JPS6218542B2 - - Google Patents

Info

Publication number
JPS6218542B2
JPS6218542B2 JP13005978A JP13005978A JPS6218542B2 JP S6218542 B2 JPS6218542 B2 JP S6218542B2 JP 13005978 A JP13005978 A JP 13005978A JP 13005978 A JP13005978 A JP 13005978A JP S6218542 B2 JPS6218542 B2 JP S6218542B2
Authority
JP
Japan
Prior art keywords
reaction
quaternary salt
general formula
aqueous solution
tertiary amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13005978A
Other languages
Japanese (ja)
Other versions
JPS5557543A (en
Inventor
Iwao Ooshima
Yasutaka Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP13005978A priority Critical patent/JPS5557543A/en
Publication of JPS5557543A publication Critical patent/JPS5557543A/en
Publication of JPS6218542B2 publication Critical patent/JPS6218542B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は一般式 CH2=CR1−COOCH2CH2NR2R3 …(1) (R1は−Hまたは−CH3,R2,R3は−CH3また
は−C2H5を示す) で示される不飽和第3級アミンを水溶液の状態で
ハロゲン化炭化水素と反応させて一般式 〔CH2=CR1−COOCH2CH2NR2R3R4+×
…(2) (R1,R2,R3は前と同じ、R4は−CH3または
−C2H5,XはClまたはBrを示す) で示される不飽和第4級アンモニウム塩を82〜93
重量%含む水溶液または水溶液スラリー(以下水
性スラリーと称する)を取得することに関する。
[Detailed description of the invention] The present invention is based on the general formula CH 2 =CR 1 -COOCH 2 CH 2 NR 2 R 3 ...(1) (R 1 is -H or -CH 3 , R 2 , R 3 are -CH 3 or −C 2 H 5 ) is reacted with a halogenated hydrocarbon in an aqueous solution to form the general formula [CH 2 = CR 1 −COOCH 2 CH 2 NR 2 R 3 R 4+ ×
…(2) (R 1 , R 2 , R 3 are the same as before, R 4 is -CH 3 or -C 2 H 5 , X is Cl or Br) 82~93
% by weight of an aqueous solution or an aqueous slurry (hereinafter referred to as aqueous slurry).

一般式(2)で示される重合体あるいは一般式(2)で
示される単量体を優位重含有する共重合体は、カ
チオン系の凝集剤として優れていることが認めら
れ工場廃水や生活廃水の清澄化剤として、あるい
は有機汚泥の脱水助剤として広く利用されてい
る。またその他に製紙用助剤、繊維処理剤として
も用いられている。
Polymers represented by the general formula (2) or copolymers containing a predominant monomer represented by the general formula (2) are recognized to be excellent as cationic flocculants, and are used in industrial wastewater and domestic wastewater. It is widely used as a clarifying agent for organic sludge and as a dewatering aid for organic sludge. It is also used as a papermaking aid and a fiber treatment agent.

従来から、この重合体の製造方法について種々
報告されており例えば含水率40重量%以上の水溶
液で重合し、乾燥後、粉砕する方法や、有機溶媒
中で沈殿重合或は、懸濁重合し、有機溶媒を除去
して乾燥後、粉砕する方法が提案されている。し
かし、これらの方法では、多量の水を除去する乾
燥装置が必要となつたり、引火、爆発に留意する
必要のある有機溶媒を用いたりするために、工業
的には必ずしも有利な方法とは言えない。
Conventionally, various methods for producing this polymer have been reported, such as a method of polymerizing in an aqueous solution with a water content of 40% by weight or more, drying, and then pulverization, a method of precipitation polymerization or suspension polymerization in an organic solvent, A method has been proposed in which the organic solvent is removed, dried, and then pulverized. However, these methods require drying equipment to remove a large amount of water, and use organic solvents that need to be careful of ignition and explosion, so they are not necessarily advantageous from an industrial perspective. do not have.

これに対し、本出願人は一般式(2)で示される単
量体に対し、7〜18重量%の水を加えて重合し、
塊状の重合体を得る方法を提案した(特開昭51−
133388号、以下この技術を超高濃度重合技術と称
する)。
In contrast, the present applicant polymerized the monomer represented by general formula (2) by adding 7 to 18% by weight of water,
proposed a method to obtain bulk polymers (Japanese Patent Application Laid-Open No. 1983-1999)
No. 133388, hereinafter this technology is referred to as ultra-high concentration polymerization technology).

この方法に従つて重合すればそのまま粉砕しや
すい重合体が得られるため、乾燥工程が不要であ
り、有機溶媒も不要である。
If polymerization is carried out according to this method, a polymer that is easily pulverized as it is can be obtained, so a drying step is not necessary, and an organic solvent is also not necessary.

ところで一般式(2)で示される不飽和第4級アン
モニウム塩の82重量%以上の単重体水性スラリー
を得るには、通常一般式(1)で示される3級アミン
を有機溶媒中でハロゲン化炭化水素と反応させ、
4級化物を結晶として析出させこれを別したの
ち希望する濃度に調製するが、あるいは一般式(1)
で示される第3級アミンを80重量%以下の濃度で
水溶液中で4級化させ、得られた4級塩水溶液中
に予め用意した、例えば前記の如き方法で得てあ
る、結晶4級化物を加えて濃度を調節するなどの
方法を採ることになる。しかしながら、例えば4
級塩の80重量%水溶液1Kgを、濃度を高めて90重
量%の水性スラリーとするには別に1Kgの結晶を
使用しなければならず多量の結晶を必要とする欠
点がある。
By the way, in order to obtain a monomer aqueous slurry containing 82% by weight or more of the unsaturated quaternary ammonium salt represented by the general formula (2), the tertiary amine represented by the general formula (1) is usually halogenated in an organic solvent. react with hydrocarbons,
The quaternized product is precipitated as crystals, separated, and then adjusted to the desired concentration, or the general formula (1)
The tertiary amine represented by is quaternized in an aqueous solution at a concentration of 80% by weight or less, and a crystalline quaternized product prepared in advance in the resulting quaternary salt aqueous solution, for example, obtained by the method described above. Methods such as adjusting the concentration by adding However, for example 4
In order to increase the concentration of 1 kg of an 80% by weight aqueous solution of a grade salt into a 90% by weight aqueous slurry, another 1 kg of crystals must be used, which has the disadvantage of requiring a large amount of crystals.

一方結晶製造のためには、アセトニトリルやジ
メチルフオルムアミド等の有機溶媒を必要とする
ために、当然のことながら工業的規模においては
有機溶媒の除去装置や回収設備を必要とする。更
にはこれら有機溶媒は引火、爆発の危険があるた
め工業的には防災設備の点でも負担が大きくなつ
て好ましくない。
On the other hand, since crystal production requires organic solvents such as acetonitrile and dimethylformamide, it is a matter of course that organic solvent removal equipment and recovery equipment are required on an industrial scale. Furthermore, these organic solvents are undesirable from an industrial perspective since they pose a risk of ignition and explosion, which increases the burden on disaster prevention equipment.

第3級アミンを水溶液中で4級化する方法につ
いては種々報告されており(例えば特開昭51−
101914号、同52−31017号)また安定化方法につ
いても検討され有効な重合防止剤も見出されてい
る(特開昭52−36620号)。
Various methods for quaternizing tertiary amines in aqueous solutions have been reported (for example,
(No. 101914, No. 52-31017) Stabilization methods have also been studied and effective polymerization inhibitors have been discovered (Japanese Patent Application Laid-open No. 52-36620).

しかし水溶液中で4級化を行なわせて得た一般
式(2)で表される4級塩の濃度はいずれも80重量%
以下であり、これを直接用いたのでは前記超高濃
度重合の利点を亨受することはできない。
However, the concentration of the quaternary salt represented by general formula (2) obtained by quaternization in an aqueous solution is 80% by weight.
If this is used directly, the advantages of the ultra-high concentration polymerization cannot be fully obtained.

超高濃度の状態で4級塩を取得できない理由
は、4級化反応の通常の反応温度である30〜40℃
では4級塩の濃度が飽和溶解度を超えて結晶が析
出し、例えば反応熱除去のための除去面へスケー
リングが生じ、冷却不能となる等トラブルの原因
となるからである。
The reason why quaternary salts cannot be obtained at ultra-high concentrations is that the normal reaction temperature for quaternization reactions is 30 to 40℃.
This is because the concentration of the quaternary salt exceeds the saturated solubility and crystals precipitate, causing problems such as scaling on the surface from which reaction heat is removed, making cooling impossible.

実験室規模の反応の場合には、撹拌強度や冷却
面の温度を注意すれば、例えば87%という濃度の
場合でも結晶が析出しないこともあるが、これは
4級塩の過飽和濃度が大きいためであつて、工業
的規模で安定した反応状態を維持することは困難
である。
In the case of laboratory-scale reactions, if the stirring intensity and temperature of the cooling surface are carefully controlled, crystals may not precipitate even at a concentration of 87%, but this is because the supersaturated concentration of the quaternary salt is large. However, it is difficult to maintain a stable reaction state on an industrial scale.

このような情況の中で一般式(1)の単量体の濃度
を80重量%以上含む水溶液を4級化させる方法も
具体的に提案されている。(特開昭52−31017号)
が、その内容は4級塩が飽和量以上になつて析出
した場合に水を添加して結晶を溶解する様に操作
しているのであつて、本発明におけるが如き超高
濃度の4級塩の水性スラリーは得られない。
Under these circumstances, a method for quaternizing an aqueous solution containing the monomer of general formula (1) at a concentration of 80% by weight or more has also been specifically proposed. (Unexamined Japanese Patent Publication No. 52-31017)
However, the content is that when the quaternary salt exceeds the saturation amount and precipitates, water is added to dissolve the crystals, and the ultra-high concentration of quaternary salt as in the present invention is An aqueous slurry cannot be obtained.

本発明は超高濃度の一般式(1)で示される第3級
アミンを水溶液の状態で4級化し、冷却面へのス
ケーリング等のトラブルなく4級塩の水性スラリ
ーを得る方法を提供するものである。
The present invention provides a method for quaternizing an ultra-high concentration tertiary amine represented by the general formula (1) in the state of an aqueous solution to obtain an aqueous slurry of a quaternary salt without problems such as scaling onto a cooling surface. It is.

前述のような超高濃度でしかも結晶を析出させ
ることなく4級化反応を終結させるには結晶が生
成しない温度以上で反応させればよい。この場合
反応初期は低温で反応させ反応が進むに従つて反
応系の温度を徐々に上げることもできる。いずれ
にしても4級化反応の終期の温度は概ね50〜70℃
となる。
In order to terminate the quaternization reaction at an extremely high concentration as described above without precipitating crystals, the reaction may be carried out at a temperature above which crystals do not form. In this case, the reaction may be carried out at a low temperature at the initial stage and the temperature of the reaction system may be gradually raised as the reaction progresses. In any case, the temperature at the end of the quaternization reaction is approximately 50 to 70℃.
becomes.

超高濃度重合技術である特開昭51−133388号記
載の方法では重合開始温度は約10〜約30℃であ
る。従つて一般式(1)から得た一般式(2)で表される
4級塩単量体水溶液の液温を冷却する必要があ
る。この操作により単量体水溶液中には結晶が析
出してくる。
In the method described in JP-A-51-133388, which is an ultra-high concentration polymerization technique, the polymerization initiation temperature is about 10 to about 30°C. Therefore, it is necessary to cool the aqueous solution of the quaternary salt monomer represented by the general formula (2) obtained from the general formula (1). By this operation, crystals are precipitated in the monomer aqueous solution.

このようにして析出した結晶の大きさがある程
度大きいと、この一般式(2)で表される単量体を超
高濃度重合に付した際、重合の誘導期間中に単量
体が沈降して均一な重合体を得ることができない
ほか、結晶が沈降したまま重合すると結晶のない
上層部は4級塩濃度が薄いため、得られる塊状重
合体はそのままでは粉砕できいことがある。
If the size of the crystals precipitated in this way is large to some extent, when the monomer represented by general formula (2) is subjected to ultra-high concentration polymerization, the monomer will precipitate during the induction period of polymerization. In addition, if polymerization occurs while crystals are precipitated, the resulting bulk polymer may not be able to be pulverized as it is because the quaternary salt concentration is low in the upper layer without crystals.

本発明者らは、4級化反応の終結した高温の4
級塩水溶液を冷却した第3級アミンと撹拌混合し
たのち静置したところ、極く微細な結晶を含む4
級塩の水性スラリー相(下層)と第3級アミン相
(上層)に分れ、更に下層への第3級アミンの溶
解度および上層への水及び4級塩の溶解度が非常
に小さいことを知り本発明に至つた。
The present inventors discovered that the high-temperature 4
When the aqueous salt solution was stirred and mixed with the cooled tertiary amine and left to stand, a 4-chloride solution containing extremely fine crystals was obtained.
It was discovered that the solubility of the tertiary amine in the lower layer and the solubility of water and quaternary salt in the upper layer is very low. This led to the present invention.

通常は冷却、晶析のためには多大な装置を必要
としたり、またスケーリング等への対策には苦慮
することが多いが、本発明によれば晶析のための
装置を特に必要とせずに高純度の4級塩水性スラ
リーが得られる。
Normally, a large amount of equipment is required for cooling and crystallization, and it is often difficult to take measures against scaling, etc., but according to the present invention, there is no need for a special equipment for crystallization. A highly pure quaternary brine slurry is obtained.

超高濃度重合に適した微細な結晶が得られる理
由は、高温の4級塩水溶液を急冷するためと考え
られる。
The reason why fine crystals suitable for ultra-high concentration polymerization are obtained is thought to be that the high temperature quaternary salt aqueous solution is rapidly cooled.

1般式(1)で示される第3級アミンは水と自由に
溶け合うが、この第3級アミンから導びかれた一
般式(2)で示される4級塩は水と自由には溶け合わ
ない。
The tertiary amine represented by the general formula (1) is freely soluble in water, but the quaternary salt represented by the general formula (2) derived from this tertiary amine is not freely soluble in water. do not have.

しかるに、本発明の意図するような水の極端に
少ない量の下で第3級アミン、4級塩を混合する
と、この系は水、4級塩をほとんど含まない第3
級アミン層と、第3級アミンをほとんど含まない
4級塩の水性スラリー層とに分離することを見出
し、また4級塩水溶液の冷媒として反応原料であ
る第3級アミンを用いることに思い至つたことに
より本発明が形成されたのである。
However, when a tertiary amine and a quaternary salt are mixed in an extremely small amount of water as intended by the present invention, this system becomes a tertiary amine containing almost no water or quaternary salt.
They discovered that the tertiary amine layer separates into an aqueous slurry layer of quaternary salt containing almost no tertiary amine, and also came up with the idea of using the tertiary amine, which is a reaction raw material, as a refrigerant for the quaternary salt aqueous solution. The present invention was formed by this.

前述のようにして得た4級塩の水性スラリー中
には極く微量の第3級アミンが溶解しており、こ
れは更にハロゲン化炭化水素を用いて4級化して
も良いが通常は重合の際にPHを約3〜約5に調整
するために使用する無機酸と3級塩を作り、式(2)
で示される4級塩の重合の際に共重合するが、そ
の量が微量であることからホモ重合体と同等の重
合体が得られる。
A very small amount of tertiary amine is dissolved in the aqueous slurry of the quaternary salt obtained as described above, and this may be further quaternized using a halogenated hydrocarbon, but it is usually polymerized. Make a tertiary salt with an inorganic acid that is used to adjust the pH to about 3 to about 5, and use the formula (2)
Copolymerization occurs during the polymerization of the quaternary salt represented by, but since the amount thereof is very small, a polymer equivalent to a homopolymer can be obtained.

本発明における4級化反応時の第3級アミンに
対するハロゲン化炭化水素のモル比は、等モル付
近であれば特に限定の必要はない。
The molar ratio of halogenated hydrocarbon to tertiary amine during the quaternization reaction in the present invention is not particularly limited as long as it is around equimolar.

また4級化反応を完結させる必要はない。その
理由は反応液を冷却した第3級アミン中に投入し
撹拌したときに未反応のハロゲン化炭化水素は4
級化に消費されるし、一方未反応の第3級アミン
は、冷媒である第3級アミン層に抽出されるから
である。
Further, it is not necessary to complete the quaternization reaction. The reason is that when the reaction solution is poured into a cooled tertiary amine and stirred, unreacted halogenated hydrocarbons are
This is because the unreacted tertiary amine is consumed in the grading process, and the unreacted tertiary amine is extracted into the tertiary amine layer, which is a refrigerant.

4級化反応後の4級塩水溶液と冷媒である第3
級アミンの接触方法は、前者を後者に注入して撹
拌しても良いしその逆であつても良い。更に他に
装置を設けて両者を同時に注入混合しても良い。
しかしながらより微細な結晶を得るためには、前
者を後者に注入するか他の装置を用いた同時注入
混合の方が好ましい結果が得られることが多い。
The quaternary salt aqueous solution and the third refrigerant after the quaternization reaction
The method of contacting the secondary amine may be such that the former is injected into the latter and stirred, or vice versa. Furthermore, another device may be provided to inject and mix both at the same time.
However, in order to obtain finer crystals, preferable results are often obtained by injecting the former into the latter or by simultaneous injection mixing using another device.

以下実施例によつて本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 1 撹拌器、ガス吹き込み管を備えた内容積1000ml
の反応器にジメチルアミノエチルメタクリレート
(以下DMAEMA)658g、水130g、およびモノ
メチルハイドロキノン2gを仕込み、次いで撹拌
しながらメチルクロライド211g(DMAEMAに
対し当モルに相当)を4時間に亘つて吹き込ん
だ。
Example 1 Internal volume 1000ml with stirrer and gas blowing tube
A reactor was charged with 658 g of dimethylaminoethyl methacrylate (hereinafter referred to as DMAEMA), 130 g of water, and 2 g of monomethylhydroquinone, and then 211 g of methyl chloride (equivalent to DMAEMA) was blown into the reactor over a period of 4 hours while stirring.

反応液の温度は外部より最初35℃に調節し、反
応の進行に伴なつて上昇させ反応終期には60℃と
した。
The temperature of the reaction solution was initially adjusted externally to 35°C, and was increased as the reaction progressed to 60°C at the end of the reaction.

この反応液(1000g)を−5℃の
DMAEMA1000g中へ注ぎ込み強く撹拌したとこ
ろ、4級塩水溶液は30℃に急冷され微細な結晶が
析出した。次いで約10分間緩く撹拌を続けたとこ
ろ、DMAEMAを主体とする上層と4級塩及び水
を主体とする下層に分離したので撹拌を止め静置
したのち両層の組成を分析した。
This reaction solution (1000g) was heated to -5℃.
When poured into 1000 g of DMAEMA and stirred strongly, the quaternary salt aqueous solution was rapidly cooled to 30°C and fine crystals precipitated. When stirring was continued gently for about 10 minutes, the mixture was separated into an upper layer mainly composed of DMAEMA and a lower layer mainly composed of quaternary salt and water, so stirring was stopped and the mixture was allowed to stand still, and the composition of both layers was analyzed.

上層中の水分は約0.9重量%、4級塩は約0.4重
量%であつた。下層は遠心沈降により4級塩の結
晶を除いた後分析したところDMAEMAが約2重
量%、水は約20重量%であつた。
The water content in the upper layer was about 0.9% by weight, and the quaternary salt was about 0.4% by weight. After removing quaternary salt crystals by centrifugal sedimentation, the lower layer was analyzed and found to contain approximately 2% by weight of DMAEMA and approximately 20% by weight of water.

この上層のDMAEMAは次回の反応に使用する
ことは勿論可能である。
Of course, this upper layer of DMAEMA can be used for the next reaction.

実施例 2 実施例1と同様に反応によつて得られた60℃の
4級塩水溶液500gを12℃のジメチルアミノエチ
ルメタクリレート1000g中へ注ぎ込み、強力に撹
拌したところ4級塩水溶液は急冷され、微細な結
晶が析出した。
Example 2 500 g of a quaternary salt aqueous solution at 60°C obtained by the reaction in the same manner as in Example 1 was poured into 1000 g of dimethylaminoethyl methacrylate at 12°C and stirred vigorously. The quaternary salt aqueous solution was rapidly cooled. Fine crystals precipitated.

その後、実施例1と同様の操作で2層分離し、
各層の組成を分析したところ、ジメチルアミノメ
タクリレート(上層)中の水分は約0.9重量%、
4級塩は約0.4重量%、又、4級塩水溶液中のジ
メチルアミノエチルメタクリレートは約2重量
%、水は約20重量%であつた。
Thereafter, two layers were separated by the same operation as in Example 1,
Analysis of the composition of each layer revealed that the water content in dimethylamino methacrylate (upper layer) was approximately 0.9% by weight.
The quaternary salt was about 0.4% by weight, the dimethylaminoethyl methacrylate in the quaternary salt aqueous solution was about 2% by weight, and the water was about 20% by weight.

比較例 実施例1と同じ反応器に同様の原料を仕込み、
同様のメチルクロライドを吹き込んで反応させ
た。反応器は断熱し、内部に、冷却コイルを通し
て反応温度を35℃にコントロールした。冷却管に
通した水の温度は、10℃にコントロールした反応
は、最初、実施例と同様に進んだが、反応率約90
%で、冷却コイルの表面に4級塩の結晶が強固に
付着し、反応温度は、コントロール不能となり、
温度が上昇し始めたのでメチルクロライドの吹込
みを止め、反応を中止した。
Comparative example: The same raw materials were charged into the same reactor as in Example 1,
The same methyl chloride was blown into the solution to cause a reaction. The reactor was insulated and the reaction temperature was controlled at 35°C through a cooling coil inside. The reaction, in which the temperature of the water passed through the cooling tube was controlled at 10°C, initially proceeded in the same manner as in the example, but the reaction rate was approximately 90°C.
%, quaternary salt crystals adhere firmly to the surface of the cooling coil, and the reaction temperature becomes uncontrollable.
Since the temperature started to rise, the blowing of methyl chloride was stopped and the reaction was stopped.

Claims (1)

【特許請求の範囲】 1 一般式 CH2=CR1−COOCH2CH2NR2R3
…(1) (R1は−Hまたは−CH3,R2,R3は−CH3また
は−C2H5を示す) で示される不飽和第3級アミンの水溶液とハロゲ
ン化炭化水素を反応させて一般式 〔CH2=CR1−COOCH2CH2NR2R3R4+×
…(2) (R1,R2,R3は前と同じ、R4は−CH3または
−C2H5,XはClまたはBrを示す) で示される不飽和第4級アンモニウム塩を82〜93
重量%含む水溶液(あるいは水性スラリー)で得
るにあたり、反応後の液と反応後の液の温度以下
の該第3級アミンとを混合し相分離させ該4級塩
の水溶液(あるいは水性スラリー)を取得するこ
とを特徴とする不飽和第4級アンモニウム塩の製
造方法。
[Claims] 1 General formula CH 2 = CR 1 −COOCH 2 CH 2 NR 2 R 3
...(1) (R 1 is -H or -CH 3 , R 2 , R 3 are -CH 3 or -C 2 H 5 ) and a halogenated hydrocarbon. The reaction results in the general formula [CH 2 = CR 1 −COOCH 2 CH 2 NR 2 R 3 R 4 ] + ×
...(2) (R 1 , R 2 , R 3 are the same as before, R 4 is -CH 3 or -C 2 H 5 , X is Cl or Br) 82~93
To obtain an aqueous solution (or aqueous slurry) containing % by weight, the solution after the reaction and the tertiary amine at a temperature below the temperature of the solution after the reaction are mixed and phase separated to obtain an aqueous solution (or aqueous slurry) of the quaternary salt. A method for producing an unsaturated quaternary ammonium salt, the method comprising: obtaining an unsaturated quaternary ammonium salt;
JP13005978A 1978-10-24 1978-10-24 Preparation of unsaturated quaternary ammonium salt Granted JPS5557543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13005978A JPS5557543A (en) 1978-10-24 1978-10-24 Preparation of unsaturated quaternary ammonium salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13005978A JPS5557543A (en) 1978-10-24 1978-10-24 Preparation of unsaturated quaternary ammonium salt

Publications (2)

Publication Number Publication Date
JPS5557543A JPS5557543A (en) 1980-04-28
JPS6218542B2 true JPS6218542B2 (en) 1987-04-23

Family

ID=15025037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13005978A Granted JPS5557543A (en) 1978-10-24 1978-10-24 Preparation of unsaturated quaternary ammonium salt

Country Status (1)

Country Link
JP (1) JPS5557543A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692252A (en) * 1979-12-27 1981-07-25 Nitto Chem Ind Co Ltd Production of unsaturated quaternary ammonium salt

Also Published As

Publication number Publication date
JPS5557543A (en) 1980-04-28

Similar Documents

Publication Publication Date Title
US11535588B2 (en) Hydrated crystalline form of 2-acrylamido-2-methylpropane sulfonic acid
US4151202A (en) Preparation of diallyl dimethyl ammonium chloride and polydiallyl dimethyl ammonium chloride
CN114787126A (en) Novel sulfobetaine monomer, preparation method and application thereof
JPS6227064B2 (en)
JPS6218542B2 (en)
JP3435728B2 (en) Method for producing cationic water-soluble polymer
JPS59110660A (en) Manufacture of concentrated aqueous solution of tertiary aminoalkyl ester of acrylic acid or methacrylic acid or quaternary of tertiary aminoalkylamide
CN114195685B (en) Purification method of 2-acrylamido-2-methylpropanesulfonic acid
JPS62265304A (en) Production of water-soluble polymer
RU2560177C1 (en) Method of obtaining water-soluble polymers on quaternary salts of dimethylaminoethylmethacrylate base
JP5813782B2 (en) Fine dispersions of hydroxamated polymers and methods for their production and use
EP0308031B1 (en) Polymeric surfactants
US8703088B2 (en) Process for removing hydrazine from hydroxlyamine solutions
JPH0495053A (en) Production of aqueous solution of unsaturated quaternary ammonium salt
JPH107722A (en) Production of polymer dispersion
JPS60190403A (en) Manufacture of condensed stable water-in-oilemulsion containing at least 40 weight percents of water-soluble polymer
JP3106684B2 (en) Method for producing water-soluble polymer
JPH01163205A (en) Sulfomethylation of high molecular weight polyacrylamide polymer
JPH02237967A (en) Production of tertiary ammonium salt of dialkylaminoalkyl acrylate
JPS6234905A (en) Production of vinylimidazoline or vinylpyrimidine polymer
JP2004122117A (en) Polymer coagulant
JPS61123616A (en) Manufacture of water-soluble cationic polymer
JPS5918407B2 (en) Method for producing bead-shaped polymer
JPS6348863B2 (en)
JPH032856B2 (en)