JPS62184348A - Separating and refining method for ionic material - Google Patents

Separating and refining method for ionic material

Info

Publication number
JPS62184348A
JPS62184348A JP61025869A JP2586986A JPS62184348A JP S62184348 A JPS62184348 A JP S62184348A JP 61025869 A JP61025869 A JP 61025869A JP 2586986 A JP2586986 A JP 2586986A JP S62184348 A JPS62184348 A JP S62184348A
Authority
JP
Japan
Prior art keywords
column
voltage
separated
substance
ferritin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61025869A
Other languages
Japanese (ja)
Inventor
Michio Ito
伊藤 迪夫
Motoko Yoshida
吉田 基子
Kazunobu Okano
和宣 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61025869A priority Critical patent/JPS62184348A/en
Publication of JPS62184348A publication Critical patent/JPS62184348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To separate and concentrate ferritin under optimum separating conditions by subjecting a voltage for migration to feedback control. CONSTITUTION:A packing material 19 is packed into a hollow column 4 and another packing material 20 is placed thereon. A sample soln. 1 contg. the protein ferritin which is the sample to be separated is added to a carrier liquid 15 and a pump 2 is operated to admit the ferritin into the column. A power source 11 for electrophoresis is then operated and a positive electrode 14 is set in the upper part of the column and a negative electrode 13 in the lower part to provide a voltage gradient into the column. Only the carrier liquid 15 is added to the column when the addition of the ferritin ends. A voltage difference between the electrodes 12 and 12' disposed near the boundary of the two packing materials is measured by a voltage measuring instrument 3 through signal lines 8, 9. The concn. of the separated ionic material is known by measuring the voltage gradient in the column. The voltage for migration is controlled by the result thereof, by which the sepn. is executed at a high speed under the optimum conditions.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明バイオテクノロジーなど化学工学分野一般におけ
る物質の分離精製法に係り、特に液体クロマトグラフィ
ー法と電気泳動法を複合化させた分離精製法における被
分離物質のオンライン濃度計測法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a method for separating and purifying substances in general fields of chemical engineering such as biotechnology, and in particular to methods for separating and purifying substances that combine liquid chromatography and electrophoresis. Concerning online concentration measurement method of separated substances.

〔発明の背景〕[Background of the invention]

従来、物質を分離、精製する代表的な方法としては液体
クロマト法及び電気泳動法が用いられていた。最近、こ
の二つの方法を組み合せた方法が優れた分離精製能力を
持つことが示された(P。
Conventionally, liquid chromatography and electrophoresis have been used as typical methods for separating and purifying substances. Recently, it has been shown that a method that combines these two methods has excellent separation and purification capabilities (P.

H、O’ Farrell:サイエンス(Scienc
e)’ 227巻1586頁、1985年)、この方法
の原理は、液体クロマト用のカラムにイオン性の被分離
物質に対する相互作用が異なる2種の充填剤を積層し、
当該被分離物質を含む溶液を上方から流すと同時にカラ
ムの両端に電場を掛け2つ剤の充填剤の接合部に被分離
物質を濃縮分離するというものである。この場合、被分
離物質は1例えば、カラムの上方から下方へ流れるが、
被分離物質が負に帯電している場合、電極を上方に設定
すれば被分離物質を上方に電気泳動により逆行させるこ
とができる。カラムに与える電圧をカラムに流れる溶液
の流速との関係で最適に設定すれば被分離物質を2つの
充填剤の接触面に停帯させることが出来、物質を濃縮し
分離することができる。しかしながら、上記公ていす、
その結果が分離条件にフィードバックされていないので
、電圧と流速の関係は正確に設定できていず、濃縮が最
適条件で行われていないと゛いう問題点があった6 〔発明の目的〕 本発明は上記公知例の問題点にもとづいてなされたもの
で、カラム内に濃縮されてきた被分離物質の濃度を計測
し、計測結果をフィードバックし、電気泳動速度と流速
とを正確にバランスさせる手段を提供することにある。
H. O' Farrell: Science
e)' Vol. 227, p. 1586, 1985), the principle of this method is that two types of packing materials with different interactions with ionic substances to be separated are stacked on a column for liquid chromatography.
A solution containing the substance to be separated is caused to flow from above and at the same time an electric field is applied to both ends of the column to concentrate and separate the substance to be separated at the junction of the two packing materials. In this case, the substance to be separated flows from the top to the bottom of the column, for example,
When the substance to be separated is negatively charged, by setting the electrode upward, the substance to be separated can be moved upward by electrophoresis. By optimally setting the voltage applied to the column in relation to the flow rate of the solution flowing through the column, the substance to be separated can be stopped at the contact surface of the two packing materials, and the substance can be concentrated and separated. However, the above public chair,
Since the results are not fed back to the separation conditions, the relationship between voltage and flow rate cannot be set accurately, resulting in the problem that concentration is not performed under optimal conditions.6 [Object of the Invention] The present invention This was developed based on the problems of the above-mentioned known examples, and provides a means to measure the concentration of the substance to be separated that has been concentrated in the column, feed back the measurement results, and accurately balance the electrophoresis speed and flow rate. It's about doing.

〔発明の概要〕[Summary of the invention]

カラム中に分離された物質の濃度の測定にはオンライン
計測が望ましい。分離された物質をカラム外に取り出し
て分析するオフライン計測では分離操作が不連続となり
好ましくない。本発明ではオンライン計測法として如何
なるイオン性物質にも一般的に適用し得る濃度測定法と
してカラム内に掛けられた泳動分離用の電圧のカラム内
各部位における勾配を測定する方法を用いた。イオン性
物質が高濃度に′a縮された部位がカラム内に存在すれ
ば、その部位では電圧勾配が周辺部に比して大きく低下
する。すなわち、カラムの上下方向に微小間隔で電極を
配置し、微小電極間の電圧差を測定すれば第1図に一般
的に示すように被分離物質が存在するカラム部位では電
圧勾配は低下し、分離物質がもつとも高濃度で存在する
部位では勾配は極小値を取る。この極小値の絶対値が極
小になるように流速と泳動電圧の関係を制御すれば分離
は最適条件で行われたことになる。電圧勾配は必ずしも
カラムの全長に渡って測定する必要はなく、分離を望む
物質が分離されてくることが予め予定されている部位の
勾配のみを測定しても良いことは勿論である。要するに
本発明においては、分離されたイオン性物質の濃度をカ
ラム内の電圧勾配を測定することにより知り、その結果
により泳動用電圧を制御して分離を高速にかつ至適な条
件で行う。又、本発明によれば、電圧勾配の極小値が最
小になり、一定時間摘持したとき濃縮が完了したものと
判断することができる。
Online measurement is desirable for measuring the concentration of substances separated in the column. Off-line measurement, in which separated substances are taken out of the column and analyzed, is not preferred because the separation operation becomes discontinuous. In the present invention, as an online measurement method, a method of measuring the concentration at each location in the column of a voltage applied to the column for electrophoretic separation was used as a concentration measurement method that can be generally applied to any ionic substance. If there is a region in the column where ionic substances are condensed to a high concentration, the voltage gradient at that region will be significantly lower than in the surrounding region. That is, if electrodes are arranged at minute intervals in the vertical direction of the column and the voltage difference between the minute electrodes is measured, the voltage gradient will decrease in the column part where the substance to be separated exists, as generally shown in Figure 1. The gradient takes a minimum value at a site where the separated substance is present at a high concentration. If the relationship between flow rate and electrophoresis voltage is controlled so that the absolute value of this minimum value becomes minimum, separation will be performed under optimal conditions. The voltage gradient does not necessarily need to be measured over the entire length of the column, and it is of course possible to measure only the gradient at a region where the substance desired to be separated is expected to be separated. In short, in the present invention, the concentration of the separated ionic substance is determined by measuring the voltage gradient within the column, and the electrophoresis voltage is controlled based on the results to perform separation at high speed and under optimal conditions. Further, according to the present invention, it can be determined that the concentration is completed when the minimum value of the voltage gradient becomes the minimum and the concentration is maintained for a certain period of time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図により説明する。中空
のカラム4に、まず、充填剤ビオゲルA−50m (バ
イオラド社製品)19を充填し、次にこの上に別の充填
剤20(ビオゲルP−10)をのせ、搬送液15 (1
0mMのトリス酢酸水溶液、pH7−4)に被分離試料
である蛋白質フェリチンを含む試料溶液1を加え、ポン
プ2を作動させ、フェリチンをカラムに流入せしめた。
An embodiment of the present invention will be described below with reference to FIG. The hollow column 4 was first filled with the packing material Biogel A-50m (Bio-Rad product) 19, and then another packing material 20 (Biogel P-10) was placed on top of this, and the carrier liquid 15 (1
Sample solution 1 containing the protein ferritin, which is a sample to be separated, was added to a 0 mM aqueous solution of Tris acetic acid, pH 7-4), and pump 2 was activated to cause ferritin to flow into the column.

次に。next.

電気泳動用電源11を作動せしめ正極14をカラム上方
、負極13を下方に設定しカラム内に電圧勾配を付与し
た。フェリチンを加え終ったら、搬送液15のみをカラ
ムに加え、電圧測定器3により2つの充填剤の界面付近
に配置した電r412 。
The electrophoresis power supply 11 was activated, the positive electrode 14 was set above the column, and the negative electrode 13 was set below, thereby applying a voltage gradient within the column. After adding ferritin, only the carrier liquid 15 was added to the column, and the voltage measuring device 3 was used to place the voltage r412 near the interface between the two packing materials.

12’間の電圧差を信号線8.9を通して計測する。次
に、界面付近の電圧差がその周辺部に等間隔で配した電
極間の電圧差より小さく、かつ、この極小電圧差の絶対
値がなるべく小さくなるように制御信号発生器7より制
御信号5を電気泳動用電源11に加え泳動用電圧を上下
に変化させる。
12' is measured through the signal line 8.9. Next, the control signal generator 7 generates a control signal 5 so that the voltage difference near the interface is smaller than the voltage difference between the electrodes arranged at equal intervals around the interface, and the absolute value of this minimal voltage difference is as small as possible. is applied to the electrophoresis power supply 11 to change the electrophoresis voltage up and down.

界面付近の電圧差が最小の極小値を一定時間維持したと
き、フェリチン18は界面付近に最適条件下で濃縮分離
され終ったものと判断し、制御信号6を制御信号発生器
7よりポンプ1oに加え、界面付近に取りつけた濃縮成
分取出口17よりフェリチンを取り出した。第2図にお
いて、16は負極用電極槽である。
When the voltage difference near the interface maintains the minimum value for a certain period of time, it is determined that ferritin 18 has been concentrated and separated near the interface under optimal conditions, and the control signal 6 is sent from the control signal generator 7 to the pump 1o. In addition, ferritin was taken out from the concentrated component extraction port 17 installed near the interface. In FIG. 2, 16 is an electrode tank for the negative electrode.

以上、本実施例によれば、泳動用電圧をフィードバック
制御することにより、フェリチンを最適の分離条件下で
、分離濃縮する′ことができた。
As described above, according to this example, ferritin could be separated and concentrated under optimal separation conditions by feedback-controlling the electrophoresis voltage.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、分離カラム内を流下する搬送液により
移動する被分離物質の速度と、カラム内を上方に逆向す
る被分離物質の泳動速度とを正確にかつ高速につり合せ
ることができるので、液体クロマトグラフィー法と電気
泳動法を組み合せた分離法を最適分離条件下で用いるこ
とが可能になった。又、電圧勾配を測定することにより
分離濃縮の完了を正確に検知できるようになった。
According to the present invention, it is possible to accurately and quickly balance the speed of the substance to be separated, which is moved by the carrier liquid flowing down the separation column, and the migration speed of the substance to be separated, which is moving upward in the column. It has now become possible to use a separation method that combines liquid chromatography and electrophoresis under optimal separation conditions. Furthermore, by measuring the voltage gradient, it has become possible to accurately detect the completion of separation and concentration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は泳動用電圧の勾配のカラム長方向に対する分布
を示す図である。第2図は本発明の基本構成を示す図で
ある。 1・・・試料溶液、4・・・分離用カラム、11・・・
電気泳動用電源、12,12’・・・電圧勾配測定用電
極、3・・・電圧勾配測定器、2・・・試料導入ポンプ
、10・・・濃縮物質取り出し用ポンプ、18・・・濃
縮物質、19.20・・・カラム充填剤、7・・・制御
信号発生器。
FIG. 1 is a diagram showing the distribution of the gradient of electrophoresis voltage in the column length direction. FIG. 2 is a diagram showing the basic configuration of the present invention. 1... Sample solution, 4... Separation column, 11...
Power source for electrophoresis, 12, 12'... Electrode for voltage gradient measurement, 3... Voltage gradient measuring device, 2... Sample introduction pump, 10... Pump for removing concentrated substance, 18... Concentration Substance, 19.20... Column packing material, 7... Control signal generator.

Claims (1)

【特許請求の範囲】[Claims] 1、2種以上の異なる充填剤を含む液体クロマトグラフ
ィー用カラムにイオン性の被分離物質を含む溶液を流し
、同時に、カラムの両端に電気泳動用の電圧を掛けて被
分離物質を濃縮分離する方法において、被分離物質の濃
縮度を、この物質が存在するカラム内の部位の電圧勾配
を計測することにより計測し、計測結果にもとづき電気
泳動用電圧を制御し最適条件下で濃縮分離を行うと共に
、濃縮過程の完了を検知することを特徴とするイオン性
物質の分離精製法。
1. A solution containing an ionic substance to be separated is passed through a liquid chromatography column containing two or more different types of packing materials, and at the same time, an electrophoretic voltage is applied to both ends of the column to concentrate and separate the substance to be separated. In this method, the degree of concentration of the substance to be separated is measured by measuring the voltage gradient at the location in the column where the substance is present, and the electrophoresis voltage is controlled based on the measurement results to perform concentration separation under optimal conditions. A separation and purification method for ionic substances is characterized in that the completion of the concentration process is also detected.
JP61025869A 1986-02-10 1986-02-10 Separating and refining method for ionic material Pending JPS62184348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025869A JPS62184348A (en) 1986-02-10 1986-02-10 Separating and refining method for ionic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025869A JPS62184348A (en) 1986-02-10 1986-02-10 Separating and refining method for ionic material

Publications (1)

Publication Number Publication Date
JPS62184348A true JPS62184348A (en) 1987-08-12

Family

ID=12177796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025869A Pending JPS62184348A (en) 1986-02-10 1986-02-10 Separating and refining method for ionic material

Country Status (1)

Country Link
JP (1) JPS62184348A (en)

Similar Documents

Publication Publication Date Title
Hjertén et al. Some aspects of the use of “continuous” and “discontinuous” buffer systems in polyacrylamide gel electrophoresis
Schwer et al. Analytical and micropreparative separation of peptides by capillary zone electrophoresis using discontinuous buffer systems
CA1335805C (en) Isoelectric focusing process and a means for carrying out said process
US3384564A (en) Electrophoretic process for simultaneously spearating and concentrating particles
Philpot The use of thin layers in electrophoretic separation
US5151165A (en) Methods and apparatuses for preparative electrophoresis
US3506554A (en) Apparatus for separating electrophoretically active substances
US4948481A (en) Process and device for the electrophoretic separation, purification and concentration of charged or polarizable macromolecules
US5176805A (en) Reverse-polarity gel electrophoresis
US3240692A (en) Electrophoretic fractionation of ampholytes
US4747918A (en) Electroelution apparatus and method of using same
Polson Multi-membrane electrodecantation and its application to isolation and purification of proteins and viruses
Marando et al. Two-phase electrophoresis of proteins
JPS62184348A (en) Separating and refining method for ionic material
Basak et al. Electrochromatographic separation of proteins
McCormick et al. Selective elution of zones from preparative isoelectric focusing gels by ampholytes or buffers
EP0019001A1 (en) Electrophoretically concentrating apparatus
Basak et al. Mechanistic description and experimental studies of electrochromatography of proteins
Hochstrasser et al. An improved column for preparative electrophoresis
Šutáček et al. Simple method for generation of dymanic pH gradient in capillary zone electrophoresis
Barzaghi et al. Isoelectric protein purification in segmented immobilized pH gradients. Effect of salts on rat of contaminants' removal
Hjertén Zone-sharpening in paper electrophoresis—a method allowing application of dilute protein solutions
Tiselius Experimental techniques. Zone electrophoresis in filter paper and other media
JPH0625750B2 (en) Charged substance separator
Galier et al. Influence of electrostatic interactions in electrophoretic membrane contactors