JPS62188178A - Cooling equipment of fuel cell - Google Patents

Cooling equipment of fuel cell

Info

Publication number
JPS62188178A
JPS62188178A JP61029811A JP2981186A JPS62188178A JP S62188178 A JPS62188178 A JP S62188178A JP 61029811 A JP61029811 A JP 61029811A JP 2981186 A JP2981186 A JP 2981186A JP S62188178 A JPS62188178 A JP S62188178A
Authority
JP
Japan
Prior art keywords
blower
stack
heat exchanger
stacks
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61029811A
Other languages
Japanese (ja)
Inventor
Tatsuro Geshi
辰郎 下司
Takashi Sakai
貴史 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61029811A priority Critical patent/JPS62188178A/en
Priority to CN86102752A priority patent/CN1007854B/en
Publication of JPS62188178A publication Critical patent/JPS62188178A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make the cooling of all stacks with air capacity required for cooling one stack possible, to make a system compact, and to decrease the power of a blower by forming a cooling gas circulation path by arranging a heat exchanger between cell stacks. CONSTITUTION:Four cell stacks S1-S4 have exhaust manifolds 11-14 and intake manifolds 21-24 respectively. Heat exchangers H1-H4 are arranged between the exhaust manifolds and the intake manifolds of the downstream stacks respectively. The first blower BW1 is arranged between the heat exchanger H4 and the intake manifold 21 of the stack S1, and the second blower BW2 are arranged between the heat exchanger H2 and the intake manifold 23. The blower BWn arranged in a flow direction diversion part or a turning part of circulation path bears the whole stress loss of cooling gas. Therefore, the total capacity of the blower is not increased compared with a single blower and the discharge pressure of each blower is also decreased.

Description

【発明の詳細な説明】 ビ) 産業上の利用分野 本発明は複数基の電池スタック金偏える。fA料電池の
冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION B) Industrial Field of Application The present invention provides a method for distributing a plurality of battery stacks. This relates to a cooling device for an fA charge battery.

(ロ) 従来の技術 複数基例えば4基の電池スタック(Sl ) (82)
(S5)(S4iko却する場合、従来の冷却システム
に、第6図に示すようにブロワ(BW)よジ圧送された
冷却ガスが、各電池スターlりに分配されてスタック全
冷却した後集められた高温冷却ガスが熱交換器(HX)
により冷却され、再びブロワを経て各スタ・ツクに分配
するものであったOこの冷却システムでは、ブロワ(B
W)の送風量は、各スタックに必要な冷却ガス1の総和
となり、その次めブロワ前後の配管径が非常に太くなる
と共に各スタックへの分配配管も必要となり、それだけ
燃料taシステムの設置面積が大きく、しかも各スタッ
クへの冷却ガスの均一配分がむつかしいという問題があ
った0更に送風量の増大にブロワ(BW)の大容量化と
その消費動力の増大化をもたらすという間−があった。
(b) Conventional technology Multiple battery stacks, for example, four battery stacks (Sl) (82)
(S5) (S4iko) When discarding the conventional cooling system, as shown in Figure 6, the cooling gas pumped through the blower (BW) is distributed to each battery star and collected after completely cooling the stack. The high temperature cooling gas is transferred to a heat exchanger (HX).
In this cooling system, the blower (B
The amount of air blown in W) is the sum of the cooling gas 1 required for each stack, and then the diameter of the piping before and after the blower becomes very thick, and distribution piping to each stack is also required, which reduces the installation area of the fuel TA system. There was a problem that the amount of air flow was large, and it was difficult to uniformly distribute the cooling gas to each stack.In addition, there was a problem that increasing the amount of air blown meant increasing the capacity of the blower (BW) and increasing its power consumption. .

このような問題点に鑑み本出願人は特願昭60−848
15号公報において、第7図に示す冷却システムを提案
した。このシステムは複数基の電池スタック(Sl)〜
(S8)と熱交換器(Hl)〜(H8]とを、ブロワ(
8W)の吐出側と吸込側を結ぶ冷却ガスの循環経路に直
列に配置し、各スタックからの排気流が前記熱交換器で
冷却されてその下流側スタックの吸気流として流通する
ようにしたもので、1つの1!池スタツクを冷却するに
必要な風量だけで複数基のスタックを冷却することが可
能となり、配管のコンパクト化とブロワ消費動力の減少
が達成される〇 しかしこの冷却システムでは、1つのブロワ(8W]に
より圧送さnた冷却ガスが圧送路と還流路の折り返し点
のダクト部で急激に流れ方向全変換するため、還流路に
配置されたスタックへの冷却ガス流が不安定となってス
タック面へ均一に分配することが難しいという問題があ
った0更に冷却ガスの循環経路に直列に配置されたスタ
ック数が増加するにつれ圧力損失が大きくなるため、ブ
ロワに必要な静圧を増加しなければならず、その結果各
スタックに供給する反応ガスと冷却ガスとの圧力差が大
きくなり、両ガス間のシール性を強化する必要があるな
どの問題点が生じた、e慢 発明の目的 本発明は前記第7図に示す冷却システム全改良して前記
問題点を解決し、複数基の!池スタックにおける冷却シ
ステムの作動の有効性と信頼性の向上を図ると共に、本
来の目的であるシステムのコンパクト化とブロワ動力の
低減を図るものであるつ に)発明の構成 本発明は複数基の電池スタックを結ぶ冷却ガスの循環経
路に、前記スタックと熱交換器とを、各スタックからの
排気流が熱交換器で冷却されてその下流側スタックへの
吸気流として流通するよう直列的に配置し、前記循環経
路の流路方向変換個所に夫々ブロワを設置したものであ
る。
In view of these problems, the present applicant filed a patent application in 1984-848.
In Publication No. 15, a cooling system shown in FIG. 7 was proposed. This system consists of multiple battery stacks (Sl) ~
(S8) and the heat exchangers (Hl) to (H8) are connected to the blower (
8W) are arranged in series in the cooling gas circulation path connecting the discharge side and suction side, and the exhaust flow from each stack is cooled by the heat exchanger and distributed as the intake flow of the downstream stack. So, one 1! It becomes possible to cool multiple stacks with only the amount of air required to cool the pond stack, making piping more compact and reducing blower power consumption. However, with this cooling system, only one blower (8W) is required. Because the cooling gas pumped by the pump undergoes a sudden complete change in flow direction at the duct at the turning point between the pressure passage and the return passage, the flow of cooling gas to the stack placed in the return passage becomes unstable and flows toward the stack surface. Furthermore, as the number of stacks arranged in series in the cooling gas circulation path increases, the pressure loss increases, so the static pressure required for the blower must be increased. As a result, the pressure difference between the reaction gas and the cooling gas supplied to each stack becomes large, and problems arise such as the need to strengthen the sealing properties between both gases. The cooling system shown in Fig. 7 has been completely improved to solve the above problems, improve the effectiveness and reliability of the cooling system operation in multiple pond stacks, and achieve the original purpose of making the system more compact. Structure of the Invention The present invention provides a cooling gas circulation path connecting a plurality of battery stacks, in which the exhaust flow from each stack connects the stacks and a heat exchanger. They are arranged in series so that the air is cooled by a heat exchanger and flows as an intake flow to the downstream stack, and a blower is installed at each flow path direction change point of the circulation path.

(ホ)実施例 本発明の実施例全図について説明するが、該当部分は前
記I!6図・第7図と同一記号を付したつ@1図及び第
2図はいづれも本発明冷却システムの原理図を示し、第
1図の冷却ガス循環経路の場合、4基の電池スタック(
S1J〜(S4)は各スタフjの排気マニホルド(11
)〜(14)とその各下流側スタックの吸気マニホルド
(22L〜(21)との間に夫々熱交換器(Hl)〜(
H4)を設置し、第1のブロワ(8W1)は熱交換器(
H4)とスタック($1]の吸気マニホルド(21)間
に、第2のブロワ(BW2)は熱交換器(H2Jとスタ
ック(S5)の吸気マニホルド(23]間に夫々配置さ
れている。第2図の場合8基の電池スタック(Sl)〜
(S8)と熱交換器(Hl)〜(H8)は各流路方向変
換個所(4ケ所]に配設したブロワ(BW+)〜(BW
4)により第1図と同様の構成で冷却ガスの循環経路を
構成している。
(e) Embodiment The entire diagram of the embodiment of the present invention will be explained, and the relevant parts will be explained in the above-mentioned I! Figures 1 and 2 with the same symbols as Figures 6 and 7 both show the principle of the cooling system of the present invention, and in the case of the cooling gas circulation route in Figure 1, four battery stacks (
S1J to (S4) are exhaust manifolds (11
) to (14) and the intake manifolds (22L to (21)) of the respective downstream stacks, heat exchangers (Hl) to (
H4) is installed, and the first blower (8W1) is installed with a heat exchanger (
A second blower (BW2) is arranged between the heat exchanger (H2J) and the intake manifold (23) of the stack (S5). In the case of Figure 2, 8 battery stacks (Sl) ~
(S8) and heat exchangers (Hl) to (H8) are blowers (BW+) to (BW
4) constitutes a cooling gas circulation path with a configuration similar to that shown in FIG.

第3図の実施例は、8基の電池スタック(Sl)〜(S
8)と熱交換器(Hl)〜(H8)全4基づつ二列に配
列し、これらスタック列が一対のブロワ(8L)(BW
2)で連繋されて循環経路t−構成している。この場合
各熱交換器(Hn)の両延長枠が夫々排気及び吸気各マ
ニホルド全兼用し、各シール部材を介して隣接電池スタ
ック間全連結する。
The embodiment of FIG. 3 has eight battery stacks (Sl) to (S
8) and heat exchangers (Hl) to (H8) are arranged in two rows of four in total, and these stack rows are connected to a pair of blowers (8L) (BW
2) are connected to form a circulation route t. In this case, both extension frames of each heat exchanger (Hn) serve as exhaust and intake manifolds, respectively, and are fully connected between adjacent battery stacks via each seal member.

又各熱交換器(HnJで直接電池スタック間全連結する
ことも可能である。
It is also possible to directly connect all battery stacks using each heat exchanger (HnJ).

第4図の実施例は、各電池スタック間に上下一対の熱交
換器(Hn) (Hn’)を配置して各電池スタックの
上半及び下半を天々1対のブロワ(BWl)及び(BW
2)の圧送兼還流経路とした場合を示す。
In the embodiment shown in FIG. 4, a pair of upper and lower heat exchangers (Hn) (Hn') is arranged between each battery stack, and a pair of blowers (BWl) and (BW
2) shows the case where the pumping and reflux route is used.

このシステムでは冷却に必要な風′fは1スタツクの必
要風量の半分ですむと共に第5図の要部分解斜面図に示
すよう、両端風路カバー(C1)及び(C2)が一対の
ブロワtBW+ン及び(8W2)のケージング自体を包
み込むようにすれば各ブロワへの配管ダクトも不用とな
る。図中CM+ )(M2 )・・・は天々スタフク(
Sl)(82)・・・の各反応ガス用複合マニホルドで
ある。
In this system, the air 'f required for cooling is half of the air volume required for one stack, and as shown in the exploded slope view of the main part in Figure 5, both end air duct covers (C1) and (C2) are equipped with a pair of blowers tBW+ By enclosing the casing itself of the blower and (8W2), piping ducts to each blower are also unnecessary. In the figure, CM+) (M2)... is Tenten Stafuku (
Sl) (82)... is a composite manifold for each reaction gas.

以下本発明装置の作動全説明する○りん酸燃料電池の作
動温度は約190tであり、この温度に維持するため電
池スタックの冷却が必要であるっ冷却ガスとして通常空
気を用いるが、水素ガス、ヘリウムガスなども用いうる
〇 循環する冷却ガスは各電池スタックt Sn )の入口
温度が約135 ’c出口温度が約175″Cであり、
この温度差的40′cは各メタワク間に介在する各熱交
換器(Hn)を通過する間に熱交換される0即ち冷却ガ
スは各スタック(Syl)から熱を奪い約175でにf
!I−温して熱交換器(Hn)に入り、約1351:ま
で降温された冷却ガスがその下流側スタック(Sn+4
1  で再び昇温するという一連の動作を繰返すことに
より、循環路に直列的に配置した複数基のスタックの冷
却が行なばれる。この場合循環経路の流路方向変換個所
ないしは折り返し個所に夫々設置したブロワ(BWyl
)が冷却ガスの全応力損失を分担するので、これらブロ
ワの全容ih単1ブロワの場合より増大することなく、
しかも各ブロワの吐出圧力を低減できるので、反応ガス
との圧力差が小さくなって冷却ガスと反応ガスとの間に
高度なシール性を必要とせず通常のシール材でよいり (へ)発明の効果 本発明によれば複数基の各taミス5フ間に夫々熱交換
器を介在させて冷却ガス循環経路を構成しているので、
1スタツクt[却するに要する風量で全スタック?M却
することが可能となり、ブロワの小容量化により消費電
力を低減しうる。特に循環経路の流路方向変換個所に大
々ブロワが設置されているので、冷却ガスの円滑な流れ
が得られると共に全圧力損失の分担により反応ガスとの
圧力差が低減されるため両ガス間のシール性も良好に保
持される。
The operation of the device of the present invention will be fully explained below. The operating temperature of a phosphoric acid fuel cell is approximately 190 tons, and the cell stack must be cooled to maintain this temperature. Air is normally used as the cooling gas, but hydrogen gas, Helium gas can also be used. The circulating cooling gas has an inlet temperature of about 135'C and an outlet temperature of about 175'C,
This temperature difference 40'c is 0, which is heat exchanged while passing through each heat exchanger (Hn) interposed between each stack, that is, the cooling gas removes heat from each stack (Syl) and becomes f at about 175
! The cooling gas heated to I- enters the heat exchanger (Hn), and the temperature is lowered to about 1351:1 to the downstream stack (Sn+4).
By repeating a series of operations in which the temperature is raised again at 1, the plurality of stacks arranged in series in the circulation path are cooled. In this case, blowers (BWyl
) shares the total stress loss of the cooling gas, so the overall size of these blowers does not increase compared to the case of a single IH blower.
Moreover, since the discharge pressure of each blower can be reduced, the pressure difference between the cooling gas and the reaction gas is reduced, and a conventional sealing material can be used instead of requiring a high degree of sealing between the cooling gas and the reaction gas. Effects According to the present invention, a cooling gas circulation path is constructed by interposing a heat exchanger between each of the plurality of TA mis 5s.
1 stack t [Full stack with air volume required for cooling? This makes it possible to reduce the power consumption by reducing the capacity of the blower. In particular, a large number of blowers are installed at the points where the flow direction changes in the circulation path, so that a smooth flow of the cooling gas is obtained, and the pressure difference between the two gases is reduced by sharing the total pressure loss. The sealing performance is also maintained well.

このように本発明では多数基のスタックを冷却するシス
テムのコンバク゛ト化と省力化が達成されるつ
In this way, the present invention achieves compactness and labor saving of a system for cooling multiple stacks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図を工いづれも本発明冷却装置の原理を
示す図、第3図に同上の実施例を示す平面図、第41閾
は他実施例を示す側面図、第5図な第4図の一部変形に
よる要部分解斜面図であるっ又第6図は従来の冷却シス
テムを示すブロック図、第7図は本発明によらない冷却
装置の平面図であるっ Sl、s2〜Sn、、、電池スタ・ツク、Hl、H2〜
Hn・・・熱交換器、BW、8W2 ・・・ブロワ、C
1、C2・・・風路カバー。
1 and 2 are diagrams showing the principle of the cooling device of the present invention, FIG. 3 is a plan view showing the same embodiment as above, the 41st threshold is a side view showing another embodiment, and FIG. FIG. 6 is a block diagram showing a conventional cooling system, and FIG. 7 is a plan view of a cooling device not according to the present invention. 〜Sn、、、Battery stack、Hl、H2〜
Hn...Heat exchanger, BW, 8W2...Blower, C
1, C2...Air duct cover.

Claims (6)

【特許請求の範囲】[Claims] (1)複数基の電池スタックを結ぶ冷却ガスの循環経路
に、前記スタックと熱交換器とを、前記各スタックから
の排気流が熱交換器で冷却されてその下流側スタックの
吸気流として流通するよう直列的に配置し、前記循環経
路の流路方向変換個所に夫々ブロワを設置したことを特
徴とする燃料電池の冷却装置。
(1) In a cooling gas circulation path connecting multiple battery stacks, the stacks and the heat exchanger are connected so that the exhaust flow from each stack is cooled by the heat exchanger and distributed as the intake flow of the downstream stack. A cooling device for a fuel cell, characterized in that the cooling device is arranged in series so that the circulation path changes direction, and a blower is installed at each flow direction change point of the circulation path.
(2)前記熱交換器が各電池スタックの排気マニホルド
とその下流側スタックの吸気マニホルドとの間に介在し
ていることを特徴とする特許請求の範囲第1項記載の燃
料電池の冷却装置。
(2) The cooling device for a fuel cell according to claim 1, wherein the heat exchanger is interposed between an exhaust manifold of each cell stack and an intake manifold of a stack downstream thereof.
(3)前記各スタックとその下流側スタックとが前記熱
交換器により結合されていることを特徴とする特許請求
の範囲第1項記載の燃料電池の冷却装置。
(3) The cooling device for a fuel cell according to claim 1, wherein each of the stacks and the downstream stack thereof are connected by the heat exchanger.
(4)前記熱交換器には前記排気マニホルド及び吸気マ
ニホルドを夫々構成する延長枠が形成されていることを
特徴とする特許請求の範囲第3項記載の燃料電池の冷却
装置。
(4) The cooling device for a fuel cell according to claim 3, wherein the heat exchanger is formed with an extension frame that constitutes the exhaust manifold and the intake manifold, respectively.
(5)前記複数基の電池スタックが二列に分割配列され
、各列の連通個所に夫々前記ブロワが設置されているこ
とを特徴とする特許請求の範囲第1項記載の燃料電池の
冷却装置。
(5) The cooling device for a fuel cell according to claim 1, wherein the plurality of battery stacks are arranged in two rows, and the blower is installed at a communicating point in each row. .
(6)前記各電池スタック間に上下一対の熱交換器を配
置し、各スタックの上半及び下半の連通個所に夫々前記
ブロワが設置されていることを特徴とする特許請求の範
囲第1項記載の燃料電池の冷却装置。
(6) A pair of upper and lower heat exchangers are disposed between each of the battery stacks, and the blower is installed at a communication location between the upper and lower halves of each stack. A cooling device for a fuel cell as described in Section 1.
JP61029811A 1985-04-19 1986-02-13 Cooling equipment of fuel cell Pending JPS62188178A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61029811A JPS62188178A (en) 1986-02-13 1986-02-13 Cooling equipment of fuel cell
CN86102752A CN1007854B (en) 1985-04-19 1986-04-19 Cooling system for fuel cell power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61029811A JPS62188178A (en) 1986-02-13 1986-02-13 Cooling equipment of fuel cell

Publications (1)

Publication Number Publication Date
JPS62188178A true JPS62188178A (en) 1987-08-17

Family

ID=12286402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61029811A Pending JPS62188178A (en) 1985-04-19 1986-02-13 Cooling equipment of fuel cell

Country Status (1)

Country Link
JP (1) JPS62188178A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010209A2 (en) * 1998-08-10 2000-02-24 Siemens Aktiengesellschaft Device and method for using the waste heat of an air-cooled fuel cell battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010209A2 (en) * 1998-08-10 2000-02-24 Siemens Aktiengesellschaft Device and method for using the waste heat of an air-cooled fuel cell battery
WO2000010209A3 (en) * 1998-08-10 2000-06-08 Siemens Ag Device and method for using the waste heat of an air-cooled fuel cell battery
US6630261B2 (en) 1998-08-10 2003-10-07 Siemens Aktiengesellschaft Apparatus and method for utilizing the waste heat of an air-cooled fuel cell battery

Similar Documents

Publication Publication Date Title
US4276355A (en) Fuel cell system configurations
US10006722B2 (en) Structural support element in heat exchangers
JPH0158629B2 (en)
JP5361798B2 (en) Cell stack module assembly connected in series
US5041344A (en) Fuel cell cooling device
CN112713286A (en) Heat exchange device, fuel cell system and temperature control method thereof
CN219759727U (en) Module mount and battery module
CN210200914U (en) Battery pack cooling system and battery pack
JPS62188178A (en) Cooling equipment of fuel cell
CN110323387B (en) Battery box
JPH10199552A (en) Stack layering structure for fuel cell
CN115810831A (en) Battery cooling device and new energy vehicle
US20210384532A1 (en) Humidifier and motor vehicle
JPS61243662A (en) Cooling device for fuel cell
CN214672701U (en) High-efficient membrane humidifier of fuel cell
JPS6316576A (en) Air cooling type fuel cell
JP3562733B2 (en) Thermoelectric generator and power generator using this thermoelectric generator
WO2004042842A2 (en) High temperature reactant recycling for pem fuel cell humidification
JP3107159B2 (en) cooling tower
US8012644B2 (en) Fuel cell stack
JPS599869A (en) Air cooling type fuel cell
CN220306339U (en) Liquid cooling system and battery pack
JPS62211869A (en) Cooling gas supply deice for fuel cell
CN219979644U (en) Battery pack and electric automobile
CN214152950U (en) Heat exchange device and fuel cell system