JPS62186467A - Cylindrical lithium cell - Google Patents

Cylindrical lithium cell

Info

Publication number
JPS62186467A
JPS62186467A JP61027139A JP2713986A JPS62186467A JP S62186467 A JPS62186467 A JP S62186467A JP 61027139 A JP61027139 A JP 61027139A JP 2713986 A JP2713986 A JP 2713986A JP S62186467 A JPS62186467 A JP S62186467A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
weight
sheet
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61027139A
Other languages
Japanese (ja)
Inventor
Tsukasa Ohira
大平 司
Kenichiro Ando
安藤 謙一郎
Takafumi Fujii
隆文 藤井
Tomokazu Mitamura
知一 三田村
Hiroshi Fukuda
浩 福田
Kenichi Morigaki
健一 森垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61027139A priority Critical patent/JPS62186467A/en
Publication of JPS62186467A publication Critical patent/JPS62186467A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve corrosion resistance of a positive electrode collector for improving a high temperature retention property by using a porous body of a stainless steel sheet of a ferrite system containing Cr, Mo, Ti and Nb while having a specified carbon quantity for a sheet-shaped thin positive electrode plate. CONSTITUTION:Graphite powder of 10wt% is added to heat-treated MnO2 powder as a conductive agent while adding polytetrafluoroethylene of 5wt% as a binding agent further adding water to be kneaded. Then, said black mixture is made into a sheet by a rolling roller followed by being press-put into a 0.1mm thick lath-processed porous collector containing Cr of 18-20wt%, Mo of 1.8-2.5wt%, (Ti+Nb) of 0.48wt% and C of 0.007wt% to be made into a positive electrode plate 3. Thereby, especially a spot welding part of a lead plate is prevented from grain field corrosion while improving stability in the high temperature retention.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エレクトロニクス関連の小形電子機器用電源
として使用される円筒形リチウム電池において、特に正
極の集電体材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a current collector material for a positive electrode in a cylindrical lithium battery used as a power source for small electronic devices related to electronics.

従来の技術 従来、この種の円筒形リチウム電池には、放電電流を極
力大きく取り出せる様にシート状の正極板とリチウム負
極板をセパレータを介して渦巻き状に巻き込んだ構成と
して正負極板の表面積を大きくしたものがある。極板の
表面積を出来るだけ大きくする為に薄形極板を用いてセ
パレータを介して渦巻き状に巻き込むが、正極の集電体
の材質としては、有機電解液と活物質であるMnO2合
剤が直接集電体に接する為に耐電解液性、耐酸化性が必
要である。更に薄形極板を渦巻き状電極に構成する為に
正極集電体の厚みが薄く、かつ多孔性でなければならな
い。
Conventional technology Conventionally, this type of cylindrical lithium battery has a structure in which a sheet-like positive electrode plate and a lithium negative electrode plate are wound in a spiral shape with a separator interposed between them, so that the surface area of the positive and negative electrode plates can be reduced to maximize the discharge current. There is something bigger. In order to increase the surface area of the electrode plate as much as possible, a thin electrode plate is used and wound in a spiral shape through a separator, but the material of the positive electrode current collector is an organic electrolyte and an active material MnO2 mixture. Electrolyte resistance and oxidation resistance are required because it comes into direct contact with the current collector. Furthermore, in order to configure the thin electrode plate into a spiral electrode, the positive electrode current collector must be thin and porous.

一般に、金属の薄板をラス加工すると、加工歪みが生じ
て耐食性が劣化する。特に集電体にす+ド板を溶接した
場合は、その溶接部や周辺部が腐食され易くなる。この
為、高温中で長期間電池を保存すると開路電圧が低下す
る。
Generally, when a thin metal plate is lath-processed, processing distortion occurs and corrosion resistance deteriorates. In particular, when a metal plate is welded to the current collector, the welded portion and surrounding areas are likely to be corroded. For this reason, if a battery is stored for a long period of time at high temperatures, the open circuit voltage will decrease.

この現象は集電体が溶解し、その金属がイオンとなって
電解液中に溶は込み負極Liとのイオン化傾向の差によ
り負極上に析出してLlを溶解させて電池容量が低下す
る為に起こるものであると推察される。
This phenomenon occurs because the current collector dissolves, and the metal becomes ions, which are dissolved in the electrolyte and deposited on the negative electrode due to the difference in ionization tendency with the negative electrode Li, dissolving Ll and reducing the battery capacity. It is assumed that this occurs in

発明が解決しようとする問題点 この様な従来の構成では染心体金5寓が有機電解液中に
溶出し負極表面へ析出し電気化学的に局部放電して電圧
を低下させると言う問題点があった。
Problems to be Solved by the Invention In such a conventional configuration, the dye-containing gold 5 molecules are eluted into the organic electrolyte and deposited on the surface of the negative electrode, causing electrochemical local discharge and lowering the voltage. was there.

本発明は、この様な問題点を解決するもので、正極集電
体を改良することを目的とする。
The present invention solves these problems and aims to improve a positive electrode current collector.

問題点を解決するための手段 この様な問題点を解決する為に本発明は、シート状の薄
形正極板の集電体に、OrとMoとTiとNbを含み、
かつ炭素量を0.007重量%以下に規制したフェライ
ト系のステンレス鋼薄板の多孔体を使用したものである
。ここでのOrの含有量は18〜2o重量%、Moのそ
れは1.8〜2.5重量%、TiとWbの総和量をQ、
488重量%すると好適であった。
Means for Solving the Problems In order to solve these problems, the present invention includes a current collector of a sheet-like thin positive electrode plate containing Or, Mo, Ti, and Nb.
In addition, a porous body made of a thin ferritic stainless steel plate with a controlled carbon content of 0.007% by weight or less is used. Here, the content of Or is 18-20% by weight, that of Mo is 1.8-2.5% by weight, the total amount of Ti and Wb is Q,
A suitable content was 488% by weight.

作用 ここで添加元素の作用について推察すれば、Crは本来
表面に不動態層を生成して耐食性を発揮し、MoはCr
より約3倍の;耐食効果があり、Ti。
Effect If we speculate about the effect of the additive elements here, Cr originally forms a passive layer on the surface and exhibits corrosion resistance, and Mo
Approximately 3 times more corrosion resistant than Ti.

NbはC及びNとの親和性(結合力)の強い性質を示し
て金属結晶内部にTie、NbNを生成させる。
Nb exhibits a strong affinity (bonding force) with C and N and generates Tie and NbN inside the metal crystal.

ステンレス鋼の結晶粒界にCやNが析出すると、Crと
反応してOrが消費されて耐食性が落ちるものと推察さ
れる。このcrの消費を防正するには、結晶の粒界にC
やNを析出させない様に結晶内部に安定した形で固定化
しておく必要がある。
It is presumed that when C and N precipitate at the grain boundaries of stainless steel, they react with Cr, consume Or, and reduce corrosion resistance. To prevent this consumption of cr, it is necessary to add carbon to the grain boundaries of the crystal.
It is necessary to fix it in a stable form inside the crystal so that it does not precipitate or N.

フェライト系のステンレス鋼では、炭素の含有量は可能
な限り少ない方が良いが、鋼材の製造工程で炭素を減少
させる脱炭処理には限界がある。
In ferritic stainless steel, it is better to keep the carbon content as low as possible, but there are limits to the decarburization treatment that reduces carbon in the steel manufacturing process.

MoはCrの約3倍の耐食効果を示すものと考えられて
いるが、その添加量が多くなると加工性が悪くなると共
にコスト高になる問題がある為に、Moの添加量にも適
切な範囲がある。
Mo is thought to have about three times the corrosion resistance effect of Cr, but if the amount added is too large, workability will deteriorate and costs will increase. There is a range.

本発明は、以上の推察のもとに実験的な検討を行ない、
有機電解液を用いる、円筒形リチウム電池の特にシート
状Mn O2正極の集電体の耐食性を著しく改善し、高
温保存特性を向上させたものである。
The present invention has been developed through experimental studies based on the above speculations,
The present invention significantly improves the corrosion resistance of the current collector of a cylindrical lithium battery using an organic electrolyte, especially the sheet-like MnO2 positive electrode, and improves high-temperature storage characteristics.

以下、本発明を実施例で詳述する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 図は本発明の実施例としての円筒形M n 02 / 
L x。
The embodiment diagram shows a cylindrical shape M n 02 / as an embodiment of the present invention.
Lx.

電池の半断面図を示す。A half-sectional view of the battery is shown.

図中1は鉄にNiメッキした電池容器、2はLi負極板
、3は正極板で、熱処理したMnO2粉末に導導電剤と
して黒鉛粉末を10重fi%添加し結着剤にポリ四弗化
エチレン粉末を5重量%加え、さらに水を添加して混練
した。この合剤を圧延ローラーでシート化した後、図示
してないが、本発明による0、1 fl厚の18〜20
重量% Cr −1,8〜2.6重量%Mo−0.48
重量’% (Ti十Nb )、 Cが0.007重量%
のラス加工した多孔性の集電体に圧入する。このように
して、出来だ/−ト状の正極板を110°Cで乾燥後、
所定の寸法に切断した後、正極リード板4を正極板3に
溶接する。この正極リード板を溶接した部分(図示せず
)に絶縁テープを表裏共に張り付けて補強する。ついで
正極板の長さ方向の一端を巻き芯にして、微孔性ポリプ
ロピレンフィルムよりなるセパレータ6を介してLi負
極板2と対向させて渦巻き状の極板群を構成する。群構
成後Li負極板のリード板を穴あき底部絶縁板を介して
電池容器1の内底部に接する様に押入し、スポット溶接
する。
In the figure, 1 is a battery container made of iron plated with Ni, 2 is a Li negative electrode plate, and 3 is a positive electrode plate. 10% graphite powder is added as a conductive agent to heat-treated MnO2 powder, and polytetrafluoride is used as a binder. 5% by weight of ethylene powder was added, and water was further added and kneaded. After forming this mixture into a sheet with a rolling roller, it is made into a sheet with a thickness of 18 to 20 fl.
Weight % Cr -1.8~2.6 Weight % Mo - 0.48
Weight '% (Ti + Nb), C 0.007 weight%
Press-fit into a lath-processed porous current collector. After drying the finished positive electrode plate at 110°C,
After cutting to a predetermined size, the positive electrode lead plate 4 is welded to the positive electrode plate 3. Insulating tape is pasted on both the front and back of the welded portion of the positive electrode lead plate (not shown) to reinforce it. Next, one longitudinal end of the positive electrode plate is used as a winding core, and the positive electrode plate is opposed to the Li negative electrode plate 2 via a separator 6 made of a microporous polypropylene film to form a spiral electrode plate group. After forming the group, the lead plate of the Li negative electrode plate is pushed through the perforated bottom insulating plate so as to be in contact with the inner bottom of the battery container 1, and spot welded.

以上の様にして極板群を電池容器に収納した後、炭fl
&プロピレン(P−C)と1.2−ジメトキシエタン(
DME )の混合溶喋に1モル/lとなる様にLiGe
O4を溶解した電解液を所定量注液する。
After storing the electrode plate group in the battery container as described above, the charcoal fl
& Propylene (P-C) and 1,2-dimethoxyethane (
LiGe was added to the mixed melt of DME (DME) at a concentration of 1 mol/l.
A predetermined amount of electrolyte solution containing O4 is injected.

上部絶縁板7を配置した後、正極リード板4を封口ガス
ケット8にカシメられた人eリベット9に溶接する。1
0は正極端子である。
After placing the upper insulating plate 7, the positive electrode lead plate 4 is welded to the human e-rivet 9 crimped to the sealing gasket 8. 1
0 is the positive terminal.

本発明による効果を%Aサイズの円筒形リチウム電池で
各種の合金成分が異なる正極集電体について比較した。
The effects of the present invention were compared for positive electrode current collectors having various alloy components in a %A size cylindrical lithium battery.

試作した電池の正極集電体の組成と80’Cで保存した
時の電池の開路′電圧の変化と耐食性、加工性、コスト
の総合評価を表1に示した。
Table 1 shows the composition of the positive electrode current collector of the prototype battery, the change in open circuit voltage of the battery when stored at 80'C, and the comprehensive evaluation of corrosion resistance, workability, and cost.

表1の実験結果から、45.11のオーステナイト系(
Niを含む)ステ/レス鋼は有機電解液中での耐食性が
極めて悪い事が明らか((なった。これは、80′C保
存中の開路、E圧の低下が早く、こつ電圧の低下した電
池を分解して内容を剪折した結果、正画の集電体のリー
ド板・容接部とその周辺(て腐食が著しく、対向してい
るL1負極板の表面が変色している事が解読された。こ
の現束は、集電体が腐食し、溶解して金属イオンとなり
、セパレータの微孔を透過してL1負極板の表面に引き
寄せられて析出し、負極表面で電気化学的に局部放電し
た為に起きたものと考えられる。電子顕微鏡観察から、
特にリード板溶接部は粒界腐食が起っているものと推察
される。表1のNo、1は、本発明の組成であり、耐食
性、加工性が特に没nていることがわかる。
From the experimental results in Table 1, 45.11 austenitic (
It is clear that stainless steel (containing Ni) has extremely poor corrosion resistance in organic electrolytes. As a result of disassembling the battery and cutting off the contents, we found that the lead plate and contact area of the current collector in the positive image and the surrounding area were severely corroded, and the surface of the opposing L1 negative electrode plate was discolored. This current flux corrodes the current collector and dissolves into metal ions, which pass through the micropores of the separator, are attracted to the surface of the L1 negative electrode plate, and are deposited, electrochemically generated on the negative electrode surface. It is thought that this occurred due to local discharge.From electron microscopy observation,
In particular, it is assumed that intergranular corrosion occurs in the welded parts of the lead plates. No. 1 in Table 1 is the composition of the present invention, and it can be seen that corrosion resistance and workability are particularly poor.

又、N13の場合、炭素量を0.007重騎係に規制し
ても、TiとNbが無添加の場合は耐食性は悪い。これ
は、結晶粒界へ析出するC、Nを抑えられない為である
と考えられる。Na、3は、Ti。
Further, in the case of N13, even if the carbon content is regulated to 0.007%, the corrosion resistance is poor if Ti and Nb are not added. This is considered to be because the precipitation of C and N at grain boundaries cannot be suppressed. Na, 3 is Ti.

Nbを添加しているが、耐食性が本発明程向上しないの
は、C量が0.03重量係と多い為と考えられる。Or
より3倍の耐食性が良いと言われているMOを本発明よ
り2倍量添加したNO,4では、耐食性は本発明と同等
であるが加工性が悪くなり、コストが高くなる欠点があ
る。
Although Nb is added, the reason why the corrosion resistance is not improved as much as in the present invention is considered to be because the amount of C is as high as 0.03 weight factor. Or
NO,4, in which twice the amount of MO, which is said to have three times better corrosion resistance than that of the present invention, has the same corrosion resistance as the present invention, but has the disadvantage of poor workability and high cost.

又、Tiのみを単独添加したNo、6や、Nbのみを単
独添加のNn、7では、C量を0.007%に抑えても
耐食性は、Ti−1−Nbの両者を同時添加した場合に
比較して効果が少ないことがわかった。又、Na、6の
様にOrの添加量を21〜26重量係に増やしても、C
量が多い場合には耐食性は向上せず、加工性が悪くなり
、コストが高くなる。No、10の場合、低炭素量であ
りTi十Nbが本発明より2倍計添加した場合では、耐
食性は本発明のNn、1と同等であるが、加工性が若干
悪くなり、コストが高くなる。Ti−1−Nbの添加量
は必要以上多く添加しても耐食性が向上するものではな
い事がf41゜た。
In addition, in No. 6, in which only Ti was added, and in Nn, 7, in which only Nb was added, even if the amount of C was suppressed to 0.007%, the corrosion resistance was lower than that when both Ti-1-Nb were added simultaneously. It was found to be less effective compared to Also, even if the amount of Or added is increased to 21 to 26% by weight like Na and 6, C
If the amount is large, corrosion resistance will not improve, processability will deteriorate, and costs will increase. In the case of No. 10, when the carbon content is low and Ti and Nb are added twice as much as in the present invention, the corrosion resistance is equivalent to the Nn of the present invention, 1, but the workability is slightly worse and the cost is high. Become. It was found that the corrosion resistance was not improved even if the amount of Ti-1-Nb added was larger than necessary.

鋼材中のC量がQ、007重量係に抑えられる事は粒界
腐食を抑制する効果が出る事から、更に低炭素にするの
が望ましいが、その為には脱炭処理工程を繰り返えす必
要がある。この工程は時間がかかり、コストアップにな
る問題からその代りにC,Nとの親和力の強い特性を利
用してTi  。
Reducing the amount of C in the steel material to the Q,007 weight ratio has the effect of suppressing intergranular corrosion, so it is desirable to reduce the carbon even further, but to achieve this, the decarburization treatment process must be repeated. There is a need. This process takes time and increases costs, so instead we use Ti, which has a strong affinity with C and N.

Nbを若干計添加し、金属結晶内部にN、Nf:Ti−
C,Nb−Nの型で固定し、安定化させて結晶粒界にC
,Nを析出させない様にしたものである。
A small amount of Nb is added to create N, Nf:Ti- inside the metal crystal.
C, Nb-N mold is fixed and stabilized to form C at grain boundaries.
, N is prevented from precipitating.

Ti 十Nbの総和添加量は鋼材中のC,N含有量(両
者合わせて0.03重量係)よりも多い計の0.48重
;肴係でよい。
The total addition amount of Ti and Nb may be 0.48 weight, which is larger than the C and N contents in the steel material (0.03 weight in total).

これ以上多く添加すると′44財がもろくなり、薄板加
工や、ラス加工性が悪くなる問題が起こる。
If more than this is added, the '44 material becomes brittle, causing a problem of poor sheet processing and lath processing.

発明の効果 以上の如く本発明によれば、ハイレート放電を指向した
渦巻き状険板群を有する円筒形リチウム電池の正極板の
集〒E体を改良して、特にリード板のスボ・7ト溶接部
の粒界腐食を防市し、高1品保存での安定性に優れた円
筒形リチウム電池を堤供するものである。
Effects of the Invention As described above, according to the present invention, the assembly of the positive electrode plate of a cylindrical lithium battery having a group of spiral steep plates oriented toward high-rate discharge is improved, and in particular, the lead plate is welded at the grooves and 7 points. The purpose is to provide a cylindrical lithium battery that prevents intergranular corrosion in the parts and has excellent stability during storage.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例における集電体を有した正極板を用
いて構成しだ円筒形リチウム電池の断面図である。 1・・・・・・電池容器、2・・・・・L1負極板、3
・・・・・・正極板、4・・・・・・正極リード仮、6
・・・・・・セパレータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名(−
覧だに各 2−−−Li#極猥 3−  正極板 4〜−−  q   ワード級 g−−−E/\゛し一グ 7−−− k部絶昧飯 8−−°主丁口η”又り′ット 9−−−アクμsミウムリNッL イo−−−正不みi堝ト
The figure is a cross-sectional view of a cylindrical lithium battery constructed using a positive electrode plate having a current collector in an embodiment of the present invention. 1...Battery container, 2...L1 negative electrode plate, 3
...Positive electrode plate, 4...Temporary positive electrode lead, 6
...Separator. Name of agent: Patent attorney Toshio Nakao and one other person (-
List of each 2 --- Li # Extremely Obscene 3 -- Positive electrode plate 4 --- q Ward class g --- E / \゛ Shiichig 7 --- K part Zakumai Meshi 8 --- ° Main door η"again't 9 --- Akμs miumri Ntsu L io --- Right and wrong i place

Claims (2)

【特許請求の範囲】[Claims] (1)シート状の正極板と、Li負極板をセパレータを
介して渦巻状に構成した電池であって、正極集電体に、
クロム、モリブデン、チタン、ニオブを含み、かつ炭素
含有量を0.007重量%以下に規制したフェライト系
の多孔性ステンレス鋼薄板を用いた円筒形リチウム電池
(1) A battery in which a sheet-like positive electrode plate and a Li negative electrode plate are arranged in a spiral shape with a separator in between, and the positive electrode current collector has a
A cylindrical lithium battery using a ferritic porous stainless steel thin plate containing chromium, molybdenum, titanium, and niobium, and with a carbon content limited to 0.007% by weight or less.
(2)正極集電体をなすステンレス鋼がクロムを18〜
20重量%、モリブデンを1.8〜2.5重量%、チタ
ンとニオブを総和量で0.48重量%含み、残部が鉄か
らなる特許請求の範囲第1項に記載の円筒形リチウム電
池。
(2) The stainless steel that makes up the positive electrode current collector contains 18 to 18% chromium.
The cylindrical lithium battery according to claim 1, comprising 20% by weight, 1.8 to 2.5% by weight of molybdenum, 0.48% by weight of titanium and niobium in total, and the balance being iron.
JP61027139A 1986-02-10 1986-02-10 Cylindrical lithium cell Pending JPS62186467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61027139A JPS62186467A (en) 1986-02-10 1986-02-10 Cylindrical lithium cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61027139A JPS62186467A (en) 1986-02-10 1986-02-10 Cylindrical lithium cell

Publications (1)

Publication Number Publication Date
JPS62186467A true JPS62186467A (en) 1987-08-14

Family

ID=12212715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61027139A Pending JPS62186467A (en) 1986-02-10 1986-02-10 Cylindrical lithium cell

Country Status (1)

Country Link
JP (1) JPS62186467A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063906A (en) * 2000-08-16 2002-02-28 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
WO2012132452A1 (en) * 2011-03-30 2012-10-04 パナソニック株式会社 Lithium primary cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063906A (en) * 2000-08-16 2002-02-28 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
WO2012132452A1 (en) * 2011-03-30 2012-10-04 パナソニック株式会社 Lithium primary cell
CN102959774A (en) * 2011-03-30 2013-03-06 松下电器产业株式会社 Lithium primary cell
JP5583270B2 (en) * 2011-03-30 2014-09-03 パナソニック株式会社 Lithium primary battery

Similar Documents

Publication Publication Date Title
JP5121499B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
WO1994009521A1 (en) High-temperature fuel cell
JP2643344B2 (en) Lithium-based thermal battery
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JPS62186467A (en) Cylindrical lithium cell
JPH0665044B2 (en) Lithium organic primary battery
JP2003257384A (en) Ferritic stainless steel for button type lithium secondary battery case and battery case
WO1985004988A1 (en) Rechargeable electrochemical device
JPS62165861A (en) Cylindrical lithium cell
JPS62186468A (en) Cylindrical lithium cell
JP4877678B2 (en) Flat non-aqueous electrolyte secondary battery
JPS62186469A (en) Cylindrical lithium cell
JPS62295351A (en) Cylindrical lithium cell
JPS62295350A (en) Cylindrical lithium cell
JPH0746602B2 (en) Method for manufacturing lithium organic secondary battery
JP2017010855A (en) Nonaqueous electrolyte solution secondary battery
JPS63126155A (en) Cylindrical lithium cell
JPS62188171A (en) Cylindrical lithium battery
JPS62140368A (en) Cylindrical lithium cell
JPH04237955A (en) Nonaqueous secondary battery
JP2594034B2 (en) Non-aqueous electrolyte battery
JPH02236972A (en) Polyaniline battery
JPS63195964A (en) Cylindrical lithium battery
JPS6174258A (en) Lithium organic secondary battery
JPS63124358A (en) Battery