JPS62187224A - Measuring instrument for laser light energy distribution - Google Patents

Measuring instrument for laser light energy distribution

Info

Publication number
JPS62187224A
JPS62187224A JP2926386A JP2926386A JPS62187224A JP S62187224 A JPS62187224 A JP S62187224A JP 2926386 A JP2926386 A JP 2926386A JP 2926386 A JP2926386 A JP 2926386A JP S62187224 A JPS62187224 A JP S62187224A
Authority
JP
Japan
Prior art keywords
energy distribution
laser light
laser beam
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2926386A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kayashima
一弘 萱嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2926386A priority Critical patent/JPS62187224A/en
Publication of JPS62187224A publication Critical patent/JPS62187224A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To measure the energy distribution of laser light by providing a heat- conductive doughnut substrate, etc., whose internal diameter is nearly equal to or larger than such a beam diameter that the energy density of measured laser light is 1/e<2>. CONSTITUTION:The doughnut substrate 5 made of alumina ceramic having high heat conductivity has the internal diameter a little bit larger than the beam diameter rb with which the energy density of carbon gas laser light 6 is 1/e<2>; and it stop surface is a photodetection surface 7 which absorbs light,and three ring-shaped baked thermistor groups 8 are formed on the reverse surface after a thermistor material made of SiC, etc., is sputtered. Further, a common electrode 9 is formed at one end of the thermistor groups 8 and three electrodes 10 are formed at the other end and connected to an amplifying circuit 11 which converts a thermistor resistance value into a voltage and amplifies it. Then, a distribution calculating circuit 12 processes an output group from the amplifying circuit 11 to calculate the energy distribution by the laser light 6. Consequently, the laser light energy distribution is measured easily and instantaneously.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ発振管から出射されるレーザ光線ある
いは、光ファイバから出射されるレーザ光線の強度分布
を測定するレーザ光エネルギ分布測定器に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a laser beam energy distribution measuring device that measures the intensity distribution of a laser beam emitted from a laser oscillation tube or an optical fiber. be.

従来の技術 現在、急激に善及しつつあるレーザ加工技術においてレ
ーザ光線の性能とレーザ加工能力との間には、密接な関
係が存在し、特に、レーザ光のモードを表わすレーザ光
のエネルギ分布は、加工物の切断能力、穿入能力を決定
する重要な要素であり、使用するレーザ光のエネルギ分
布を知る事は絶対必要であった。
Conventional technology Currently, in laser processing technology, which is rapidly gaining popularity, there is a close relationship between the performance of laser beams and laser processing ability. is an important factor that determines the cutting ability and penetration ability of the workpiece, and it is absolutely necessary to know the energy distribution of the laser beam to be used.

ところがエネルギ分布を測定する方法は種々のものが考
えられて来たが、いろいろな欠点を持っていた。
However, various methods of measuring energy distribution have been considered, but they have various drawbacks.

例えば第3図に示しているように、ビンホールを使用し
たエネルギ分布測定方法がある。
For example, as shown in FIG. 3, there is a method of measuring energy distribution using a binhole.

測定されるレーザ光1は、ピンホール2によって一部分
だけとりだされ、パワーメータ3でエネ/lz キラ測
定される。このピンホールとパワーモニタをX−Yに微
動するX−Y微動台4をX−Yに微動し、レーザ光をス
キャンする事によってレーザ光のエネルギ分布を測定す
る方法があった。
A portion of the laser beam 1 to be measured is taken out by a pinhole 2, and energy/lz chira is measured by a power meter 3. There is a method of measuring the energy distribution of the laser beam by slightly moving the X-Y fine movement table 4 in the X-Y direction to scan the laser beam by slightly moving the pinhole and the power monitor in the X-Y direction.

壕だアクリルにレーザ光を照射し、焼きパターンを作り
エネルギ分布を簡単に知る方法がある。
There is an easy way to find out the energy distribution by irradiating the trenched acrylic with laser light and creating a baked pattern.

発明が解決しようとする問題点 ピンホールによるレーザ光のエネルギ分布の測定方法は
、比較的正確なエネルギ分布を得るが。
Problems to be Solved by the Invention The method of measuring the energy distribution of laser light using a pinhole obtains a relatively accurate energy distribution.

ピンホールのスキャン回数の多さとパワーモニタの時定
数の遅さく1〜10 sec )によって一つのエネル
ギ分布の測定に莫大な時間を要する。
Due to the large number of pinhole scans and the slow time constant of the power monitor (1 to 10 sec), it takes an enormous amount of time to measure one energy distribution.

また、アクリルペターによるエネルギ分布の測定は簡単
に短い時間で得られるか得られるアクリルパターンはそ
のままエネルギ分布とはならなく、チェック程度の評価
にしかならない。また、どちらもリアルタイムのエネル
ギ分布の測定ではないのでレーザ発振管のアライメント
や、加工物への照射中でのレーザ光の状態認識に使用す
る事は困難であった。
In addition, the measurement of energy distribution using an acrylic pattern can be easily obtained in a short time, and the obtained acrylic pattern does not directly measure the energy distribution, but can only be evaluated as a check. Furthermore, since neither method measures the energy distribution in real time, it is difficult to use them for aligning a laser oscillation tube or recognizing the state of laser light while it is irradiating a workpiece.

問題点を解決するだめの手段 本発明は、測定されるレーザ光のエネルギ密度が1/(
e2)になるビーム径と同程度かそれ以上の内径を有す
る熱伝導性のドーナツ型基板と、この基板の表面に設け
られた光吸収面である受光面と、前記基板の裏側にあり
前記受光面の内側に同心円状に2個以上N個配置された
リング状の熱感温素子群とこの熱感温素子群の出力群を
増幅する増幅手段とこの増幅手段からの出力群を処理(
レーザ光のエネルギ分布を算出する分布算出手段とを備
えたレーザ光エネルギ分布測定器である。
Means for Solving the Problems In the present invention, the energy density of the laser beam to be measured is 1/(
e2) A thermally conductive donut-shaped substrate having an inner diameter comparable to or larger than the beam diameter, a light-receiving surface which is a light-absorbing surface provided on the surface of this substrate, and a light-receiving surface provided on the back side of the substrate. A group of ring-shaped heat-sensing elements concentrically arranged in N pieces on the inside of the surface, an amplifying means for amplifying the output group of the group of heat-sensing elements, and processing of the output group from this amplifying means (
The present invention is a laser beam energy distribution measuring device that includes a distribution calculation means for calculating the energy distribution of laser beam.

作  用 この技術的手段による作用は次の様になる。For production The effect of this technical means is as follows.

すなわち、測定されるレーザ光のビーム径の外側を受光
面に照射し熱感温素子群の°出力を処理算出することに
よってレーザ光のエネルギ分布を瞬時にまた容易にまた
リアルタイムに知る事が出来る。
In other words, by irradiating the light-receiving surface with the outside of the beam diameter of the laser beam to be measured and processing and calculating the ° output of the thermal temperature sensing element group, the energy distribution of the laser beam can be instantly and easily known in real time. .

また、熱感温素子を同心円状に配置し、エネルギ分布を
測定する為、円形のガラスビームと仮定出来るレーザ光
の測定が正確に出来る。
Furthermore, since the thermal temperature sensing elements are arranged concentrically and the energy distribution is measured, it is possible to accurately measure the laser beam, which can be assumed to be a circular glass beam.

実施例 本発明の実施例を第1図、第2図を参照して説明する。Example An embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図は本発明によるレーザ光エネルギ分布測定器の一
実施例である。
FIG. 1 shows an embodiment of a laser beam energy distribution measuring device according to the present invention.

熱伝導性の高いアルミナセラミックからなるドーナツ基
板6は、炭酸ガスレーザ光6のエネルギ密度が1/(e
2)になるビーム径rbより少し大きな内径を有し、表
側にはレーザ光6を光吸収する受光面7があり、裏側の
面にはSiC等からなるサーミスタ材料をスパッタリン
グ後、焼成したリング状の3個のサーミスタ群8か形成
されている。
The donut substrate 6 made of alumina ceramic with high thermal conductivity has an energy density of 1/(e
2) It has an inner diameter slightly larger than the beam diameter rb, and has a light-receiving surface 7 that absorbs the laser beam 6 on the front side, and a ring-shaped thermistor material made of SiC or the like is sputtered and fired on the back side. A three thermistor group 8 is formed.

サーミスタ群の一端はコモン電憔9を他端はそれぞれ3
個の電極1oを形成し、サーミスタ抵抗値を電圧変換増
幅する増幅回路11につなげられている。この増幅回路
11からの出力群を、分布算出回路12は、演算処理を
行いレーザ光のエネルギ分布を算出する。
One end of the thermistor group has a common electric wire of 9, and the other end has a common electric wire of 3.
The electrodes 1o are connected to an amplifier circuit 11 that converts and amplifies the thermistor resistance value into voltage. A distribution calculating circuit 12 performs arithmetic processing on the output group from the amplifier circuit 11 to calculate the energy distribution of the laser beam.

次に動作と原理と説明する。Next, the operation and principle will be explained.

レーザ発振器13から出射したaのエネルギ分布をもつ
炭酸ガスレーザ光6は、大部分がドーナツ基板5の穴を
通過し、加工または測定に使用され、残りの一部は、ド
ーナツ基板5の受光面7に照射吸収される。吸収された
レーザ光は、熱源となりドーナツ基板にはレーザ光のエ
ネルギ分布E(t)に対応する径方向の温度分布T(r
)を生じる。
Most of the carbon dioxide laser beam 6 having an energy distribution of a emitted from the laser oscillator 13 passes through the hole in the donut substrate 5 and is used for processing or measurement, and the remaining part passes through the hole in the donut substrate 5 and is used for processing or measurement. irradiated and absorbed by. The absorbed laser light becomes a heat source and the donut substrate has a radial temperature distribution T(r) corresponding to the energy distribution E(t) of the laser light.
) occurs.

レーザ光のエネルギ分布’zr>と温度分布T(r)に
は若干の近似を加えて以下の関係を満たす。
The energy distribution 'zr> of the laser beam and the temperature distribution T(r) satisfy the following relationship by adding some approximations.

・・・・・・・・・・・・・・・(1)ここで、dは基
板の厚さ、kは熱伝導率、hはドーナツ基板と空気との
熱伝達係数である。
(1) Here, d is the thickness of the substrate, k is the thermal conductivity, and h is the heat transfer coefficient between the donut substrate and air.

(1)式右辺の第2項の空気への熱伝達は、レーザ光エ
ネルギに比べて充分小さいので無視しサーミスタ半径r
iの位置における基板温度をT、とし。
The heat transfer to the air in the second term on the right side of equation (1) is sufficiently small compared to the laser light energy, so it can be ignored and the thermistor radius r
Let T be the substrate temperature at position i.

レーザ光エネルギ分布をE(r) = h:0exp(
−2r2/a2)のガウス分布と仮定すると(1)式は
以下の差分方程式に展開出来る。
The laser light energy distribution is E(r) = h:0exp(
-2r2/a2) assuming a Gaussian distribution, equation (1) can be expanded into the following difference equation.

上の式から、サーミスタ群によシ2つ以上の温度差(T
i −”i+1 )を検出する事により、上のe)の方
程式からとのガウス分布定数を最小自乗法により求める
From the above equation, it can be seen that the thermistor group has two or more temperature differences (T
i−”i+1), the Gaussian distribution constant from the equation e) above is determined by the method of least squares.

以上分布算出回路12は上の(2)式よりガウス分布定
数を求める役割を果たす。
The distribution calculation circuit 12 plays the role of calculating the Gaussian distribution constant from the above equation (2).

尚、(2)の方程式を解くのに今回は最小自乗法を挙げ
たか、他の近似法によって求める事も可能である。
Although the least squares method is used to solve the equation (2), it is also possible to use other approximation methods.

また、レーザ光のエネルギ分布をガウス分布としたが他
の考えられる分布関数を仮定しても、同今回の実施例で
は、熱感温素子としてサーミスタを挙げたが第2図に示
すリボン状に熱電対14を直列に構成した素子でも、エ
ネルギ分布を測定することは可能である。
In addition, although the energy distribution of the laser beam is assumed to be Gaussian distribution, even if other possible distribution functions are assumed, the thermistor is used as the heat-sensitive element in this example, but the ribbon-like shape shown in Fig. 2 is used. It is also possible to measure energy distribution using an element in which thermocouples 14 are arranged in series.

発明の詳細 な説明した様に本発明によればレーザ光のビーム径より
外側のレーザ光をドーナツ形の基板の受光面に受け、サ
ーミスタ等の熱温温素子によυ温度分布を検出し、分布
算出回路によりレーザ光エネルギ分布を簡単にまた瞬時
に測定する事が出来る。
As described in detail, according to the present invention, the laser beam outside the beam diameter of the laser beam is received on the light receiving surface of the donut-shaped substrate, and the υ temperature distribution is detected by a thermothermal element such as a thermistor. The distribution calculation circuit allows the laser light energy distribution to be easily and instantaneously measured.

また、大部分のレーザ光エネルギはドーナツ基板の穴を
通過するので、加工、測定中でもレーザ光のエネルギ分
布を計測出来る。
Furthermore, since most of the laser beam energy passes through the holes in the donut substrate, the energy distribution of the laser beam can be measured even during processing and measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるレーザ光エネルギ分
布測定器の原理図、第2図はリボン状の熱電対からなる
熱感温素子の平面図、第3図は従来例におけるピンホー
ルによるレーザ光エネルギ分布測定器の原理図である。 6・・・・・・ドーナツ型基板、6・・・・・・レーザ
光、7・・・・・・受光面、8・・・・・・サーミスタ
群、11・・・・・・差動回路、12・・・・・・分布
算出回路、13・・・・・・熱電対素子群。
Fig. 1 is a principle diagram of a laser beam energy distribution measuring device according to an embodiment of the present invention, Fig. 2 is a plan view of a thermal temperature sensing element consisting of a ribbon-shaped thermocouple, and Fig. 3 is a diagram showing the principle of a laser beam energy distribution measuring device according to an embodiment of the present invention. It is a principle diagram of a laser beam energy distribution measuring device. 6... Donut-shaped substrate, 6... Laser light, 7... Light receiving surface, 8... Thermistor group, 11... Differential Circuit, 12... Distribution calculation circuit, 13... Thermocouple element group.

Claims (3)

【特許請求の範囲】[Claims] (1)測定されるレーザ光のエネルギ密度か1/(e^
2)になるビーム径と同程度かそれ以上の内径を有する
熱伝導性のドーナツ型基板と、この基板の表面に設けら
れた光吸収面である受光面と、前記基板の裏側にあり前
記受光面の内側に同心円状に2個以上N個配置されたリ
ング状の熱感温素子群と、この熱感温素子群の出力群を
断幅する増幅手段と、この増幅手段からの出力群を処理
レーザ光のエネルギ分布を算出する分布算手段とを備え
たレーザ光エネルギ分布測定器。
(1) The energy density of the laser beam to be measured is 1/(e^
2) A thermally conductive donut-shaped substrate having an inner diameter comparable to or larger than the beam diameter, a light-receiving surface which is a light-absorbing surface provided on the surface of this substrate, and a light-receiving surface provided on the back side of the substrate. A group of ring-shaped heat-sensing elements arranged concentrically in two or more N pieces on the inside of a surface, an amplifying means for amplifying the output group of this group of heat-sensing elements, and an output group from this amplifying means. A laser beam energy distribution measuring device comprising a distribution calculation means for calculating the energy distribution of a processing laser beam.
(2)リング状の熱感温素子は、多数の熱電対を直列に
リボン状に構成した素子かあるいはサーミスタからなる
素子である特許請求の範囲第1項記載のレーザ光エネル
ギ分布測定器。
(2) The laser light energy distribution measuring device according to claim 1, wherein the ring-shaped thermal temperature-sensitive element is an element composed of a large number of thermocouples arranged in series in a ribbon shape, or an element composed of a thermistor.
(3)熱伝導性の円形基板はアルマイト処理された絶縁
膜を有するアルミ基板か、または、絶縁物であるセラミ
ックである特許請求の範囲第2項記載のレーザ光エネル
ギ分布測定器。
(3) The laser beam energy distribution measuring device according to claim 2, wherein the thermally conductive circular substrate is an aluminum substrate having an alumite-treated insulating film or a ceramic which is an insulator.
JP2926386A 1986-02-13 1986-02-13 Measuring instrument for laser light energy distribution Pending JPS62187224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2926386A JPS62187224A (en) 1986-02-13 1986-02-13 Measuring instrument for laser light energy distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2926386A JPS62187224A (en) 1986-02-13 1986-02-13 Measuring instrument for laser light energy distribution

Publications (1)

Publication Number Publication Date
JPS62187224A true JPS62187224A (en) 1987-08-15

Family

ID=12271392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2926386A Pending JPS62187224A (en) 1986-02-13 1986-02-13 Measuring instrument for laser light energy distribution

Country Status (1)

Country Link
JP (1) JPS62187224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261822A (en) * 1993-01-12 1993-11-16 Iatrotech, Inc. Surgical refractive laser calibration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261822A (en) * 1993-01-12 1993-11-16 Iatrotech, Inc. Surgical refractive laser calibration device

Similar Documents

Publication Publication Date Title
CA1164242A (en) Procedure for examining the surface quality of materials in solid state of aggregation and means for carrying out the procedure
NO149679B (en) DEVICE FOR INFRARED RADIO SOURCE.
CN105209872A (en) Thermopile differential scanning calorimeter sensor
KR890004155A (en) A detector for aligning a high performance laser beam and a method for detecting misalignment of the laser beam
US11193901B2 (en) Thermal conductivity measuring device, thermal conductivity measuring method and vacuum evaluation device
US4964735A (en) Apparatus for indicating the power and position of a laser beam
US4772124A (en) Probe for a radiometer
US4596461A (en) In-line, concurrent electromagnetic beam analyzer
JPS62187224A (en) Measuring instrument for laser light energy distribution
US4061917A (en) Bolometer
JPS6215416A (en) Laser beam energy distribution measuring instrument
JPH10281863A (en) Optical parameter detector of laser beam
JPS6219707A (en) Method for measuring film thickness
JPS61259580A (en) Thermopile
JP4100841B2 (en) Contact thermal resistance measurement method
JP2002303597A (en) Device and method for measuring thermal property
RU2456559C1 (en) Thermal radiation receiver
JP2009300086A (en) Thermophysical property measuring method
JP4400156B2 (en) Laser output monitor
EP0141580A1 (en) Glass ceramic materials and the use thereof in thermal sensors
US20060268956A1 (en) Method and apparatus for measuring spatial temperature distribution of flames
Amdur et al. A New Type Vacuum Thermoelement
US20060289721A1 (en) Device for detecting optical parameters of a laser beam
JP5166005B2 (en) Power probe
Young Effect of free-stream velocity vector and aspect ratio on the output of a free-standing circular disk heat flux gage