JPS62185710A - Production of flame-resistant polyester - Google Patents

Production of flame-resistant polyester

Info

Publication number
JPS62185710A
JPS62185710A JP2748086A JP2748086A JPS62185710A JP S62185710 A JPS62185710 A JP S62185710A JP 2748086 A JP2748086 A JP 2748086A JP 2748086 A JP2748086 A JP 2748086A JP S62185710 A JPS62185710 A JP S62185710A
Authority
JP
Japan
Prior art keywords
polyester
group
phosphorus compound
phosphorus
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2748086A
Other languages
Japanese (ja)
Other versions
JPH0585569B2 (en
Inventor
Atsuko Ueda
敦子 植田
Tetsuo Matsumoto
哲夫 松本
Mitsuharu Shinoki
篠木 光治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2748086A priority Critical patent/JPS62185710A/en
Publication of JPS62185710A publication Critical patent/JPS62185710A/en
Publication of JPH0585569B2 publication Critical patent/JPH0585569B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain at a low cost a polyester which can show excellent flame resistance and has a high glass transition point and good shade, moldability, physical properties, etc., by adding a specified phosphorus compound to the reaction system for the production of a polyester. CONSTITUTION:A phosphorus compound of the formula [wherein R<1> is an ethylene group or a 1,2-phenylene group (which may have a substituent), A is a bivalent or trivalent organic group, R<2> is a monovalent esterifiable functional group and m and n are each 1 or 2] in such an amount that the phosphorus content of the polyester is 500ppm or above is added to the reaction system for the production of a polyester from a dicarboxylic acid component and a diol component and/or a hydroxycarboxylic acid component. Said phosphorus compound can be added in an arbitrary stage from the esterification or transesterification to the initial stage of the polycondensation reaction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐炎性ポリエステルの製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing flame-resistant polyester.

(従来の技術) ポリエステルはその優れた機械的特性及び化学的特性の
ため、広く衣料用、産業用等の繊維のほか、磁気テープ
用、写真用、コンデンサー用等のフィルムあるいはボト
ル等の成形物用として広く用いられている。
(Prior art) Due to its excellent mechanical and chemical properties, polyester is widely used as textiles for clothing and industrial purposes, as well as films for magnetic tapes, photographs, capacitors, etc., and molded products such as bottles. It is widely used for purposes.

ところで、近年、火災予防の観点から合成繊維や各種プ
ラスチック製品の耐炎性への要請が強まっている。
Incidentally, in recent years, there has been an increasing demand for synthetic fibers and various plastic products to be flame resistant from the viewpoint of fire prevention.

従来、ポリエステルに耐炎性を付与する試みは種々なさ
れており、ポリエステルにリン化合物を含有させること
が有効であるとされており、リン化合物としては、亜リ
ン酸エステル、リン酸エステル、ホスホン酸エステル等
が提案されている。
Conventionally, various attempts have been made to impart flame resistance to polyester, and it has been said that it is effective to incorporate phosphorus compounds into polyester. Phosphite esters, phosphate esters, and phosphonate esters etc. have been proposed.

しかし、ポリエステルにリン化合物を含有させる場合、
一般に、(1)ポリエステルのゲル化が生じる。(2)
リン化合物の添加によりポリエステルの融点やガラス転
移点が低下する。(3)リン化合物の残存率が低い、(
4)ポリエステルの色調が悪化する。
However, when polyester contains a phosphorus compound,
In general, (1) gelation of the polyester occurs; (2)
Addition of a phosphorus compound lowers the melting point and glass transition point of polyester. (3) Low residual rate of phosphorus compounds (
4) The color tone of polyester deteriorates.

(5)紡糸、延伸、成形等の各工程で有毒なガスを発生
しやすいといった問題があった。
(5) There is a problem in that toxic gases are likely to be generated during each process such as spinning, stretching, and molding.

特公昭55−41610号公報には、特定のホスフィン
酸化合物を共重合した耐炎性ポリエステルが提案されて
おり、これにより上記の問題点がかなり解消されるが、
このリン化合物は高価であり、−ポリエステルに十分な
耐炎性を付与するに足る量を添加すると、ポリエステル
製造のコストアンプになるという問題があった。
Japanese Patent Publication No. 55-41610 proposes a flame-resistant polyester copolymerized with a specific phosphinic acid compound, which largely eliminates the above problems.
This phosphorus compound is expensive, and if it is added in an amount sufficient to impart sufficient flame resistance to polyester, it will increase the cost of polyester production.

(発明が解決しようとする問題点) 本発明は、安価に製造することができ、優れた耐炎性を
示すとともに、ガラス転移点が高く2色調、成形性、物
性等の良好なポリエステルの製造法を提供しようとする
ものである。
(Problems to be Solved by the Invention) The present invention provides a method for producing polyester that can be produced at low cost, exhibits excellent flame resistance, has a high glass transition point, and has good two-tone tone, moldability, and physical properties. This is what we are trying to provide.

(問題点を解決するための手段) 本発明は、上記目的を達成するもので、その構成は次の
とおりである。
(Means for Solving the Problems) The present invention achieves the above object and has the following configuration.

ジカルボン酸成分とジオール成分及び/又はオキシカル
ボン酸成分からポリエステルを製造するに際し、下記一
般式(1)で表されるリン化合、物を、ポリエステル中
のリン原子含有量が500ppm以上となるように添加
することを特徴とする耐炎性ポリエステルの製造法。
When producing polyester from a dicarboxylic acid component, a diol component, and/or an oxycarboxylic acid component, a phosphorus compound represented by the following general formula (1) is added such that the phosphorus atom content in the polyester is 500 ppm or more. A method for producing flame-resistant polyester, characterized by adding the following:

0=P−0・           〔I〕A−(R2
)n 式(1)において、R′はエチレン基又は1,2−フェ
ニレン基(置換基を有してもよい)、Aは2価又は3価
の有機基R2は1価のエステル形成性官能基を示し、 
m、  nは1又は2である。
0=P-0・[I]A-(R2
) n In formula (1), R' is an ethylene group or a 1,2-phenylene group (which may have a substituent), A is a divalent or trivalent organic group, and R2 is a monovalent ester-forming functional group. Indicates the group,
m and n are 1 or 2.

本発明のポリエステルを形成する主成分としては、ジカ
ルボン酸成分としてテレフタル酸、ジオール成分として
エチレングリコール、オキシ酸成分として4−オキシ安
息香酸(いずれもエステル形成性誘導体を含む。)が好
ましく用いられるが。
As the main components forming the polyester of the present invention, terephthalic acid as a dicarboxylic acid component, ethylene glycol as a diol component, and 4-oxybenzoic acid (all including ester-forming derivatives) as an oxyacid component are preferably used. .

イソフタル酸、5−ナトリウムスルホイソフタル酸、ア
ジピン酸、°トリメリット酸、ジエチレングリコール、
プロピレングリコール、l、4−シクロヘキサンジメタ
ツール、1.4−ブタンジオール。
Isophthalic acid, 5-sodium sulfoisophthalic acid, adipic acid, trimellitic acid, diethylene glycol,
Propylene glycol, 1,4-cyclohexane dimetatool, 1,4-butanediol.

ペンタエリスリトール等を共重合成分として併用しても
よい。
Pentaerythritol or the like may be used in combination as a copolymerization component.

リン化合物(1)におけるAは2価(n=1)又は3価
(n=2)の有機基であり、具体例としては3次のよう
なものが挙げられる。
A in the phosphorus compound (1) is a divalent (n=1) or trivalent (n=2) organic group, and specific examples include the following tertiary groups.

メチレン基、エチレン基、イソプロピリデン基。Methylene group, ethylene group, isopropylidene group.

シクロヘキシレン基等のアルキル基、アルキリデン基、
p−フェニレン!、m−フ二二しン基、1.4−ナフタ
レン基、2,6−ナフタレン基等のアリーレン、l、L
2.3−プロパントリイル基等のアルカントリイル基、
3価のシクロヘキサン環1.3価のベンゼン環基又は3
価のナフタレン環基。
Alkyl groups such as cyclohexylene groups, alkylidene groups,
p-phenylene! , m-phinidine group, 1,4-naphthalene group, arylene such as 2,6-naphthalene group, l, L
2. Alkanetriyl group such as 3-propanetriyl group,
Trivalent cyclohexane ring 1. Trivalent benzene ring group or 3
valent naphthalene ring group.

また、リン化合物(1)におけるR2としては。Moreover, as R2 in phosphorus compound (1).

水酸基、カルボキシル基及びそれらのエステル形成性誘
導体が挙げられる。
Examples include hydroxyl groups, carboxyl groups, and ester-forming derivatives thereof.

なお R1の1.2−フェニレン基は、ハロゲン原子、
炭素原子数1〜,20の炭化水素基又はハロゲン化炭化
水素基等を置換基として有していてもよい。
Note that the 1,2-phenylene group of R1 is a halogen atom,
It may have a hydrocarbon group having 1 to 20 carbon atoms or a halogenated hydrocarbon group as a substituent.

−A −(R”)nの具体例としては1次のような基及
びこれらのカルボキシル基をメチル、エチル等の低級ア
ルキルエステル基や酸無水物基に変換したもの、水酸基
をアセチルエステル基やヒドロキシエトキシ基に変換し
たもの等が挙げられる。
Specific examples of -A-(R")n include the following primary groups, those obtained by converting these carboxyl groups into lower alkyl ester groups such as methyl and ethyl, or acid anhydride groups, and those obtained by converting hydroxyl groups into acetyl ester groups or acid anhydride groups. Examples include those converted to hydroxyethoxy groups.

リン化合物〔I〕の具体例としては9次のような化合物
及びこれらのエステル形成性HM R体が挙げられる。
Specific examples of the phosphorus compound [I] include the following compounds and their ester-forming HMR forms.

なお、上記のようなリン化合物において、フェノール性
水酸基を有するものは、そのままではエステル形成能が
弱いので2例えば、アセチルエステルのようなエステル
形成性の誘導体に変換して反応に供することが望ましい
In addition, among the above-mentioned phosphorus compounds, those having a phenolic hydroxyl group have a weak ester-forming ability as they are, so it is desirable to convert them into ester-forming derivatives such as acetyl esters and use them for the reaction.

リン化合物〔I〕は下記式(n)で表される化合物(ホ
スフィン酸という)とp−ベンゾキノン。
The phosphorus compound [I] is a compound represented by the following formula (n) (referred to as phosphinic acid) and p-benzoquinone.

1.4−ナフトキノン等のキノン類とをエチルセロソル
ブ等の溶媒中で加熱反応させ、必要に応じてその反応生
成物の水酸基の部分を他のエステル形成性官能基に変換
するか、イタコン酸、イタコン酸ジメチル、2−ブテン
−1,4−ジオール、2−ブテン−1,4−ジオールジ
アセテート等の二重結合とエステル形成性官能基とを有
する化合物とホスフィン酸とを付加反応させることによ
り得られる。
1. Either quinones such as 4-naphthoquinone are reacted with heat in a solvent such as ethyl cellosolve, and if necessary, the hydroxyl group of the reaction product is converted to other ester-forming functional groups, or itaconic acid, By causing an addition reaction between a compound having a double bond and an ester-forming functional group, such as dimethyl itaconate, 2-butene-1,4-diol, and 2-butene-1,4-diol diacetate, and phosphinic acid. can get.

ホスフィン酸とキノン類の反応物の水酸基の部分を他の
エステル形成性官能基に変換するには。
To convert the hydroxyl group of the reactant of phosphinic acid and quinones into other ester-forming functional groups.

例えば、この反応物と酢酸無水物のようなカルボン酸無
水物とを加熱反応させたり、この反応物のアルカリ金属
塩とアルキレンカーボネート、アルキレンオキシド、ポ
リアルキレンオキシドあるいはそのモノ又はジグリシジ
ルエーテルやエピハロヒドリンとを反応させることによ
り、他のエステル形成性官能基に変換することができる
For example, this reactant may be heated to react with a carboxylic acid anhydride such as acetic anhydride, or an alkali metal salt of this reactant may be reacted with alkylene carbonate, alkylene oxide, polyalkylene oxide, mono- or diglycidyl ether thereof, or epihalohydrin. can be converted into other ester-forming functional groups by reacting with .

上記のようなリン化合物は、そのまま共重合ポリエステ
ルの合成に供してもよいが、テレフタル酸、イソフタル
酸等の酸成分と反応させたモノマー、オリゴマー又はポ
リマーの形にして使用してもよい。
The above-mentioned phosphorus compounds may be used as they are in the synthesis of copolyester polyesters, but they may also be used in the form of monomers, oligomers, or polymers reacted with an acid component such as terephthalic acid or isophthalic acid.

リン化合物の添加量は、ポリエステルに対してリン原子
として500ppm以上、好ましくは1000〜110
000ppの含有量となるようにする必要がある。
The amount of the phosphorus compound added is 500 ppm or more as phosphorus atoms based on the polyester, preferably 1000 to 110 ppm.
It is necessary to adjust the content to 000 pp.

(重縮合時にリン化合物が一部飛散することを考慮して
添加量を決める。)リン化合物の量が500ppm未満
では耐炎性が不十分であり、あまり多くするとポリエス
テルとして必要な強度特性等を保つに必要な重合度に達
する前に、ゲル化が生じたり。
(Determine the amount added by taking into account that some of the phosphorus compound will scatter during polycondensation.) If the amount of phosphorus compound is less than 500 ppm, the flame resistance will be insufficient, and if it is too large, the strength properties required for polyester will not be maintained. Gelation may occur before the required degree of polymerization is reached.

ポリエステル本来の良好な物理的性質が損なわれる等、
操業上、ポリエステルの物性上問題が生ずることがある
Polyester's original good physical properties are impaired, etc.
During operation, problems may arise regarding the physical properties of polyester.

リン化合物は、常法によってポリエステルを製造する際
に添加すればよい。すなわち、ジカルボン酸又はジカル
ボン酸ジエステルとジオールとからエステル化又はエス
テル交換反応及び重縮合反応によりポリエステルを製造
する際に、エステル化又はエステル交換反応から重縮合
反応の初期までの任意の段階で添加することができる。
The phosphorus compound may be added when producing polyester by a conventional method. That is, when producing polyester from dicarboxylic acid or dicarboxylic acid diester and diol by esterification or transesterification reaction and polycondensation reaction, it is added at any stage from the esterification or transesterification reaction to the initial stage of the polycondensation reaction. be able to.

なお、リン化合物の種類や添加時期によっては高重合度
のポリエステルが得られない場合があり。
Note that polyester with a high degree of polymerization may not be obtained depending on the type of phosphorus compound and the timing of addition.

例えばエステル形成性官能基が1個のリン化合物を使用
する場合、末端停止剤として作用することがあるので、
そのような場合には、ペンタエリスリトール、トリメリ
ット酸、トリメシン酸、ピロメリット酸等の多官能性化
合物を併用する等の配慮が必要である。
For example, when using a phosphorus compound with one ester-forming functional group, it may act as a terminal capping agent.
In such a case, consideration should be given to the combined use of a polyfunctional compound such as pentaerythritol, trimellitic acid, trimesic acid, pyromellitic acid, etc.

ポリエステルを製造する際の重縮合反応は1通常0.0
1〜10龍11g程度の減圧下で、260〜310℃。
The polycondensation reaction when producing polyester is 1 usually 0.0
260-310°C under reduced pressure of about 1-10g and 11g.

好ましくは275〜290℃で所定の重合度のものが得
られるまで行われる。
Preferably, the polymerization is carried out at 275 to 290°C until a predetermined degree of polymerization is obtained.

また9重縮合反応は、触媒の存在下に行われ。Further, the 9-polycondensation reaction is carried out in the presence of a catalyst.

触媒としては従来一般に用いられているアンチモン、チ
タン、ゲルマニウム、スズ、亜鉛、アルミニウム1.マ
グネシウム、カルシウム、マンガン。
As catalysts, antimony, titanium, germanium, tin, zinc, and aluminum, which are commonly used in the past, are used. Magnesium, calcium, manganese.

コバルト等の金属化合物のほか、スルホサリチル酸、0
−スルホ安息香酸無水物等の存機スルホン酸化合物が好
ましく用いられる。触媒の添加量はポリエステルを構成
する酸成分1モルに対して。
In addition to metal compounds such as cobalt, sulfosalicylic acid,
- Preferably used sulfonic acid compounds such as sulfobenzoic anhydride. The amount of catalyst added is based on 1 mole of the acid component constituting the polyester.

1xto−’〜1×104モル、好ましくは5×104
〜5X10−’モル、最適にはlXl0−’〜3X10
−3モルとするのが適当である。
1xto-' to 1x104 mol, preferably 5x104
~5X10-'moles, optimally lXl0-'~3X10
-3 mol is appropriate.

また2本発明においてヒンダードフェノール化合物のよ
うな安定剤、コバルト化合物、螢光剤。
Also used in the present invention are stabilizers such as hindered phenol compounds, cobalt compounds, and fluorescent agents.

染料のような色調改良剤、二酸化チタンのような顔料等
の添加物を含有させてもさしつかえない。
Additives such as color improvers such as dyes and pigments such as titanium dioxide may be included.

本発明のポリエステルはその特性に応じて繊維。The polyester of the present invention is a fiber depending on its properties.

フィルム、ボトル等の成形物の製造に用いられ。Used for manufacturing molded products such as films and bottles.

リン化合物を多量に含有したものはポリエステルに対す
る難燃剤として用いることができる。
Those containing a large amount of phosphorus compounds can be used as flame retardants for polyester.

(作 用) 本発明のポリエステルが優れた耐炎性を示す理由は明ら
かではないが、接炎時にリン化合物がポリエステルの熱
分解と脱水とを促進し、溶融落下を助長して良好な耐炎
性が発現するものと認められる。
(Function) Although the reason why the polyester of the present invention exhibits excellent flame resistance is not clear, the phosphorus compound promotes thermal decomposition and dehydration of the polyester when exposed to flame, promoting melting and falling, resulting in good flame resistance. It is recognized that this phenomenon occurs.

なお、リン化合物により耐炎性を付与する場合。In addition, when flame resistance is imparted by a phosphorus compound.

その効果はリン原子の含有量と共に、リン化合物の構造
により大きな影響をうけるが9本発明で用いる特定のホ
スフィン酸誘導体はリン原子が環員子になっているため
か、リン酸系やホスホン酸系のリン化合物に較べて極め
て熱的に安定で、かつポリエステルをゲル化させること
がなく、シかも顕著な耐炎性付与効果を発揮するのであ
る。
The effect is greatly influenced by the structure of the phosphorus compound as well as the phosphorus atom content.9 Perhaps because the phosphorus atom is a ring member in the specific phosphinic acid derivatives used in the present invention, phosphoric acid derivatives and phosphonic acid It is extremely thermally stable compared to other phosphorus compounds, does not cause gelation of polyester, and exhibits a remarkable effect of imparting flame resistance.

(実施例) 次に、実施例をあげて本発明を記述する。(Example) Next, the present invention will be described by giving examples.

なお、実施例においてポリエステルの特性値は次のよう
にして測定した。
In addition, in the examples, the characteristic values of polyester were measured as follows.

なお、実施例においてポリエステルの極限粘度〔η〕は
、フェノールと四塩化エタンとの等重量混合物を溶媒と
し、温度20.0℃で測定した値である。
In addition, in the examples, the intrinsic viscosity [η] of the polyester is a value measured at a temperature of 20.0° C. using an equal weight mixture of phenol and tetrachloroethane as a solvent.

ポリエステル中のリン原子の含有量は、螢光X線法によ
り定量した。(「リン含量」はポリエステルの構成単位
に対するリン原子としての量を示す。) また、耐炎性は、常法によって紡糸、延伸して得た糸を
筒編地にし、その1gを長さ10.0cmに丸めて10
.0mm径の針金コイル中に挿入し、45度の角度に保
持して、下端からミクロバーナー(口径0.64mm)
で点火し、火源を遠ざけて消火した場合は再び点火を繰
り返し、全試料が燃焼しつくすまでに要する点火回数を
求め、5個の試料についての点火回数(接炎回数と記す
)で表した。
The content of phosphorus atoms in the polyester was determined by fluorescent X-ray method. (The "phosphorus content" refers to the amount of phosphorus atoms relative to the constituent units of polyester.) Flame resistance is determined by spinning and drawing yarn by a conventional method into a tubular knitted fabric, and measuring 1 g of the yarn into a tube-knitted fabric with a length of 10. Round to 0 cm and 10
.. Insert it into a wire coil with a diameter of 0 mm, hold it at a 45 degree angle, and insert a micro burner (diameter 0.64 mm) from the bottom end.
If the flame was ignited and extinguished by moving the fire source away, the flame was ignited again, and the number of ignitions required until all the samples were completely combusted was calculated and expressed as the number of ignitions (denoted as the number of flame contacts) for the five samples. .

実施例1 リン化合 (a)の入h′ 温度計、ガス吹き込みロ、攪拌機及び直径3cm。Example 1 Phosphorus compound (a) input h' Thermometer, gas blower, stirrer and 3cm diameter.

長さ30cmのアリーン、冷却管の付いた内容積200
0cntの四つロフラスコに、相当するホスフィン酸2
12.2gと及びエチルセロソルブ900 gを仕込ん
だ。ガス吹き込み口から窒素ガスをゆっくり吹き込み。
Aline with a length of 30 cm, internal volume 200 with cooling pipe
0 cnt four-loaf flask, the corresponding phosphinic acid 2
12.2 g and 900 g of ethyl cellosolve were charged. Slowly blow in nitrogen gas from the gas inlet.

攪拌しながら、内容物が80℃になるまで加熱した。While stirring, the contents were heated to 80°C.

この過程で内容物は無色透明な溶液となった。次いで、
p−ベンゾキノン216gを2時間かけて添加し、12
0℃で2時間攪拌した後、放冷し、室温に戻し、生じた
結晶を濾別し、減圧乾燥して白色結晶を得た。この結晶
をオルソキシレンで再結晶して精製した。(リン化合物
の収率は92%であった。)この結晶を赤外吸収スペク
トル、元素分析及び液体ガスクロマトグラフィーにより
分析した結果。
During this process, the contents became a colorless and transparent solution. Then,
216 g of p-benzoquinone was added over 2 hours, and 12
After stirring at 0° C. for 2 hours, the mixture was allowed to cool and returned to room temperature, and the resulting crystals were filtered off and dried under reduced pressure to obtain white crystals. The crystals were purified by recrystallization with ortho-xylene. (The yield of the phosphorus compound was 92%.) The results of analyzing this crystal by infrared absorption spectrum, elemental analysis, and liquid gas chromatography.

前記リン化合物(a)であることが確認された。It was confirmed that it was the phosphorus compound (a).

すなわち、赤外吸収スペクトルにおいて、 1260c
m −’にホスフィン酸のp=oに基づく吸収、 31
50〜3400cm−’に水酸基に基づくブロードな吸
収、 1440cm −’にリンとフェニル基の結合に
基づく吸収が見られた。また、原料のP −Hに基づ<
 2400cm −’付近の吸収、p−ベンゾキノンの
C=Oに基づ< 1650cm−’付近の吸収は見られ
なかった。
That is, in the infrared absorption spectrum, 1260c
Absorption based on p=o of phosphinic acid in m −', 31
Broad absorption based on hydroxyl groups was observed at 50 to 3400 cm-', and absorption based on the bond between phosphorus and phenyl groups was observed at 1440 cm-'. Also, based on P −H of the raw material
No absorption was observed near 2400 cm-' and <1650 cm-' based on C=O of p-benzoquinone.

元素分析の結果は、 C=49.8%(理論値50.5
%)。
The result of elemental analysis is C=49.8% (theoretical value 50.5
%).

H=5.3%(理論値5.1%)、であった。H=5.3% (theoretical value 5.1%).

ポリエステルの合成 リン化合物(a)にやや過剰の無水酢酸を反応させてジ
アセテート体としたもの13重量部、テレフタル酸17
4重量部及びエチレングリコール62重量部に触媒とし
てジメチルスズマレエートをポリエステルを構成する酸
成分1モルに対してlXl0−’モル加えて、150〜
230 ’Cで、窒素気流下で2時間反反応させた。次
いで系の温度を280℃に上げ、徐々に減圧して0.2
1m11gとし1時間反応を続けた。
Synthesis of polyester Phosphorus compound (a) was reacted with a slight excess of acetic anhydride to form a diacetate, 13 parts by weight, 17 parts by weight of terephthalic acid.
4 parts by weight and 62 parts by weight of ethylene glycol were added with 1X10-' mol of dimethyltin maleate as a catalyst per 1 mol of the acid component constituting the polyester.
The reaction was carried out at 230'C for 2 hours under nitrogen flow. Next, the temperature of the system was raised to 280°C, and the pressure was gradually reduced to 0.2
The reaction was continued for 1 hour.

得られたポリエステルは、 〔η) 0.65.  リ
ン含量6300ppm (リン残存率90.4%)であ
った。
The obtained polyester has a [η) of 0.65. The phosphorus content was 6300 ppm (phosphorus residual rate 90.4%).

また、このポリエステルからの繊維の接炎回数は4.6
回であった。
In addition, the number of times of flame contact of fibers made from this polyester is 4.6
It was times.

実施例2〜4 リン化合物の種類及び添加量を変えて、実施例1と同様
にして、ポリエステルを製造した。(リン化合物はいず
れもジアセテート体にしてポリエステルの合成に供した
。) 得られたポリエステルの特性値等を第1表に示す。
Examples 2 to 4 Polyesters were produced in the same manner as in Example 1, except that the type and amount of the phosphorus compound added were changed. (All of the phosphorus compounds were converted into diacetates and subjected to polyester synthesis.) Table 1 shows the characteristic values of the obtained polyesters.

第1表 実施例5 相当するホスフィン酸とイタコン酸ジメチルとを150
℃で、窒素雰囲気下に4時間反応させて得たリン化合物
(f)のジメチルエステル16重量部、テレフタル酸1
74重量部及びエチレングリコール69重量部に触媒と
してジメチルスズマレエートをポリエステルを構成する
酸成分1モルに対して1×IO:4モル加えて、150
〜230℃で、窒素気流下で2時間反応させた。次いで
系の温度を280℃に上げ。
Table 1 Example 5 Corresponding phosphinic acid and dimethyl itaconate at 150%
16 parts by weight of dimethyl ester of phosphorus compound (f) obtained by reacting for 4 hours at ℃ under a nitrogen atmosphere, 1 part by weight of terephthalic acid.
To 74 parts by weight and 69 parts by weight of ethylene glycol, dimethyltin maleate was added as a catalyst to 1 x IO: 4 mol per mol of the acid component constituting the polyester, and 150
The reaction was carried out at ~230°C for 2 hours under a nitrogen stream. The temperature of the system was then raised to 280°C.

徐々に減圧して0.2wm11gとし、1時間反応を続
けた。
The pressure was gradually reduced to 0.2wm11g, and the reaction was continued for 1 hour.

得られたポリエステルは、 〔η) 0.56.  リ
ン含”16680ppm (リン残存率97.0%)で
あった。
The obtained polyester had a [η) of 0.56. The phosphorus content was 16,680 ppm (phosphorus residual rate 97.0%).

また1 このポリエステルからの繊維の接炎回数は4.
8回であった。
In addition, the number of times of flame contact of fibers made from this polyester is 4.
It was 8 times.

(発明の効果) 本発明によれば、優れた耐炎性を有すると共に良好な物
性を有するポリエステルを容易に、しかも安価に製造す
ることができる。
(Effects of the Invention) According to the present invention, a polyester having excellent flame resistance and good physical properties can be easily and inexpensively produced.

Claims (1)

【特許請求の範囲】[Claims] (1)ジカルボン酸成分とジオール成分及び/又はオキ
シカルボン酸成分からポリエステルを製造するに際し、
下記一般式〔 I 〕で表されるリン化合物を、ポリエス
テル中のリン原子含有量が500ppm以上となるよう
に添加することを特徴とする耐炎性ポリエステルの製造
法。 ▲数式、化学式、表等があります▼〔 I 〕 式〔 I 〕において、R^1はエチレン基又は1,2−
フエニレン基(置換基を有してもよい)、Aは2価又は
3価の有機基、R^2は1価のエステル形成性官能基を
示し、m、nは1又は2である。
(1) When producing polyester from a dicarboxylic acid component, a diol component and/or an oxycarboxylic acid component,
A method for producing a flame-resistant polyester, which comprises adding a phosphorus compound represented by the following general formula [I] so that the phosphorus atom content in the polyester is 500 ppm or more. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [I] In the formula [I], R^1 is an ethylene group or 1,2-
A is a phenylene group (which may have a substituent), A is a divalent or trivalent organic group, R^2 is a monovalent ester-forming functional group, and m and n are 1 or 2.
JP2748086A 1986-02-10 1986-02-10 Production of flame-resistant polyester Granted JPS62185710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2748086A JPS62185710A (en) 1986-02-10 1986-02-10 Production of flame-resistant polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2748086A JPS62185710A (en) 1986-02-10 1986-02-10 Production of flame-resistant polyester

Publications (2)

Publication Number Publication Date
JPS62185710A true JPS62185710A (en) 1987-08-14
JPH0585569B2 JPH0585569B2 (en) 1993-12-08

Family

ID=12222284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2748086A Granted JPS62185710A (en) 1986-02-10 1986-02-10 Production of flame-resistant polyester

Country Status (1)

Country Link
JP (1) JPS62185710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447991A (en) * 1990-07-11 1995-09-05 Enichem Synthesis S.P.A. Flame-resistant polyolefinic fibres and films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447991A (en) * 1990-07-11 1995-09-05 Enichem Synthesis S.P.A. Flame-resistant polyolefinic fibres and films

Also Published As

Publication number Publication date
JPH0585569B2 (en) 1993-12-08

Similar Documents

Publication Publication Date Title
US4107143A (en) Aromatic polyester carbonate and method for producing the same
US2720506A (en) Organo-metallic aluminum catalysts for the preparation of polyesters
US4086208A (en) Flame resistant polyesters
US5003029A (en) Flame resistant polyester from di aryl-di(hydroxyalkylene oxy)aryl phosphine oxide
JPS60135428A (en) Aromatic polyester and its production
US4940772A (en) Process for producing flame resistant polyester
JPS62185710A (en) Production of flame-resistant polyester
US2744089A (en) Linear highly polymeric polyesters from p, p&#39;-sulfonyl dibenzoic acid and pentamethylene or higher glycols
JPS62172017A (en) Production of fire-resistant polyester
US2794795A (en) Linear polyesters from 4, 4&#39;-dicar-balkoxybenzanilides
JP2547820B2 (en) Aromatic copolyester
JPS5921889B2 (en) Polyester manufacturing method
JPS5931529B2 (en) Polyester molded products
JP3150211B2 (en) Method for producing flame-retardant polyester
JPS63277233A (en) Aromatic copolyester
JPH045047B2 (en)
KR910003587B1 (en) Preparation of polyester
JPS63210127A (en) Aromatic copolyester
US3354124A (en) Polyesters from 3, 6-bis (carboxymethyl) durene
JPS62175491A (en) Novel organic phosphorus compound and production thereof
JPS59193920A (en) Preparation of flame-retardant polyester
KR790001435B1 (en) Flame resistant polyester
JPH0466253B2 (en)
JPH02166117A (en) Aromatic copolyester
JPH051141A (en) Flame-resistant polyester