quantum well structure as shown in FIG. 3 has been used as the laminated structure in the thickness direction Y.
すなわち、ダブルへテロ接合は第2図(2L)のように
、比較的小さなバンドギャップEg+の半導体を活性領
域層lとし、それより大きなバンドギャップEo2のp
型半導体2とバンドギャップE、3のn型半導体3で挟
んだ構造であり、活性領域N1の半導体は1型(真性)
、あるいはp型またはp型のいずれでも良い。レーザの
電極4と電極5に電圧を印加すると第2図(b)に示し
たようにn型側のフェルミレベルが上がってp型側のフ
ェルミレベルが下がり、n型側から電子、p型側からホ
ールが活性領域に注入される。レーザの注入電流値は、
活性領域における自然放出確率で定まる。In other words, in a double heterojunction, as shown in FIG. 2 (2L), a semiconductor with a relatively small bandgap Eg+ is used as the active region layer l, and a semiconductor with a larger bandgap Eo2 is used as the active region layer l.
The structure is sandwiched between a type semiconductor 2 and an n-type semiconductor 3 with a band gap of E, 3, and the semiconductor in the active region N1 is type 1 (intrinsic).
, or may be p-type or p-type. When a voltage is applied to the electrodes 4 and 5 of the laser, the Fermi level on the n-type side increases and the Fermi level on the p-type side decreases, as shown in Figure 2(b), and electrons are transferred from the n-type side to the p-type side. Holes are injected into the active region. The laser injection current value is
It is determined by the spontaneous release probability in the active region.
また、従来からの量子井戸構造は、活性領域層1の幅を
100人 以下に藩<シ、第3図(a)のようにバンド
ギャップEg6がE、Iより少し大きな薄いN6と交互
に成長させたものや、第3図(b)のように外側N7と
同N8のバンドギャップElとEgsを少しずつ大きく
した構造などがある。量子井戸構造でも外側層2はp型
で層3はn型である。層1、N6、N7およびN8など
は 1型、n型または、p型いずれの場合も存在するが
、第2図のダブルへテロの場合と同様p−nまたはp−
1−n接合により活性領域層1へ電子とホールが注入さ
れる。In addition, in the conventional quantum well structure, the width of the active region layer 1 is set to 100 nm or less, and as shown in Fig. 3(a), the band gap Eg6 is grown alternately with thin N6 layers whose band gap is slightly larger than E and I. There is also a structure in which the band gaps El and Egs of the outer N7 and N8 are gradually increased as shown in FIG. 3(b). Even in the quantum well structure, the outer layer 2 is p-type and the layer 3 is n-type. Layer 1, N6, N7, N8, etc. exist in any case of 1 type, n type, or p type, but they are p-n or p- type as in the case of double hetero in Fig. 2.
Electrons and holes are injected into the active region layer 1 through the 1-n junction.
第2図および第3図のレーザにおいて、活性領域層1内
での電子密度とホール密度は、これらの電荷及び不純物
イオンとの間で電気的中性条件を保つように自動的に決
められ、レーザ動作中では電子密度とホール密度はほぼ
同じ値になっている。従来からのレーザにおける、注入
電流とレーザ利得の一般的関係は、第4図のようになる
。即ち、電流Iが1.より小さいときはレーザ利得gが
零であり、レーザ内で光が吸収され、価電子帯の電子が
伝導帯へ遷移してしまい、レーザ発振は生じない。電流
が1gより大きくなるとレーザ利得gが正となり、伝導
帯側の電子が価電子帯側へ遷移し誘導放出が始まる。In the lasers of FIGS. 2 and 3, the electron density and hole density within the active region layer 1 are automatically determined to maintain electrical neutrality conditions between these charges and impurity ions, During laser operation, the electron density and hole density are approximately the same value. The general relationship between injection current and laser gain in conventional lasers is as shown in FIG. That is, when the current I is 1. When it is smaller, the laser gain g is zero, light is absorbed within the laser, electrons in the valence band transition to the conduction band, and no laser oscillation occurs. When the current becomes larger than 1 g, the laser gain g becomes positive, electrons on the conduction band side transition to the valence band side, and stimulated emission begins.
そして、レーザ利得がある値gthに至ったとき、レー
ザは発振状態となる。このgihを、発振しきい値利得
と呼び、これに対応する電流レヘルlthを発振しきい
値電流という。 従来の半導体レーザては、レーザ利得
が正になる電流値1゜が有限の値を持っているため、発
振しきい値電流lihの低減化に限界があった。その為
、注入電流から出力光への変換効率があまり大きくなら
ないという欠点があった。Then, when the laser gain reaches a certain value gth, the laser enters the oscillation state. This gih is called an oscillation threshold gain, and the corresponding current level lth is called an oscillation threshold current. In conventional semiconductor lasers, since the current value of 1° at which the laser gain becomes positive has a finite value, there is a limit to the reduction of the oscillation threshold current lih. Therefore, there was a drawback that the conversion efficiency from the injected current to the output light was not very high.
発 明 の 目 的
本発明の目的は、上述した従来の欠点を除去するために
、活性領域内での電子密度とホール密度が著しく異なっ
たままレーザ動作をさせる方法を実現し、低い発振しき
い値電流の半導体レーザを提供することにある。OBJECTS OF THE INVENTION In order to eliminate the above-mentioned conventional drawbacks, an object of the present invention is to realize a method of operating a laser while the electron density and hole density in the active region are significantly different, and to achieve a low oscillation threshold. The object of the present invention is to provide a semiconductor laser with a low current.
発 明 の 原 理
この発明は、ホール密度と電子密度のいずれか一方を過
剰にしたまま動作させると発振しきい値が非常に小さく
なるという原理を新たに発見し、その状態を実現するた
めの新しいレーザ構造を考案したものである。Principle of the Invention This invention newly discovered the principle that the oscillation threshold becomes extremely small when operating with either the hole density or the electron density being excessive, and developed a method to achieve this state. This is a new laser structure devised.
活性領域内でのホール密度をPで、電子密度をNとする
と、注入電流を一定にした時の電荷密度の差P−’Nと
レーザ利得gとの関係が、第5図のようになる事が発見
された。すなわち、電価密度の差が零になる付近でレー
ザ利得は減=4−
少する。このような現象が生ずるのは注入電流を定める
物理メカニズムとレーザ利得を定める物理メカニズムと
が異なっているからである。If the hole density in the active region is P and the electron density is N, then the relationship between the charge density difference P-'N and the laser gain g when the injection current is constant is as shown in Figure 5. something was discovered. That is, near the point where the difference in charge density becomes zero, the laser gain decreases by 4-. This phenomenon occurs because the physical mechanism that determines the injection current and the physical mechanism that determines the laser gain are different.
注入電流は自然放出確率で定まり、レーザ利得は誘導放
出確率と吸収確率との差で定まる。電荷密度の差が零に
近いと自然放出確率が大きくなってしまうが、電荷密度
の差が大きい場合には、自然注出確率が減少し、しかも
、光の吸収作用も減少する。従って、第6図のように電
荷密度に差を付けると、レーザ利得が正になる電流値1
gが0になり、I=Oから正のレーザ利得を得ることが
できる。The injection current is determined by the spontaneous emission probability, and the laser gain is determined by the difference between the stimulated emission probability and the absorption probability. If the difference in charge density is close to zero, the spontaneous emission probability will increase, but if the difference in charge density is large, the spontaneous emission probability will decrease, and the light absorption effect will also decrease. Therefore, if we make a difference in charge density as shown in Figure 6, the current value 1 at which the laser gain becomes positive is
g becomes 0, and a positive laser gain can be obtained from I=O.
実 施 例
上述の原理を実現するするための構成例を以下に述べ、
本発明について更に詳細に説明する。Implementation Example A configuration example for realizing the above principle is described below.
The present invention will be explained in more detail.
第7図は構成の一例である。第7図(a)には、接合に
よる電荷分布変化を考慮しない状態での半導体バンド構
造を記しである。すなわち、活性領域N1はエネルギー
ギャップEg+が最も小さなp型半導体で、厚さは20
0Å以下である。その両側からエネルギー変化グの大き
な二つのp型半導体N9と層10てはさむ。このN9と
FTIOの厚さも200Å以下である。更に外側には、
バンドギャップE97およびEgeが放物線関数状に変
化する電磁界閉じ込め層7と同層8をつける。層7はp
型であるが、N8はn型である。層7と層8の厚さは、
1000人程度大食い。最後にバンドギャップが最も大
きなn型層2およびn型層3をそれぞれ層7と層8の外
側につける。接合した事によるエネルギー変化を考慮し
たバンド構造を第7図に示す。活性領域N1は充分薄く
、また両側からバンドギャップの大きなp型半導体では
さまれているため、フェルミニベルが価電子帯中の深い
所に下げられ、ホール密度Pが電子密度Nより著しく多
くなる。レーザ遷移に必要なホールはp型側からそのま
ま注入され、電子はN8よりトンネル効果で活性領域に
注入され得る。活性領域に注入された電子とホールによ
りレーザ利得が得られる。FIG. 7 shows an example of the configuration. FIG. 7(a) shows a semiconductor band structure in a state where changes in charge distribution due to junctions are not considered. That is, the active region N1 is a p-type semiconductor with the smallest energy gap Eg+ and has a thickness of 20
It is 0 Å or less. Two p-type semiconductors N9 having a large energy change and a layer 10 are sandwiched from both sides thereof. The thickness of this N9 and FTIO is also less than 200 Å. Furthermore, on the outside,
A layer 8, which is the same as the electromagnetic field confinement layer 7, whose band gap E97 and Ege change in a parabolic manner is provided. Layer 7 is p
However, N8 is an n-type. The thickness of layer 7 and layer 8 is
About 1,000 people ate it up. Finally, n-type layer 2 and n-type layer 3 having the largest band gap are formed on the outside of layer 7 and layer 8, respectively. Figure 7 shows the band structure taking into account the energy change due to bonding. Since the active region N1 is sufficiently thin and is sandwiched from both sides by p-type semiconductors with a large band gap, the Fermini level is lowered deep into the valence band, and the hole density P becomes significantly larger than the electron density N. . Holes necessary for laser transition can be directly injected from the p-type side, and electrons can be injected into the active region by tunneling from N8. Laser gain is obtained by electrons and holes injected into the active region.
以上のように、本発明が従来からの半導体レーザと構造
的に異なる点は、活性領域層1の外側をp型のN9とM
IOではさんでいる点であり、p−n接合面が活性領域
には接しておらず、層10と層8の境界に存在し、また
、層9と層10は活性領域中のフェルミレベルをバンド
中へ深く入り込ませるために挿入された、ポテンシャル
制御層である。As described above, the present invention is structurally different from conventional semiconductor lasers in that the outside of the active region layer 1 is formed by p-type N9 and M
The p-n junction plane is not in contact with the active region, but exists at the boundary between layer 10 and layer 8, and layer 9 and layer 10 are located at the boundary between the Fermi level in the active region. This is a potential control layer inserted to penetrate deep into the band.
本発明の原理は、第8図に示すような種々の構成によっ
ても実現出来る。すなわち、第8図(a)では、電磁界
閉し込めN7と同層8のエネルギーギャップを一定にし
たものであり、層9と層1および層10の動作は、第7
図と同じである。The principle of the present invention can also be realized by various configurations as shown in FIG. That is, in FIG. 8(a), the energy gap between the electromagnetic field confinement N7 and the same layer 8 is kept constant, and the operations of layer 9, layer 1, and layer 10 are
Same as the figure.
第8図(b)は、活性領域の数を二層にし、間に層11
を挿入したものである。Hllは層9やN1゜と同様に
フェルミニベルを価電子帯中に引き下げる為のものであ
る。活性領域の数を二層以上に多くした多層構造でもそ
の原理は同してあり、この発明に含まれる。第8図(c
)は活性領域をl型(真性)にしたものである。第8図
(d)は、上述までの構成例とは逆に、活性領域中で電
子密度がホール密度より著しく大きくなる様にn型層で
挟んだ例である。本発明の原理は、電子密度とホール密
度が著しく異なる状態を利用することであり、電子密度
が多い場合もホール密度が多い場合も本発明に含まれる
。さらにまた、第8図(d)のようなn型を基準にして
第8図(b)のように多層にしたものや、N9と層10
はn型で活性領域だけをi型にした第8図(C)に対応
するもの、また、第8図(a)〜(d)での電磁界閉じ
込め層7と8のエネルギーギャップを第7図(a)のよ
うに連続的に変化させたものなども本発明に含まれる。In FIG. 8(b), the number of active regions is two, and there is a layer 11 between them.
is inserted. Like layer 9 and N1°, Hll is for lowering the Fermini level into the valence band. The principle is the same even in a multilayer structure in which the number of active regions is increased to two or more layers, and is included in the present invention. Figure 8 (c
) has an active region of l type (intrinsic). FIG. 8(d) shows an example in which the active region is sandwiched between n-type layers so that the electron density is significantly higher than the hole density in the active region, contrary to the configuration examples described above. The principle of the present invention is to utilize a state in which the electron density and hole density are significantly different, and both cases where the electron density is high and hole density is high are included in the present invention. Furthermore, a multilayer structure as shown in FIG. 8(b) based on n-type as shown in FIG. 8(d), and a layer of N9 and 10
is n-type and corresponds to FIG. 8(C) in which only the active region is i-type, and the energy gap between electromagnetic field confinement layers 7 and 8 in FIGS. The present invention also includes continuous changes as shown in Figure (a).
効 果
以上の説明のように、本発明による半導体レーザは、従
来の半導体レーザに比へ発振しきい値電流を115〜1
/10以下に低減できるので、電流から光出力への変換
効率が著しく向上し、無効電力による過剰発熱が防止で
き、低電力消費の光エレクトロニクス用光源として用い
ることが出来る。Effects As explained above, the semiconductor laser according to the present invention has an oscillation threshold current of 115 to 1 compared to conventional semiconductor lasers.
Since it can be reduced to /10 or less, the conversion efficiency from current to optical output is significantly improved, excessive heat generation due to reactive power can be prevented, and it can be used as a light source for optoelectronics with low power consumption.
第1図は従来からのダブルへテロ接合構造半導体レーザ
の構成を模式的に示した斜視図。
第2図は従来からのダブルへテロ接合構造半導体し−ザ
のバンド構造図で、(a)は電流注入前の状態で、(b
)は電流注入中の状態を示す。
第3図(a)および(b)は、従来からの量子井戸構造
半導体レーザのバンド構造図。
第4図は従来からの半導体レーザにおける電流対光出力
の一般的な特性図。
第5図は本発明の原理となる電子密度とホール密度の差
に対するレーザ利得の特性図。
第6図は同じく注入電流に対するレーザ利得の特性図。
第7図(a)および(b)は、本発明のバンド構造図。
第8図は本発明の他の構成例を示すバンド構造図である
。
1.1′、1”・・・活性領域、
2・・・n型外側層、 3・・・p型外側層、4・・
・正側電極、 5・・・負側電極、6・・・中間層
、
7.8 ・・・電磁界閉じ込め層、
9.10・・・ポテンシャル制御層、
(p)・・・p型半導体、
(j)・・・i型(真性)半導体、
(n)・・・n型半導体、
E、I〜Eg+1+ ・・・バンドギャップ、g・・
・レーザ利得、 gth・・・発振しきい値利得、■
・・・注入電流、 lih・・・発振しきい値電流
、1g・・・レーザ利得が正になる電流値、N・・・電
子密度、 P・・・ホール密度、第1図
(a)
(b)
(c)
(d)FIG. 1 is a perspective view schematically showing the structure of a conventional double heterojunction structure semiconductor laser. Figure 2 is a band structure diagram of a conventional double heterojunction structure semiconductor, in which (a) shows the state before current injection, and (b
) indicates the state during current injection. FIGS. 3(a) and 3(b) are band structure diagrams of a conventional quantum well structure semiconductor laser. FIG. 4 is a general characteristic diagram of current versus optical output in a conventional semiconductor laser. FIG. 5 is a characteristic diagram of laser gain with respect to the difference between electron density and hole density, which is the principle of the present invention. FIG. 6 is a characteristic diagram of laser gain with respect to injection current. FIGS. 7(a) and 7(b) are band structure diagrams of the present invention. FIG. 8 is a band structure diagram showing another configuration example of the present invention. 1.1', 1''...active region, 2...n-type outer layer, 3...p-type outer layer, 4...
・Positive electrode, 5... Negative electrode, 6... Intermediate layer, 7.8... Electromagnetic field confinement layer, 9.10... Potential control layer, (p)... P-type semiconductor , (j)...i-type (intrinsic) semiconductor, (n)...n-type semiconductor, E, I~Eg+1+...band gap, g...
・Laser gain, gth...oscillation threshold gain, ■
... Injection current, lih... Laser threshold current, 1g... Current value at which the laser gain becomes positive, N... Electron density, P... Hole density, Figure 1 (a) b) (c) (d)
Claims (1)
増加させ、価電子帯側から伝導帯側への電子遷移による
光吸収を減少させ、かつ同時に自然放出確率も減少させ
、発振しきい値電流を低減するように工夫した半導体レ
ーザ素子。[Claims] In the active region, the electron density on the conduction band side and the hole density on the valence band side are increased while remaining significantly different, and the electron density is increased by electron transition from the valence band side to the conduction band side. A semiconductor laser device designed to reduce light absorption and at the same time reduce the probability of spontaneous emission, thereby reducing the oscillation threshold current.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3041586A JPS62188392A (en) | 1986-02-14 | 1986-02-14 | Low current semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3041586A JPS62188392A (en) | 1986-02-14 | 1986-02-14 | Low current semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62188392A true JPS62188392A (en) | 1987-08-17 |
Family
ID=12303312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3041586A Pending JPS62188392A (en) | 1986-02-14 | 1986-02-14 | Low current semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62188392A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5272714A (en) * | 1991-12-12 | 1993-12-21 | Wisconsin Alumni Research Foundation | Distributed phase shift semiconductor laser |
USRE36431E (en) * | 1992-02-05 | 1999-12-07 | Mitsui Chemicals, Inc. | Semiconductor laser element and laser device using the same element |
-
1986
- 1986-02-14 JP JP3041586A patent/JPS62188392A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5272714A (en) * | 1991-12-12 | 1993-12-21 | Wisconsin Alumni Research Foundation | Distributed phase shift semiconductor laser |
USRE36431E (en) * | 1992-02-05 | 1999-12-07 | Mitsui Chemicals, Inc. | Semiconductor laser element and laser device using the same element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2000058999A9 (en) | Semiconductor structures having a strain compensated layer and method of fabrication | |
Sasaki et al. | High-current InGaAsP-InP phototransistors and some monolithic optical devices | |
JPH0728047B2 (en) | Phototransistor | |
GB2145281A (en) | Surface emitting semiconductor laser | |
JPH05102595A (en) | Laser diode array and manufacture thereof | |
JP3249999B2 (en) | Semiconductor laser device | |
US5214663A (en) | Semiconductor laser | |
JPH0818102A (en) | Semiconductor light emitting element | |
JP2930031B2 (en) | Semiconductor laser | |
JPS62188392A (en) | Low current semiconductor laser | |
JPS58225680A (en) | Semiconductor laser | |
JP3763459B2 (en) | Semiconductor laser device and manufacturing method thereof | |
JPS5948976A (en) | Semiconductor laser | |
Gigase et al. | Threshold reduction through photon recycling in semiconductor lasers | |
JPH0834338B2 (en) | Semiconductor laser | |
JPS6258557B2 (en) | ||
JP2664668B2 (en) | Semiconductor laser device | |
EP0388149A2 (en) | A semiconductor laser device and a method for the production of the same | |
JPH0467353B2 (en) | ||
JP2555984B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPS58106885A (en) | Semiconductor laser | |
JP2663118B2 (en) | Semiconductor light emitting device | |
JPH069211B2 (en) | Bipolar transistor | |
JP2591333B2 (en) | Semiconductor light emitting device | |
JPH0354883A (en) | Buried type semiconductor laser |