JPS62185878A - Method for growing metal in vapor phase - Google Patents

Method for growing metal in vapor phase

Info

Publication number
JPS62185878A
JPS62185878A JP2820186A JP2820186A JPS62185878A JP S62185878 A JPS62185878 A JP S62185878A JP 2820186 A JP2820186 A JP 2820186A JP 2820186 A JP2820186 A JP 2820186A JP S62185878 A JPS62185878 A JP S62185878A
Authority
JP
Japan
Prior art keywords
growth
metal
substrate
vapor phase
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2820186A
Other languages
Japanese (ja)
Inventor
Takayuki Oba
隆之 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2820186A priority Critical patent/JPS62185878A/en
Publication of JPS62185878A publication Critical patent/JPS62185878A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the rate of growth of a metal and to apply the growth to the wiring of a device having a complex structure by reacting an organometallic compound with H2 on a substrate for growth so as to deposit the metal on the substrate. CONSTITUTION:An organometallic compound such as Al(i-C4H9)3 (i-C4H9 is isobutyl) is prepd. as gaseous starting material. This gaseous starting material is mixed with H2 and reacted on a substrate for growth. The organometallic compound is thermally decomposed by the exothermic reaction on deposit the desired metal on the substrate.

Description

【発明の詳細な説明】 〔概要〕 有機金属に水素を混合することにより、金属の成長速度
を大きくして被覆性に冨んだ金属の気相成長(CVD)
法を提起し、複雑構造のデバイスの配線法として応用す
る。
[Detailed Description of the Invention] [Summary] Vapor phase growth (CVD) of metals with increased coating properties by increasing the growth rate of metals by mixing hydrogen with organic metals.
We propose a new method and apply it as a wiring method for devices with complex structures.

〔産業上の利用分野〕[Industrial application field]

本発明は成長速度の大きい金属の気相成長法に関する。 The present invention relates to a metal vapor phase growth method with a high growth rate.

CVD法は半導体デバイスの製造プロセスに広く用いら
れ、導電膜、半導体膜として多結晶珪素等、絶縁膜、耐
食刻膜、耐酸化膜として窒化珪素、二酸化珪素等、配線
膜としてアルミニウム(At)、タングステン(−)、
モリブデン(MO)、チタン(Ti)等金属の成膜に使
用される。
The CVD method is widely used in the manufacturing process of semiconductor devices, and uses polycrystalline silicon, etc. as conductive films and semiconductor films, silicon nitride, silicon dioxide, etc. as insulating films, anti-etching films, and oxidation-resistant films, and aluminum (At), etc. as wiring films. Tungsten (-),
It is used to form films of metals such as molybdenum (MO) and titanium (Ti).

金属のCVD法は有機金属の熱分解によるが、成長温度
を低温化するために成長速度を上げる必要があるが、そ
れには限界がある。
The CVD method for metals relies on thermal decomposition of organic metals, and although it is necessary to increase the growth rate in order to lower the growth temperature, there are limits to this.

一方、近年デバイスの複雑、微細にともない、プロセス
上深い段差被覆が必要になり、そのために成長速度の増
大が望まれる。
On the other hand, in recent years, as devices have become more complex and finer, deep step coverage has become necessary in the process, and therefore an increase in the growth rate is desired.

以下本発明においては、半導体デバイスの配線層として
最も広く使用されているアル起ニウムを例にとり説明す
る。
In the following, the present invention will be explained using aluminum, which is most widely used as a wiring layer of semiconductor devices, as an example.

〔従来の技術〕[Conventional technology]

従来のアルミニウムのCVD法は、有機金属としてしT
in^(トリイソブチルアルミニウム) 、TMA(ト
リメチルアルミニウム)、TEA(トリエチルアルミニ
ウム)をヘリウム(He)、アルゴン(Ar)等でバブ
リングして被成長基板上に導き、約300℃で熱分解し
て、この基板上に成長する。
The conventional CVD method for aluminum uses T as an organic metal.
in^ (triisobutylaluminum), TMA (trimethylaluminum), and TEA (triethylaluminum) are bubbled with helium (He), argon (Ar), etc., introduced onto the growth substrate, and thermally decomposed at about 300°C. grow on this substrate.

この場合、成長速度は約500人/分と遅く、原料ガス
の蒸気圧が低いため、これ以上に成長速度を上げること
は困難である。
In this case, the growth rate is as slow as about 500 people/min, and because the vapor pressure of the raw material gas is low, it is difficult to increase the growth rate any further.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の金属のCVD法は成長速度が低く、複雑な構造の
デバイスの配線には不充分であった。
Conventional metal CVD methods have low growth rates and are inadequate for wiring devices with complex structures.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、原料ガスとしての有機金属と水素
とを混合して被成長基板上に導入し、発熱反応をともな
う、該有機金属の熱分解により金属を該被成長基板上に
析出する本発明による金属の気相成長方法により達成さ
れる。
The solution to the above problem is to mix organic metal and hydrogen as raw material gases, introduce the mixture onto the growth substrate, and deposit the metal onto the growth substrate through thermal decomposition of the organic metal accompanied by an exothermic reaction. This is achieved by the method of vapor phase growth of metals according to the present invention.

〔作用〕[Effect]

例えば、有機金属としてTIBA (At(i−CJq
)3.1−C411gはイソブチル基〕を用いた場合に
ついて説明する。
For example, TIBA (At(i-CJq
)3.1-C411g is an isobutyl group] will be explained.

従来例による反応は、 八1(i−CJq)3  →Al + (3/2)11
□+3Cfh =C(C113)z。
The reaction according to the conventional example is 81(i-CJq)3 →Al + (3/2)11
□+3Cfh =C(C113)z.

となるが、本発明による反応は、 At(i−CJq)3+nH2−AI+m1lz+3C
IIzCH(CI+)g +(ここにn>m )。
However, the reaction according to the present invention is At(i-CJq)3+nH2-AI+m1lz+3C
IIzCH(CI+)g+ (where n>m).

となる。becomes.

ここで有機金属に水素混合の効果は、つぎの通り考えら
れる。
Here, the effect of mixing hydrogen with the organic metal can be considered as follows.

(1)  濃度平衡の観点よりの考察 上2式の右辺の不飽和炭化水素(イソブチレン3GHz
=C(CH3)z )より、飽和炭化水素〔イソブタン
3CHsCH(CH3)z )の方が蒸気圧が高く、従
−2て基板上の反応界面では蒸気圧の高い方が拡散しや
すいため濃度が下がる。そのために本発明の反応は右辺
の方向に進行する。
(1) Considering from the viewpoint of concentration equilibrium, the unsaturated hydrocarbon (isobutylene 3 GHz
The vapor pressure of saturated hydrocarbon [isobutane3CHsCH(CH3)z ) is higher than that of =C(CH3)z ), and therefore, at the reaction interface on the substrate, the higher the vapor pressure, the easier it is to diffuse, so the concentration is lower. Go down. Therefore, the reaction of the present invention proceeds in the direction on the right side.

(2)  温度平衡の観点よりの考察 上記の反応はいずれも発熱反応で、発熱により反応は左
辺の方向に進もうとするが、本発明の場合は熱伝導率の
大きい水素により反応によって生じた熱を除去すること
により、反応を右辺の方向に継続させることができる。
(2) Consideration from the viewpoint of temperature equilibrium All of the above reactions are exothermic reactions, and the reaction tends to proceed in the direction on the left side due to heat generation, but in the case of the present invention, hydrogen with high thermal conductivity causes the reaction to occur. Removal of heat allows the reaction to continue in the right direction.

参考のために、11□等の熱伝導率 (cal/sec cm”(”C/co+))をつぎに
示す。
For reference, the thermal conductivity (cal/sec cm"("C/co+)) of 11 □ etc. is shown below.

H2Nz    fle    Ar 471.11 65.71 376.0?  45.4
6 Xl0−’以上の作用により、成長速度の増大が期
待できる。
H2Nz fle Ar 471.11 65.71 376.0? 45.4
An increase in the growth rate can be expected due to the effect of 6 Xl0-' or more.

〔実施例〕〔Example〕

第1図は本発明を実施するCVD装置の側断面図である
FIG. 1 is a side sectional view of a CVD apparatus implementing the present invention.

図において、1は反応容器で、排気口2より通常の排気
系により排気される。
In the figure, 1 is a reaction vessel, which is exhausted from an exhaust port 2 by a normal exhaust system.

3はガス混合容器兼シャワーで、4より原料ガスが、5
より水素が導入される。
3 is a gas mixing container/shower, raw material gas is supplied from 4, and 5 is a shower.
More hydrogen is introduced.

反応容器1内のステージ6上には被成長基板7が載せら
れ、ヒータ8で加熱される。
A growth substrate 7 is placed on a stage 6 inside the reaction vessel 1 and heated by a heater 8 .

有機金JiTIBAをヘリウムでバブリングしては11
03CC,水素は0〜11005cc導入して、圧力1
〜5Torr、300℃で成長した。
11 Bubbling organic gold JiTIBA with helium
03CC, 0~11005cc of hydrogen was introduced and the pressure was 1
Growth was at ~5 Torr and 300°C.

第2図は本発明による成長速度と水素流量の関係を示す
図である。・ 図示されるように、水素導入により成長速度が3〜4倍
に増加することが分かる。
FIG. 2 is a diagram showing the relationship between growth rate and hydrogen flow rate according to the present invention. - As shown in the figure, it can be seen that the growth rate increases by 3 to 4 times by introducing hydrogen.

実施例においては、アルミニウム成長の場合の有機金属
としてTIBAを用いたが、これの代わりにTMA 、
 TEAを用いた場合も本発明の効果は同様である。
In the examples, TIBA was used as the organometallic in the case of aluminum growth, but TMA, TMA,
Even when TEA is used, the effects of the present invention are similar.

また、アルミニウム以外のを機金属、トリメチルガリウ
ムTMG、)リエチルガリウムTEG、トリプロピルガ
リウムTPG等ガリウムの有機金属、その他モリブテン
、インジウム等の有機金属を用いた成長に対しても、本
発明の要旨は変わらない。
The gist of the present invention also applies to growth using organic metals other than aluminum, organic metals of gallium such as trimethyl gallium TMG, ethyl gallium TEG, and tripropyl gallium TPG, and other organic metals such as molybdenum and indium. remains unchanged.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、従来の金属のCV
O法に比し成長速度が大きく、複雑な構造のデバイスの
配線に応用できる。
As explained above, according to the present invention, the conventional metal CV
It has a faster growth rate than the O method and can be applied to wiring of devices with complex structures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するCVD装置の側断面図、第2
図は本発明による成長速度と水素流量の関係を示す図で
ある。 図において、 1は反応容器、 2は排気口、 3はガス混合容器兼シャワー、 4は原料ガス導入口、 5は水素導入口、 6はステージ、 7は被成長基板、 凹
FIG. 1 is a side sectional view of a CVD apparatus implementing the present invention, and FIG.
The figure is a diagram showing the relationship between growth rate and hydrogen flow rate according to the present invention. In the figure, 1 is a reaction vessel, 2 is an exhaust port, 3 is a gas mixing container/shower, 4 is a raw material gas inlet, 5 is a hydrogen inlet, 6 is a stage, 7 is a growth substrate, concave

Claims (1)

【特許請求の範囲】 原料ガスとしての有機金属と水素とを混合して被成長基
板上に導入し、 発熱反応をともなう、該有機金属の熱分解により金属を
該被成長基板上に析出する ことを特徴とする金属の気相成長方法。
[Claims] Mixing an organic metal as a raw material gas and hydrogen and introducing the mixture onto a growth substrate, and depositing a metal on the growth substrate by thermal decomposition of the organic metal accompanied by an exothermic reaction. A metal vapor phase growth method characterized by:
JP2820186A 1986-02-12 1986-02-12 Method for growing metal in vapor phase Pending JPS62185878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2820186A JPS62185878A (en) 1986-02-12 1986-02-12 Method for growing metal in vapor phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2820186A JPS62185878A (en) 1986-02-12 1986-02-12 Method for growing metal in vapor phase

Publications (1)

Publication Number Publication Date
JPS62185878A true JPS62185878A (en) 1987-08-14

Family

ID=12242054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2820186A Pending JPS62185878A (en) 1986-02-12 1986-02-12 Method for growing metal in vapor phase

Country Status (1)

Country Link
JP (1) JPS62185878A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074970A (en) * 1973-11-02 1975-06-19
JPS61136681A (en) * 1984-12-04 1986-06-24 Nec Corp Thermal cvd method
JPS6220870A (en) * 1985-07-18 1987-01-29 Fujitsu Ltd Chemical vapor phase growing method for aluminum layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074970A (en) * 1973-11-02 1975-06-19
JPS61136681A (en) * 1984-12-04 1986-06-24 Nec Corp Thermal cvd method
JPS6220870A (en) * 1985-07-18 1987-01-29 Fujitsu Ltd Chemical vapor phase growing method for aluminum layer

Similar Documents

Publication Publication Date Title
US5908947A (en) Difunctional amino precursors for the deposition of films comprising metals
Larsen et al. Decomposition kinetics of OMVPE precursors
US4501769A (en) Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed
US7727597B2 (en) Method and apparatus for preparing thin film
US4781945A (en) Process for the formation of phosphosilicate glass coating
JPS6261668B2 (en)
JPS62185878A (en) Method for growing metal in vapor phase
JPH02185026A (en) Selective forming method of al thin-film
JPH01252776A (en) Formation of aluminum film by vapor growth
Kaneko et al. Epitaxial growth of A1N film by low-pressure MOCVD in gas-beam-flow reactor
JP2650530B2 (en) Gas phase reactor for semiconductor device manufacturing
JPH0744179B2 (en) Wiring layer connection method by vapor phase growth
JPH07110992B2 (en) Selective vapor growth method
JPH0744180B2 (en) Method for forming wiring layer by vapor phase growth
JPS6376875A (en) Vapor growth method
JPS6115150B2 (en)
JP2605928B2 (en) A. Method for selective formation of thin film
JP3363498B2 (en) Liquid vaporizer
JPH01283374A (en) Method for depositing thin aluminum film
JPH0730451B2 (en) Method for chemical vapor deposition of aluminum layer
Ammerlaan Kinetics and characterization of tungsten CVD processes.
JP2663508B2 (en) Vapor growth method
JPH02200781A (en) Method for depositing aluminum thin film
JP3251990B2 (en) Al or Al alloy film forming method
JP2812473B2 (en) Method for producing aluminum nitride powder