JPS62187801A - Focus method for photography system - Google Patents

Focus method for photography system

Info

Publication number
JPS62187801A
JPS62187801A JP3036486A JP3036486A JPS62187801A JP S62187801 A JPS62187801 A JP S62187801A JP 3036486 A JP3036486 A JP 3036486A JP 3036486 A JP3036486 A JP 3036486A JP S62187801 A JPS62187801 A JP S62187801A
Authority
JP
Japan
Prior art keywords
lens
lens group
refractive power
principal point
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3036486A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsui
寛 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3036486A priority Critical patent/JPS62187801A/en
Publication of JPS62187801A publication Critical patent/JPS62187801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To simplify the structure of a lens barrel and reduce the size of a photography system, and to easily obtain a focus on short-distance - infinite- distance bodies by varying the refracting power of a lens group so that a principal point position is constant, and focusing different bodies. CONSTITUTION:One lens group which constitutes the photography system is fixed and has at least two lens surfaces which are variable in refracting power. When the two lens surfaces of the lens group 1 are varied in refracting power while an object point P1 is image-formed on an image surface 2, the principal point position H1 is held constant and an object point P2 at different distance from the object point P1 is image-formed on the image surface 2. Consequently, while focusing is easily performed over the whole object distance range while the lens barrel structure is simplified and the photography system is made compact.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は写真用カメラやビデオカメラ等に好適な1lI
i影系のフォーカス方法に関し、特にレンズ面の曲率半
径を変えた屈折力可変のレンズ群を利用した撮影系のフ
ォーカス方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is an 1lI camera suitable for photographic cameras, video cameras, etc.
The present invention relates to a focusing method for an i-shadow system, and particularly to a focusing method for an imaging system that uses a lens group with variable refractive power in which the radius of curvature of the lens surface is changed.

(従来の技術) 従来より多くの撮影系においては近距離物体から無限遠
物体に至るフォーカスを撮影系の一部若しくは全部のレ
ンズ群を移動させて行っている。
(Prior Art) Conventionally, in many imaging systems, focusing from a close object to an object at infinity is achieved by moving part or all of the lens groups of the imaging system.

このときレンズ群の光軸上の移動はレンズ鏡筒上にカム
溝を形成し、このカム溝を利用して行っている。
At this time, movement of the lens group on the optical axis is performed using a cam groove formed on the lens barrel.

この為、従来のフォーカス方法は特にリヤーフォーカス
方法を利用する場合等ではレンズ群を移動させる空間を
予め確保しておかねばならなく、又フローティングを行
う場合にはレンズ鏡筒構造が複雑になってくる傾向があ
った。又レンズ群の移動により重心位置が変動し、特に
ズームレンズ等のレンズ全長の長い撮影系ではバランス
が悪くなる傾向があった。更に第ルンズ群を繰り出して
フォーカスを行う撮影系等においては第ルンズ群の有効
径が増大し、撮影系全体が大型化する欠点があった。
For this reason, with conventional focusing methods, especially when using the rear focusing method, it is necessary to secure space in advance to move the lens group, and when floating, the lens barrel structure becomes complicated. There was a tendency to Furthermore, the center of gravity changes due to the movement of the lens group, which tends to impair the balance, especially in photographic systems with long lenses such as zoom lenses. Furthermore, in a photographing system or the like in which focusing is performed by extending the lens group, the effective diameter of the lens group increases, resulting in an increase in the size of the entire photographing system.

(発明が解決しようとする問題点) 本発明はレンズ鏡筒構造の簡素化、及び撮影系の小型化
を図りつつ近距離物体から無限遠物体に至る物体距離全
般にわたり容易にフォーカスすることのできる撮影系の
フォーカス方法の提供を目的とする。
(Problems to be Solved by the Invention) The present invention simplifies the structure of the lens barrel and downsizes the imaging system, while making it possible to easily focus over a wide range of object distances, from objects at close range to objects at infinity. The purpose is to provide a focusing method for photography.

(問題点を解決するための手段) 少なくとも1つの屈折力可変のレンズ群を有した撮影系
において、該撮影系全系の物体側主点位置若しくは像面
側主点位置の少なくとも一方の主点位置が一定となるよ
うに前記屈折力可変のレンズ群の屈折力を変化させるこ
とにより異なる物体に対してフォーカスを行ったことで
ある。
(Means for solving the problem) In an imaging system having at least one lens group with variable refractive power, at least one of the object-side principal point position and the image-side principal point position of the entire imaging system By changing the refractive power of the variable refractive power lens group so that the position remains constant, different objects are focused.

特に本発明では屈折力可変レンズ群を光軸上固定として
いる。
In particular, in the present invention, the variable refractive power lens group is fixed on the optical axis.

又、全系の屈折力を変化させることによりフォーカスを
行っている。
Also, focusing is performed by changing the refractive power of the entire system.

この他、本発明の特徴は実施例において記載されている
Other features of the invention are described in the Examples.

(実施例) 第1図(八) 、 (II)は本発明の一実施例の光学
系の模式図である。図中1は撮影系を構成する1つのレ
ンズ群で固定されており、少なくとも2つの屈折力可変
のレンズ面を有している。2は像面、Pi、P2は各々
物体、Hl、H2は各々レンズ群1の物体側主点と像面
側主点である。
(Embodiment) FIGS. 1(8) and 1(II) are schematic diagrams of an optical system according to an embodiment of the present invention. In the figure, reference numeral 1 is fixed to one lens group constituting an imaging system, and has at least two lens surfaces with variable refractive power. 2 is an image plane, Pi and P2 are objects, and Hl and H2 are object-side and image-side principal points of the lens group 1, respectively.

第1図(八)では物点P1を像面2に結像させている。In FIG. 1(8), an object point P1 is imaged on the image plane 2.

第1図CB)では第1図(Δ)の状態からレンズ群1の
2つのレンズ面の屈折力を変える際、主点位置H1を一
定に保ちつつ物点P1とは異った距離にある物点P2を
像面2に結像させている。
In Fig. 1 CB), when changing the refractive power of the two lens surfaces of lens group 1 from the state shown in Fig. 1 (Δ), the principal point position H1 is kept constant but is at a different distance from the object point P1. An object point P2 is imaged on the image plane 2.

次に本実施例の近軸屈折力配置について説明する。Next, the paraxial refractive power arrangement of this embodiment will be explained.

レンズ群1の全体の屈折力をφ1、物体側から数えて第
ルンズ面から物体側主点H1までの距離をΔl、最終レ
ンズ面から像面側主点H2までの距離なΔ°3、第ルン
ズ面から物体までの距離なS3、最終レンズ面から像面
までの距離をSに゛とすると、これらは φ、=  ’cK     ・・・・・・・・・・・・
・・・・・・・・・・・(1)Δ°に= (’AK−1
)/  ’CK  ・・・・・・・・・・・・ (4)
なる式で表わすことができる。ここで IAに。
The refractive power of the entire lens group 1 is φ1, the distance from the lens surface to the object side principal point H1 counting from the object side is Δl, the distance from the final lens surface to the image side principal point H2 is Δ°3, If S3 is the distance from the lens surface to the object, and S is the distance from the final lens surface to the image plane, then these are φ, = 'cK...
・・・・・・・・・・・・(1) Δ° = ('AK-1
) / 'CK ・・・・・・・・・・・・ (4)
It can be expressed by the following formula. Here to IA.

IBK、 ICK、 1DKは各々ガウシアンプラケッ
トで ’AK=(Φl *   e l + ”” +  −
eK−1)’BK =(’B I + ””*  −6
K−1)’CK = (ΦI  +  −(’ I *
 ””+  −eK−1+  ΦK)”K ” (−1
31+  ””+  −8に−1r  Φえ〕で表わさ
れる。ここでΦiは各レンズ面の屈折力、e、は各レン
ズ面の間隔をその間の媒質の屈折率で割った値を示し、
撮影系全体のレンズ面かに面で構成されているものとす
る。
IBK, ICK, and 1DK are each Gaussian placket 'AK = (Φl * e l + "" + -
eK-1)'BK = ('B I + ""* -6
K-1)'CK = (ΦI + -('I *
""+ -eK-1+ ΦK)"K" (-1
31+ ""+ -8 to -1r Φe]. Here, Φi is the refractive power of each lens surface, e is the value obtained by dividing the interval between each lens surface by the refractive index of the medium between them,
It is assumed that the lens surface of the entire photographing system is composed of a cranial surface.

このに面で構成されている撮影系の物体側主点位置Hl
若しくは像面側主点位置H2のうち、少なくとも一方の
主点位置を一定位置に維持しながら全系の屈折力を変え
フォーカスを行うには、フォーカスの際、前記(1,)
〜(4)式のうち(2)。
The object-side principal point position Hl of the imaging system composed of this surface
Alternatively, in order to perform focusing by changing the refractive power of the entire system while maintaining at least one principal point position at a constant position among the principal point positions H2 on the image plane side, the above (1,) is used during focusing.
- (2) of equation (4).

(3)式又は(2) 、 (4)式が常に一定となるよ
うに各レンズ面の屈折力を変化させれば良い。
The refractive power of each lens surface may be changed so that equation (3) or equations (2) and (4) are always constant.

次に簡単のため屈折力可変のレンズ群1を単一の凸レン
ズで構成し、物体距ai s +を2つの物点例えばS
l;−■とS、=−10についてフォーカスする場合、
前述の諸変数をS X’= 0.474 。
Next, for simplicity, the lens group 1 with variable refractive power is composed of a single convex lens, and the object distance ai s + is set by two object points, for example, S
When focusing on l;-■ and S, =-10,
The aforementioned variables are S X'=0.474.

e+=o、lとし、レンズ群1を透明弾性体、例えばシ
リコンゴム(n、=1.5)で構成し、フォーカスの際
物体側主点位置H1を一定に保ちつつ、例えばΔ1 =
 0.0525とし、この値を一定としつつ、2つのレ
ンズ面の曲率半径rl、r2を変化させて全体の屈折力
を制御した場合の数値例を表−1に示す。
e+=o, l, the lens group 1 is made of a transparent elastic body, for example silicone rubber (n, = 1.5), and while keeping the object side principal point position H1 constant during focusing, for example Δ1 =
0.0525, and Table 1 shows numerical examples when the overall refractive power is controlled by changing the radii of curvature rl and r2 of the two lens surfaces while keeping this value constant.

表−1 表−1に示すようにレンズ面の曲率半径rl。Table-1 As shown in Table 1, the radius of curvature rl of the lens surface.

r2を変化させると共に全系の屈折力を1.9から2.
0へと変化させれば物体側主点位置H1を一定位置に保
ったまま2つの物体距離に対して各々フォーカスするこ
とができる。
While changing r2, the refractive power of the entire system was changed from 1.9 to 2.
By changing it to 0, it is possible to focus on two object distances while keeping the object side principal point position H1 at a constant position.

第2図(A) 、 (B)は本発明の他の実施例の光学
系の模式図である。本実施例では撮影系を2つのレンズ
群21.22より構成し、レンズ群21を単一のレンズ
で構成し、両レンズ面の屈折力を変化させると共に全系
の屈折力を変化させることにより、物体側主点位置H2
1を像面23に対して一定に維持しつつ、2つの物点P
IOとP2Oにフォーカスをしている。
FIGS. 2A and 2B are schematic diagrams of an optical system according to another embodiment of the present invention. In this embodiment, the photographing system is composed of two lens groups 21 and 22, and the lens group 21 is composed of a single lens, and by changing the refractive power of both lens surfaces and changing the refractive power of the entire system. , object side principal point position H2
1 constant with respect to the image plane 23, the two object points P
Focuses on IO and P2O.

尚レンズ群21.22は共に固定である。Note that the lens groups 21 and 22 are both fixed.

今、レンズ群21の全体の屈折力をφ工、第ルンズ面か
ら物体までの距離をSl、レンズ群22全体の屈折力を
φ■、物体側第ルンズ面から物体側主点H21までの距
離なΔ■1、最終レンズ面から像面側主点H22までの
距離をΔ°■え、最終レンズ面から像面までの距離をS
K′とするとレンズ群22における屈折力φ■。
Now, the total refractive power of the lens group 21 is φ, the distance from the 1st lun's surface to the object is SL, the refractive power of the entire lens group 22 is φ■, and the distance from the 1st lun's surface on the object side to the object side principal point H21 Δ■1, change the distance from the final lens surface to the image plane side principal point H22 by Δ°■, and set the distance from the final lens surface to the image plane as S.
If K' is the refractive power φ■ in the lens group 22.

距* S K ’は第1゛図(八) 、 (B)に示し
た実施例における(1) 、 (2)式に各々対応する
The distance *S K' corresponds to equations (1) and (2) in the embodiment shown in FIGS. 1(8) and (B), respectively.

従ってレンズ群22の全体の屈折力を一定に維持したま
ま、レンズ群21の屈折力を変化させてフォーカスを行
うには異なる物体に対して(2)。
Therefore, in order to focus on different objects by changing the refractive power of the lens group 21 while keeping the entire refractive power of the lens group 22 constant (2).

(3)式の値が常に一定となるように各レンズ面の屈折
力を定めれば良い。
The refractive power of each lens surface may be determined so that the value of equation (3) is always constant.

次に簡単のためレンズ群21を透明弾性体、例えばシリ
コンゴム(n d= 1.4059)の単一の凸レンズ
より構成し1両レンズ面の曲率半径rl。
Next, for simplicity, the lens group 21 is composed of a single convex lens made of a transparent elastic material, for example, silicone rubber (n d = 1.4059), and the radius of curvature of both lens surfaces is rl.

r2を変え、全系の屈折力を変化させることにより2つ
の物体、例えばS、=−■とS、=−10にフォーカス
する場合前述の諸変数をφn=1.9゜SK’=0.1
4677 、 e 、 =0.1 、レンズ群21の像
側主点位置H12からレンズ群22の第ルンズ面までの
距1ipidをd = 0.1526 (S 、 =−
ω)。
When focusing on two objects, for example S,=-■ and S,=-10, by changing r2 and changing the refractive power of the entire system, the aforementioned variables are changed to φn=1.9°SK'=0. 1
4677, e, = 0.1, and the distance 1ipid from the image side principal point position H12 of the lens group 21 to the lens surface of the lens group 22 is d = 0.1526 (S, =-
ω).

d =0.0373 (S 、 = −10) 、又、
簡単の為レンズ群22を単一レンズとし、レンズ群21
とレンズ群22のレンズ面の°屈折力を物体側から順に
Φ1.Φ2.Φ3.Φ4としたときの数値例を表−2に
示す。
d = 0.0373 (S, = -10), and
For simplicity, the lens group 22 is a single lens, and the lens group 21 is
and the refractive power of the lens surface of the lens group 22 in order from the object side to Φ1. Φ2. Φ3. Table 2 shows numerical examples when Φ4 is used.

表−2 表−2のように屈折力を変化させれば物体側主点位置を
一定に維持した状態で、異なる2つの物体に対してフォ
ーカスすることができる。
Table 2 By changing the refractive power as shown in Table 2, it is possible to focus on two different objects while keeping the object-side principal point position constant.

又、このときのレンズ群21の2つのレンズ面R11,
R12の曲率半径の変化及び前述の諸変数を示すと表−
3のようになる。
Also, at this time, the two lens surfaces R11 of the lens group 21,
The table below shows the changes in the radius of curvature of R12 and the various variables mentioned above.
It will be like 3.

表−3 以上の実施例では撮影系の物体側主点位置を一定にした
場合を示したが、物体側主点位置の代わりに像面側主点
位置を一定位置に維持するようにレンズ群の屈折力を変
化させても本発明の目的を達成することができる。
Table 3 In the above embodiments, the object-side principal point position of the imaging system was kept constant, but the lens group was designed to maintain the image-side principal point position at a constant position instead of the object-side principal point position. The object of the present invention can also be achieved by changing the refractive power of the lens.

尚、以上の実施例においてレンズ群を複数のレンズより
構成し、このうち少なくとも2つのレンズ面の屈折力を
変えるようにしても良い。又、屈折力可変のレンズ群を
2つ以上用いて撮影系を構成しても良い。
In the above embodiments, the lens group may be composed of a plurality of lenses, and the refractive power of at least two lens surfaces may be changed. Furthermore, the photographing system may be constructed using two or more lens groups with variable refractive power.

(発明の効果) 本発明によればフォーカスの際にレンズ群を何んら光軸
上移動させることなくレンズ鏡筒構造の簡素化、及び撮
影系のコンパクト化を図りつつ、物体距離全体にわたり
、容易にフォーカスすることのできる撮影系のフォーカ
ス方法を達成することができる。又、任意のブロックの
主点位置を一定とすることにより近軸配置上の解析が容
易となる。更に、物体側若しくは像面側の主点位置を一
定とすることによりフォーカスの際にレンズ群を移動さ
せる必要がないので、鏡筒構造の簡単な撮影系を達成す
ることができる。
(Effects of the Invention) According to the present invention, it is possible to simplify the lens barrel structure and make the imaging system more compact without moving the lens group on the optical axis during focusing, and at the same time, over the entire object distance, It is possible to achieve a focusing method for a photographing system that allows easy focusing. Furthermore, by keeping the principal point position of any block constant, analysis on the paraxial arrangement becomes easier. Furthermore, by keeping the principal point position constant on the object side or image plane side, there is no need to move the lens group during focusing, so it is possible to achieve an imaging system with a simple lens barrel structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A) 、 (B)は本発明の一実施例の光学系
の模式図、第2図(八) 、 (n)は本発明の他の実
施例の光学系の模式図である。図中1.21は屈折力可
変のレンズ群、2.23は像面、Pi。 P2.PIO,P2Oは各々物体、Hl、H21は各々
物体側主点位置、H2,H22は各々像面側主点位置で
ある。
Figures 1 (A) and (B) are schematic diagrams of an optical system according to one embodiment of the present invention, and Figures 2 (8) and (n) are schematic diagrams of an optical system according to another embodiment of the present invention. . In the figure, 1.21 is a lens group with variable refractive power, and 2.23 is an image plane, Pi. P2. PIO and P2O are the object, Hl and H21 are the principal point positions on the object side, and H2 and H22 are the principal point positions on the image plane side.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも1つの屈折力可変のレンズ群を有した
撮影系において、該撮影系全系の物体側主点位置若しく
は像面側主点位置の少なくとも一方の主点位置が一定と
なるように前記屈折力可変のレンズ群の屈折力を変化さ
せることにより異なる物体に対してフォーカスを行った
ことを特徴とする撮影系のフォーカス方法。
(1) In an imaging system having at least one lens group with variable refractive power, at least one principal point position of the object side principal point position or the image side principal point position of the entire imaging system is kept constant. A focusing method for a photographing system, characterized in that different objects are focused by changing the refractive power of the variable refractive power lens group.
(2)前記屈折力可変のレンズ群は光軸上固定であるこ
とを特徴とする特許請求の範囲第1項記載の撮影系のフ
ォーカス方法。
(2) The focusing method for a photographing system according to claim 1, wherein the lens group having variable refractive power is fixed on the optical axis.
JP3036486A 1986-02-14 1986-02-14 Focus method for photography system Pending JPS62187801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3036486A JPS62187801A (en) 1986-02-14 1986-02-14 Focus method for photography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3036486A JPS62187801A (en) 1986-02-14 1986-02-14 Focus method for photography system

Publications (1)

Publication Number Publication Date
JPS62187801A true JPS62187801A (en) 1987-08-17

Family

ID=12301809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3036486A Pending JPS62187801A (en) 1986-02-14 1986-02-14 Focus method for photography system

Country Status (1)

Country Link
JP (1) JPS62187801A (en)

Similar Documents

Publication Publication Date Title
US6353504B1 (en) Objective lens for endoscope
JP3103166B2 (en) Macro lens with a long exit pupil
US4787718A (en) Zoom lens system
TW201725416A (en) Imaging zoom lens system providing an imaging zoom lens system to increase a focusing speed at a telephoto end andapproach a focusing speed at a wide angle end
JP6548590B2 (en) Imaging lens and imaging apparatus
JP2003228002A (en) Three-group zoom lens
JP3652046B2 (en) Compact zoom optical system and camera equipped with the same
CN104570301B (en) Constant-aperture wide-angle varifocus objective
JPH02244110A (en) Zoom lens
JP2003287677A (en) Wide-angle zoom lens
JPH10170826A (en) Variable power optical system
TWI705266B (en) An optical system and an optical lens thereof
CN107209351A (en) The manufacture method of variable-power optical system, Optical devices and variable-power optical system
JP6635540B2 (en) Optical system for imaging and imaging apparatus
US5751485A (en) Lens capable of short distance photographing with vibration reduction function
JP2001208969A (en) Wide-angle zoom lens
JPH09218346A (en) Optical system
JPH0660971B2 (en) Zoom lenses
EP0881516A1 (en) Lens capable of short distance photographing with vibration reduction function
JPS61284717A (en) Variable power optical system
JPH0250120A (en) Zoom lens
JP2893119B2 (en) Zoom lens
JP4068765B2 (en) Zoom lens
JPH08190052A (en) Zoom lens capable of focusing at short distance
JP2828263B2 (en) High zoom lens for compact cameras