JPS62186233A - Driving method for electrochromic element - Google Patents

Driving method for electrochromic element

Info

Publication number
JPS62186233A
JPS62186233A JP2777786A JP2777786A JPS62186233A JP S62186233 A JPS62186233 A JP S62186233A JP 2777786 A JP2777786 A JP 2777786A JP 2777786 A JP2777786 A JP 2777786A JP S62186233 A JPS62186233 A JP S62186233A
Authority
JP
Japan
Prior art keywords
voltage
decoloring
coloring
stage
polarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2777786A
Other languages
Japanese (ja)
Inventor
Kazuya Ishiwatari
和也 石渡
Masato Yamanobe
山野辺 正人
Ryoji Fujiwara
良治 藤原
Etsuro Kishi
悦朗 貴志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2777786A priority Critical patent/JPS62186233A/en
Publication of JPS62186233A publication Critical patent/JPS62186233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

PURPOSE:To extend the life and to provide an element having good appearance by impressing a plus voltage to an electrochromic (EC) element in the coloring stage thereof and temporarily short-circuiting between electrodes in the decoloring stage then impressing a decoloring voltage which has the polarity reverse from the polarity of the voltage impressed in the coloring stage and has the absolute value of the crest value lower than in the coloring stage thereto. CONSTITUTION:The plus voltage is impressed to the element in the coloring stage and the electrodes are temporarily short-circuited therebetween in the decoloring stage. The decoloring voltage which has the polarity reverse from the polarity of the voltage impressed in the coloring stage and has the absolute value of the crest value lower than in the coloring stage is thereafter impressed thereto. More specifically, the two terminals of the electrodes are held open and the colored state is maintained by making use of the memory characteristic of the EC layer after the impression of the decoloring voltage +V1 to the element. Both terminals of the element are short-circuited to erase most of the coloration in the stage of decoloring the element. The decoloring voltage -V2 which has the polarity reversed from the polarity of the voltage impressed in the coloring stage and has the absolute value of the crest value lower than in the coloring stage is thereafter impressed thereto.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電気化学的発消色現象すなわちエレクトロク
ロミック現象を利用したエレクトロクロミック素子の駆
動法に関するもので、例えば、数字表示素子、X−Yマ
トリクスディスプレイ、光学シャッタ、絞り機構等に応
用できるものである。このようなエレクトロクロミック
素子を、その材料で分類すると、液体型と全固体型に分
けられるが、本発明は全固体型の、特に相補信望のエレ
クトロクロミンク素子の駆動法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for driving an electrochromic element using an electrochemical coloring/decoloring phenomenon, that is, an electrochromic phenomenon. It can be applied to Y matrix displays, optical shutters, aperture mechanisms, etc. Such electrochromic devices can be classified into liquid type and all-solid type based on their materials, and the present invention relates to a method for driving an all-solid type electrochromic device, particularly a complementary electrochromic device.

[開示のa要] 本明細書及び図面は、相補信望のエレクトロクロミック
素子の駆動法において、着色時にはプラス電圧を印加し
、消色時は電極間を一時ショート状態とし、その後着色
時とは極性が逆であり、かつ波高値の絶対値が着色時よ
り低い消色電圧を印加することにより、長寿命で見栄え
の良い素子とすることができるようにしたものである。
[A Summary of the Disclosure] The present specification and drawings describe a complementary method for driving an electrochromic device in which a positive voltage is applied during coloring, a temporary short-circuit state is created between the electrodes during decolorization, and then polarity is changed during coloring. By applying a decoloring voltage in which the voltage is reversed and the absolute value of the peak value is lower than that during coloring, an element with a long life and good appearance can be obtained.

[従来の技術] エレクトロクロミック(以下ECと記す)現象を利用し
た全固体型EC素子の構造例を第2図に示す、第2図は
特に相補信望の例を示すもので、 EC素子は、透明な
基板1の上に、透明導電体膜よりなる第1電極2.陽極
側発色層である第1のEC層3、誘電体膜からなる絶縁
層4.113極側発色層である第2のEC層6、導゛准
体膜より成る第2電極5を順次積層してなるものである
[Prior Art] Fig. 2 shows an example of the structure of an all-solid-state EC element that utilizes electrochromic (hereinafter referred to as EC) phenomenon. Fig. 2 particularly shows an example of complementary chemistry. A first electrode 2 made of a transparent conductive film is placed on a transparent substrate 1. A first EC layer 3 which is a coloring layer on the anode side, an insulating layer 4 made of a dielectric film, a second EC layer 6 which is a coloring layer on the pole side, and a second electrode 5 made of a dielectric film are sequentially laminated. This is what happens.

上記の構造において、基板lは一般的にガラス板によっ
て形成されるが、これはガラス板に限らず、プラスチア
ク板またはアクリル板等の無色透明な板ならばよく、ま
た、その位置に関しても。
In the above structure, the substrate l is generally formed of a glass plate, but it is not limited to a glass plate, and may be any colorless and transparent plate such as a plastic plate or an acrylic plate, and also regarding its position.

第1電極2の下ではなく、第2電極5の上にあってもよ
いし、目的に応じて(例えば、保護カバーとするなどの
目的で)両側に設けてもよい。ただし、これらの場合に
応じて、第2′心極5を透明導電膜にしたり、両側の電
極とも透明導電膜にする必要がある0両方の電極を透明
電極とすれば、透過型の素子とすることができる。絶縁
層4は誘電体のみではなく、固体電解質等のようなもの
でもよい。
It may be provided on the second electrode 5 instead of under the first electrode 2, or may be provided on both sides depending on the purpose (for example, for the purpose of serving as a protective cover). However, depending on these cases, it is necessary to use a transparent conductive film for the 2' center pole 5 or a transparent conductive film for both electrodes. If both electrodes are made of transparent electrodes, it can be used as a transmission type element. can do. The insulating layer 4 may be made of not only a dielectric but also a solid electrolyte or the like.

透明導電体膜としては、ITO膜(酸化インジウムIn
2O3中に酸化錫5n02をドープしたもの)やネサ膜
等が用いられる。陽極側発色層である第1のEC層3は
、従来、三酸化クロム(Cr203)、酸化イリジウム
(IrOx)、酸化ニッケル(NiOz)等によって形
成されている。誘電体膜からなる絶縁層4は、二酸化ジ
ルコン(Zr(h)、五酸化タンタル(↑a205) 
、 S化ケイ素(Sin、 5i02) 竿に代表され
る酸化物、あるいはフッ化リチウム(LiF) 、  
フッ化マグネシウム(MgFz )iに代表されるフッ
化物を用いて形成する。また、陰極側発色層である第2
のEC層6は、酸化タングステン(WO2,W(h)、
酸化モリブデン(Mo02 、 MoO3)、五酸化バ
ナジウム(V2O3)等を用いて形成する。
As the transparent conductor film, ITO film (indium oxide In
2O3 doped with tin oxide 5N02), NESA film, etc. are used. The first EC layer 3, which is the coloring layer on the anode side, has conventionally been formed of chromium trioxide (Cr203), iridium oxide (IrOx), nickel oxide (NiOz), or the like. The insulating layer 4 made of a dielectric film is made of zircon dioxide (Zr(h), tantalum pentoxide (↑a205)
, silicon sulfide (Sin, 5i02), oxides represented by rods, or lithium fluoride (LiF),
It is formed using a fluoride typified by magnesium fluoride (MgFz)i. In addition, the second color forming layer on the cathode side
The EC layer 6 is made of tungsten oxide (WO2, W(h),
It is formed using molybdenum oxide (Mo02, MoO3), vanadium pentoxide (V2O3), etc.

この様な構造をもつ全固体型エレクトロクロミック素子
は、第1電極2と第2電極5の間に′電圧を印加するこ
とにより電気化学的反応が起き、着色、消色をする。こ
の着色機構は1例えば、第2のEC層6へのカチオンと
電子のダブルインジェクションによるブロンズ形成にあ
ると一般的に言われている0例えば、EC物質として、
WO3を用いる場合には、次の(1)式で表わされる酸
化還元反応が起き着色する。
In an all-solid-state electrochromic element having such a structure, an electrochemical reaction occurs by applying a voltage between the first electrode 2 and the second electrode 5, and the element is colored or decolored. This coloring mechanism is generally said to be due to bronze formation by double injection of cations and electrons into the second EC layer 6.For example, as an EC material,
When WO3 is used, an oxidation-reduction reaction represented by the following formula (1) occurs, resulting in coloration.

WO3+ xH・+ xe−: HxW(h    (
1)(1)式に従って、タングステンブロンズHxWO
3が形成され着色するが、ここで印加電圧を逆転すれば
消色状態となる。(1)式のこの様な反応は。
WO3+ xH・+ xe−: HxW(h (
1) According to formula (1), tungsten bronze HxWO
3 is formed and colored, but if the applied voltage is reversed at this point, it becomes a decolored state. This kind of reaction in equation (1) is.

全固体型EC素子においては、素子内部の絶縁層によっ
てプロトンH°が供給され着色する。
In an all-solid-state EC element, protons H° are supplied by an insulating layer inside the element and the element is colored.

上述のEC素子においては、従来、陽極側発色層である
第1のECPfj3は、酸化イリジウム(IrOx)等
の水酸化物を反応性スパッタ或いは陽極酸化脱法によっ
て形成している。
In the above-mentioned EC element, the first ECPfj3, which is the coloring layer on the anode side, has conventionally been formed from a hydroxide such as iridium oxide (IrOx) by reactive sputtering or anodic oxidation.

[発明が解決しようとする問題点] 上記相補償型EC素子の従来の駆動法を第3図に示す。[Problem that the invention attempts to solve] A conventional driving method for the above-mentioned phase compensation type EC element is shown in FIG.

第3図において、縦軸は電圧V、横軸は時間tを表わす
、従来は1例えば第3図(a)に示す様に1着色時には
プラスの電圧を印加し、消色時には着色時とは逆極性の
パルスを印加するか、あるいは第3図(b)に示す様に
両電極間をショートするかのいずれかの方法が用いられ
ていた。
In FIG. 3, the vertical axis represents voltage V, and the horizontal axis represents time t. Conventionally, for example, as shown in FIG. 3(a), a positive voltage is applied when coloring, and when decoloring, a positive voltage is applied. Either a method of applying a pulse of opposite polarity or short-circuiting between both electrodes as shown in FIG. 3(b) has been used.

しかし7clら、これらの駆動法は共に緑り返し駆動に
よる寿命が短く、特に消色時にショートさせるだけの場
合1色残り等の要因で完全には色が消えない等の欠点が
あった。
However, both of these driving methods, such as 7cl, have a short service life due to the green-turning drive, and in particular, if only a short circuit is made during erasing, the color cannot be completely erased due to factors such as one remaining color.

本発明は、上記従来例の欠点に鑑みなされたもので、寿
命が長く、かつ見栄えの良いEC素子の駆動法を提供す
ることを目的とするものである。
The present invention has been made in view of the drawbacks of the conventional example, and aims to provide a method for driving an EC element that has a long life and good appearance.

[問題点を解決するための手段] m1図(a)、 (b)は本発明による駆動法の一例を
示すパルス波形である。図中Oレベルは素子の電極両端
が同電位(ショート状態)であることを意味する。第1
図(a)において、着色電圧+v1を印加した後は、電
極両端をオープン状態とし。
[Means for Solving the Problems] Figures m1 (a) and (b) are pulse waveforms showing an example of the driving method according to the present invention. The O level in the figure means that both ends of the electrodes of the element are at the same potential (short-circuited state). 1st
In Figure (a), after applying the coloring voltage +v1, both ends of the electrode are in an open state.

E(Jのメモリー性を生かして着色状態を維持する0次
に消色する場合は、素子の両端をショートして着色のほ
とんどを消去する。次に着色時とは逆の極性であり、か
つ波高値の絶対値が着色時より低い消色電圧−v2を印
加する。第1図(b)は、前記消色電圧−v2を印加し
た後、再びショート状態とするものである。
When decoloring the 0th order, which maintains the colored state by taking advantage of the memory property of E (J, short both ends of the element to erase most of the coloring.Next, the polarity is opposite to that when coloring, and A decoloring voltage -v2 whose absolute value of the peak value is lower than that during coloring is applied.FIG. 1(b) shows that after applying the decoloring voltage -v2, the circuit is brought into a short-circuit state again.

なお、いずれの場合も、消色電圧のパルス幅は、着色電
圧に比べて短くすることが好ましい。
In any case, it is preferable that the pulse width of the erasing voltage be shorter than that of the coloring voltage.

[作 川] 消色電圧を第3図(a)のようにかけると、EC層内に
イオンが発生し易くなり、寿命が短くなる。
[Sakukawa] When a decoloring voltage is applied as shown in FIG. 3(a), ions are likely to be generated in the EC layer, resulting in a shortened lifespan.

そこで、消色する際に、素子を一時的にショート状yム
とし、その後わずかにマイナス側に電圧をかけることに
より、余分な電圧を加えずに無理なく消色させることが
できる。また、消色後もショートを維持すれば、消色状
態は常に安定に保たれる。
Therefore, when decoloring the element, by temporarily shorting the element and then applying a slight voltage to the negative side, the color can be easily decolored without applying any extra voltage. Furthermore, if the short circuit is maintained even after decoloring, the decoloring state is always kept stable.

[実施例] 本発明の具体的な実施例を、第1図及び第2図と共に説
明する。
[Example] A specific example of the present invention will be described with reference to FIGS. 1 and 2.

まず、所定の形状を有する第1電極2とリード電極(図
示せず)をパターニングした透明電極付ガラス基板l上
に、陽極側の第1のEC層であるIr0xll!2を、
200Aの厚さでパターニングし形成した。次に、絶縁
層4としてTa205を3000A、続いて陰極側の第
2のEC層としてllIO3を4000Aの厚さで順に
、電T銃を用いた真空蒸着法で形成した。
First, a first EC layer on the anode side is formed on a glass substrate l with a transparent electrode on which a first electrode 2 having a predetermined shape and a lead electrode (not shown) are patterned. 2,
It was patterned and formed with a thickness of 200A. Next, Ta205 was formed to a thickness of 3000 Å as the insulating layer 4, and then llIO3 was formed to a thickness of 4000 Å as the second EC layer on the cathode side by vacuum evaporation using an electric T-gun.

さらに、この上にマスクを用いて、反応性イオンブレー
ティング法で第2電極5であるITO膜を1(100A
形成した。
Furthermore, using a mask, an ITO film serving as the second electrode 5 was formed using a reactive ion blating method.
Formed.

この様にして得られた素子に対して、第1図(a)、 
(b)に示すパルス波形(着色印加電圧の波高値+1.
5V、パルス幅250m5ec 、ショート時間+00
m5 、逆極性印加電圧の波高値−〇、5V、パルス幅
150rms )をそれぞれ印加したところ、着色時の
Δ0.D = 0.48の性能を有する素子を、5 X
 106回以上駆動することができた。これは、従来の
駆動αにおける素子の寿命を1ケタ多くするものである
For the device obtained in this way, FIG. 1(a),
The pulse waveform shown in (b) (peak value of coloring applied voltage + 1.
5V, pulse width 250m5ec, short time +00
m5, peak value of reverse polarity applied voltage -〇, 5V, pulse width 150rms), Δ0. A device with a performance of D = 0.48 was
I was able to drive it over 106 times. This increases the lifetime of the element in the conventional drive α by one order of magnitude.

[発明の効果] 以上説明したように、本発明によれば、EC素子の着色
時にはプラス電圧を印加し、消色時は電極間を一時ショ
ート状態とし、その後着色時とは極性が逆であり、かつ
波高値の絶対値が着色時より低い消色電圧を印)口する
ことにより、従来に比べて素子の寿命を長くできるとと
もに、消色時の色残りのない見栄えの良い素子とするこ
とができる。
[Effects of the Invention] As explained above, according to the present invention, a positive voltage is applied when coloring an EC element, a temporary short circuit is created between the electrodes when decoloring, and then the polarity is reversed from that when coloring. , and the absolute value of the peak value is lower than that at the time of coloring) By printing a decoloring voltage that is lower than that during coloring, it is possible to extend the life of the element compared to the conventional method, and to make the element look good without any color residue when decoloring. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による駆動法の一例を示すパルス波形、
第2図は本発明に係わる全固体型EC素子の断面図、第
3図は従来の駆動法の一例を示すパルス波形である。 l・・・基板、2・・・第1電極、3・・・第”lのE
C層。 4・・・絶縁層、5・・・第2電極、6・・・第2のE
C層。
FIG. 1 shows a pulse waveform showing an example of the driving method according to the present invention.
FIG. 2 is a sectional view of an all-solid-state EC element according to the present invention, and FIG. 3 is a pulse waveform showing an example of a conventional driving method. l...Substrate, 2...First electrode, 3...E of the "l"
C layer. 4... Insulating layer, 5... Second electrode, 6... Second E
C layer.

Claims (1)

【特許請求の範囲】 1)相補償型エレクトロクロミック素子の駆動法におい
て、着色時にはプラス電圧を印加し、消色時は電極間を
一時ショート状態とし、その後着色時とは極性が逆であ
り、かつ波高値の絶対値が着色時より低い消色電圧を印
加することを特徴とするエレクトロクロミック素子の駆
動法。 2)消色電圧印加後、再びショート状態とすることを特
徴とする特許請求の範囲第1項に記載のエレクトロクロ
ミック素子の駆動法。
[Claims] 1) In a method of driving a phase-compensated electrochromic element, a positive voltage is applied during coloring, a temporary short circuit is created between the electrodes when decoloring, and then the polarity is reversed from that during coloring, A method for driving an electrochromic element, characterized in that a decoloring voltage is applied, and the absolute value of the peak value is lower than that during coloring. 2) The method for driving an electrochromic element according to claim 1, wherein the electrochromic element is brought into a short-circuited state again after the decoloring voltage is applied.
JP2777786A 1986-02-13 1986-02-13 Driving method for electrochromic element Pending JPS62186233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2777786A JPS62186233A (en) 1986-02-13 1986-02-13 Driving method for electrochromic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2777786A JPS62186233A (en) 1986-02-13 1986-02-13 Driving method for electrochromic element

Publications (1)

Publication Number Publication Date
JPS62186233A true JPS62186233A (en) 1987-08-14

Family

ID=12230402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2777786A Pending JPS62186233A (en) 1986-02-13 1986-02-13 Driving method for electrochromic element

Country Status (1)

Country Link
JP (1) JPS62186233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960323A (en) * 1988-10-05 1990-10-02 Ford Motor Company Method for maintaining the electrochromic activity of an electrochromic material
JP2012242776A (en) * 2011-05-24 2012-12-10 Ricoh Co Ltd Driving method for electrochromic display device, and electrochromic display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960323A (en) * 1988-10-05 1990-10-02 Ford Motor Company Method for maintaining the electrochromic activity of an electrochromic material
JP2012242776A (en) * 2011-05-24 2012-12-10 Ricoh Co Ltd Driving method for electrochromic display device, and electrochromic display device

Similar Documents

Publication Publication Date Title
US5099356A (en) Electrochromic device with an electrolyte comprising a lithium salt and a sodium salt
JPS62186233A (en) Driving method for electrochromic element
GB2050666A (en) Electrochromic display device
JPS6186733A (en) Electrochromic element
JPS61261788A (en) Driving of electrochromic element
JPH0152736B2 (en)
JPS60242429A (en) Control system for electrochromic element
JPS5953816A (en) Fully solid state type electrochromic element
JPS61261782A (en) Driving of electrochromic element
JPS61261789A (en) Driving of electrochromic element
JPS6173785A (en) Electrochromic element
JPS63286826A (en) Electrochromic display element
JPH0339724A (en) Electrochromic element
JPS6127525A (en) Driving method of electrochromic element
JPS61261784A (en) Driving of electrochromic element
JPS62186232A (en) Transmission type display electrode
JPS61261783A (en) Driving of electrochromic element
JPS61261787A (en) Driving of electrochromic element
JPS61261785A (en) Driving of electrochromic element
JPH0128927B2 (en)
JPH0381738A (en) Electrochromic element, dimmer, display device and antidazzling mirror
JPS60154236A (en) Driving method of optical modulating element
JPS60242428A (en) Control system for electrochromic element
JPS6035067B2 (en) electrochromic display
JPH0549969B2 (en)