JPS62183882A - Preparation of protein built-up film - Google Patents

Preparation of protein built-up film

Info

Publication number
JPS62183882A
JPS62183882A JP61025008A JP2500886A JPS62183882A JP S62183882 A JPS62183882 A JP S62183882A JP 61025008 A JP61025008 A JP 61025008A JP 2500886 A JP2500886 A JP 2500886A JP S62183882 A JPS62183882 A JP S62183882A
Authority
JP
Japan
Prior art keywords
film
protein
substrate
monomolecular film
glucose oxidase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61025008A
Other languages
Japanese (ja)
Inventor
Ei Yano
映 矢野
Fumio Takei
文雄 武井
Akio Yagishita
柳下 皓男
Shozo Fujita
省三 藤田
Hachiro Yasuda
八郎 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61025008A priority Critical patent/JPS62183882A/en
Publication of JPS62183882A publication Critical patent/JPS62183882A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To form a high purity and high density good quality film containing no impurities, in preparing a protein built-up film based on a LB method, by using an org. solvent as a liquid phase. CONSTITUTION:In preparing a protein built-up film such as an enzyme film being the active element of a biosensor, an org. solvent such as glycerin, N,N- dimethylformamide or acetone is used as a liquid phase. For example, a monomolecular film 4 of glucose oxidase is preliminarily floated on a glycerine solution 2 and, when a substrate 5 is vertically moved in this state so as to cross the liquid surface of said solution 2, a glucose oxidase monomolecular film 4 is transferred to the substrate 5. By moving the substrate 5 up and down plural times, only the monomolecular film 4 containing no impurities can be built up one at a time with good accuracy.

Description

【発明の詳細な説明】 〔概要〕 ラングミュア−プロジェット法にもとづくタンパク質累
積膜の製造方法の改良である。
DETAILED DESCRIPTION OF THE INVENTION [Summary] This is an improvement of a method for producing a protein accumulation film based on the Langmuir-Prodgett method.

ラングミュア−プロジェット法にもとづくタンパク質累
積膜の製造方法の液体相としてグリセリンやN、N−ジ
メチルホルムアミドや7セトン等の有機溶媒を使用する
ことにより、不純物を含まず高純度であり、分子レベル
で高度の配列秩序を有し、高密度のタンパク質素tag
を製造する方法である。
By using organic solvents such as glycerin, N,N-dimethylformamide, and 7setone as the liquid phase of the protein accumulation film production method based on the Langmuir-Prodgett method, it is highly pure and does not contain impurities, and can be processed at the molecular level. Protein element tag with high degree of sequence order and high density
This is a method of manufacturing.

〔産業上の利用分野〕[Industrial application field]

本発明は、バイオセンサの活性要素である酵素膜(例え
ば電極等の支持体上に固定されている酵素のll5I)
等のタンパク買累積膜の製造方法に関する。
The present invention relates to an enzyme membrane (for example, an enzyme 11I immobilized on a support such as an electrode) that is an active element of a biosensor.
The present invention relates to a method for producing a protein-purchasing membrane.

〔従来の技術〕[Conventional technology]

バイオセンサの活性要素である酵素膜は、金属性電極等
の上に酵素が膜状に固定されたものであるが、この酵素
膜等のタンパク賀累積膜を製造するために、ラングミュ
ア−プロジェット法を使用することが検討されている。
Enzyme membranes, which are the active elements of biosensors, are made by fixing enzymes in the form of a membrane on metal electrodes, etc. In order to manufacture proteinaceous accumulation membranes such as enzyme membranes, Langmuir-Projet The use of the law is being considered.

その代表的な2例を示す。Two typical examples are shown below.

第1の例においては、飽和硫酸アンモニュウム溶液上に
タンパク質単分子膜を浮遊させておき、この硫醜アンモ
ニュウム溶液面を、お−むね垂直に貫通するように、金
属板・ガラス板等を移動させて、金属板・ガラス板等の
上に、タンパク質単分子膜を転写するものである。
In the first example, a protein monomolecular film is suspended on a saturated ammonium sulfate solution, and a metal plate, glass plate, etc. is moved so as to penetrate the surface of the sulfuric ammonium solution almost perpendicularly. In this method, a protein monomolecular film is transferred onto a metal plate, glass plate, etc.

第2の例においては、水面上に脂肪酸単分子膜とタンパ
ク質単分子膜との結合2層体を浮遊させておき、この2
層体を、お−むね垂直に貫通するように、金属板・ガラ
ス板等を移動させて、金属板・ガラス板等の上に、上記
の2層体を転写するものである。
In the second example, a bonded bilayer consisting of a fatty acid monolayer and a protein monolayer is suspended on the water surface, and
The two-layer structure is transferred onto the metal plate, glass plate, etc. by moving the metal plate, glass plate, etc. so as to penetrate the layer body approximately perpendicularly.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記第1の例においては、製造されたタンパク質素M膜
上に硫酸アンモニュウムが析出し、その上に第2、tl
II3のタンパク質単分子膜を累積することが困難であ
るという欠点があり、上記第2の例においては、脂肪酸
単分子膜とタンパク買単分子膜との結合2層体が累積さ
れるのであって。
In the first example, ammonium sulfate is deposited on the produced protein M film, and the second, tl
There is a drawback that it is difficult to accumulate a protein monolayer in II3, and in the second example above, a bonded bilayer of a fatty acid monolayer and a protein monolayer is accumulated. .

タンパク賀単分子膜のみの累積膜が製造されるのではな
い。
A cumulative film of only protein monolayers is not produced.

本発明の目的は、この欠点を解消することにあり、不純
物を含まず高純度であり、分子レベルで高度の配列秩序
を有し、高密度のタンパク賀累植膜を製造する方法を提
供することにある。
The purpose of the present invention is to eliminate this drawback, and to provide a method for producing a protein graft membrane that is highly pure, does not contain impurities, has a high degree of sequence order at the molecular level, and has a high density. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために本発明が採った手段は、ラ
ングミュア−プロジェット法にもとづくタンパク質素M
l!51の製造方法において、液体相としてグリセリン
やN、N−ジメチルホルムアミドやアセトン等の有機溶
媒を使用することにある。
The means taken by the present invention to achieve the above object are based on the protein protein M based on the Langmuir-Prodgett method.
l! In the manufacturing method of No. 51, an organic solvent such as glycerin, N,N-dimethylformamide, or acetone is used as the liquid phase.

有機溶媒液よりなる液体相上に浮遊するタンパク賀単分
子膜に架橋剤を注入・混合すると。
When a crosslinking agent is injected and mixed into a protein monolayer suspended on a liquid phase made of an organic solvent solution.

製造されるタンパク質累積膜の機械的強度が向上する。The mechanical strength of the produced protein accumulation membrane is improved.

〔作用〕[Effect]

本発明の液体相は有機溶媒であるから、上記第1例、第
2例の場合のように、タンパク質単分子膜に付着して残
留することはなく、不純物を含まず高純度であり、分子
レベルで高度の配列秩序を有し、高密度のタンパク質累
積膜を製造することができる。
Since the liquid phase of the present invention is an organic solvent, it does not adhere to and remain on the protein monolayer as in the first and second examples, and is highly pure and does not contain impurities. It is possible to fabricate dense protein accumulation films with a high degree of sequence order.

〔実施例〕〔Example〕

以下、図面を参照しつ覧、本発明の一実施例に係るタン
パク質累積膜の製造方法について、さらに説明する。
Hereinafter, with reference to the drawings, a method for producing a protein accumulation membrane according to an embodiment of the present invention will be further described.

1土1 第1a図参照 水槽l中に、グリセリン2を満たす。1 soil 1 See Figure 1a. Fill the water tank 1 with glycerin 2.

PH6のリン酸緩衝液に溶解したグルコースオキシダー
ゼ1.43X 10”’Mを滴下した後、常温で約5分
間静置して、グルコースオキシダーゼをグリセリン2の
液面上に展開する。
After dropping 1.43×10''M of glucose oxidase dissolved in a PH6 phosphate buffer, the solution is allowed to stand at room temperature for about 5 minutes to develop glucose oxidase on the surface of the glycerin 2 solution.

枠3を、グリセリンz上に浮かべて、グルコースオキシ
ダーゼの表面積を減少し、約30dyne/amの圧力
を水平方向に印加して、グルコースオキシダーゼの単分
子84を浮遊させる。
Frame 3 is floated on glycerin z to reduce the surface area of glucose oxidase, and a pressure of about 30 dyne/am is applied horizontally to suspend single molecules 84 of glucose oxidase.

基板5を図示するように、垂直に液面を横切るように、
静かに引き上げると、グルコースオキシダーゼ単分子@
4が基板5上に転写される。
As shown in the figure, the substrate 5 is placed vertically across the liquid surface.
When gently pulled up, a single molecule of glucose oxidase @
4 is transferred onto the substrate 5.

基板5を複数回上下させればグルコースオキシダーゼ単
分子膜4は1層づつ累積する。
By moving the substrate 5 up and down several times, the glucose oxidase monomolecular film 4 is accumulated one layer at a time.

以上の工程をもって製造したグルコースオキシダーゼ累
積膜のグルコース酸化活性は、溶液状態の場合よりは小
さいが、十分実用に供しうる程度の大きさを有し、しか
も、そのグルコース酸化活性は長期間安定に保持される
ことが確認された。
Although the glucose oxidation activity of the glucose oxidase cumulative membrane produced through the above steps is smaller than that in the solution state, it is large enough to be used for practical purposes, and the glucose oxidation activity is maintained stably for a long period of time. It was confirmed that

追」L例 第1b図参照 水槽l中に、グリセリンとアセトンとのl:1の混合液
6を満たす、ここで、アセトンを混合した理由は、液相
の粘度を低下し、累積をより容易にするためである。
Addition: Example L See Figure 1b Fill the water tank l with a l:1 mixture 6 of glycerin and acetone.The reason for mixing acetone here is to lower the viscosity of the liquid phase and make it easier to accumulate. This is for the purpose of

pH7,0のリン酸緩衝液に溶解したカタラーゼ1.4
3X 10−8Mを滴下した後、常温で約5分間静置し
て、カタラーゼをグリセリン・7セトン混合液6の液面
上に展開する。
Catalase 1.4 dissolved in phosphate buffer pH 7.0
After dropping 3X 10-8M, the solution is allowed to stand at room temperature for about 5 minutes to develop catalase on the surface of the glycerin/7cetone mixture 6.

枠3を、グリセリン・アセトン混合液6上に浮かべて、
カタラーゼの表面積を減少し、約30dyne/Csの
圧力を水平方向に印加して、カタラーゼの単分子119
7を浮遊させる。
Floating the frame 3 on the glycerin/acetone mixture 6,
By reducing the surface area of catalase and applying a pressure of approximately 30 dyne/Cs in the horizontal direction, single molecules of catalase 119
7 to float.

グリセリン・アセトン混合液6の濃度が約2.5%にな
るように、ゲルタール・アルデヒドを、下方から流し込
む、ゲルタール・アルデヒドの架橋効果により、カタラ
ーゼ分子は相互に結合され、カタラーゼ単分子膜7の結
合状態は安定し、機械的に強固になる。
Geltal aldehyde is poured from below so that the concentration of the glycerin/acetone mixture 6 is approximately 2.5%. Due to the crosslinking effect of the geltal aldehyde, the catalase molecules are bonded to each other, and the catalase monolayer 7 is bonded to the catalase molecules. The bonded state becomes stable and mechanically strong.

基板5を図示するように、垂直に液面を横切るように、
静かに引き上げると、カタラーゼ単分子膜7が基板5上
に転写される。
As shown in the figure, the substrate 5 is placed vertically across the liquid surface.
When gently pulled up, the catalase monolayer 7 is transferred onto the substrate 5.

基板5を複数回上下させればカタラーゼ単分子膜7は1
層づつ累積する。
If the substrate 5 is moved up and down several times, the catalase monolayer 7 becomes 1
Accumulate layer by layer.

以上の工程をもって製造したカタラーゼ累積膜の過酸化
水素分解活性は、溶液状態の場合よりは小さいが、十分
実用に供しうる程度の大きさを有し、しかも、その過酸
化水素分解活性は長期間安定に保持されることが確認さ
れた。
Although the hydrogen peroxide decomposition activity of the catalase cumulative membrane produced through the above process is smaller than that in the solution state, it is still large enough to be used for practical purposes. It was confirmed that it was maintained stably.

〔発明の効果ρ 以上説明せるとおり、本発明に係るラングミュア−プロ
ジェット法にもとづくタンパク質累積膜の製造方法にお
いては、液体相としてグリセリンφN、N−ジメチルホ
ルムアミド・アセトン等の有機溶媒を使用することとさ
れているので、不純物を含まず高純度であり、分子レベ
ルで高度の配列秩序を有し、高密度のタンパク質素i膜
を製造することができる。
[Effect of the invention ρ As explained above, in the method for producing a protein accumulation film based on the Langmuir-Prodgett method according to the present invention, an organic solvent such as glycerin φN, N-dimethylformamide/acetone, etc. is used as the liquid phase. Therefore, it is possible to produce a high-density protein film that is highly pure without containing impurities, has a high degree of sequence order at the molecular level, and has a high density.

【図面の簡単な説明】[Brief explanation of drawings]

第1a図は1本発明の第1の実施例に係るタンパク質素
m膜の製造方法の説明図である。 第1b図は1本発明の第2の実施例に係るタンパク質素
m膜の製造方法の説明図である。 100.水槽、 200.グリセリン、3・・・枠、 
4・争・グルコースオキシダーゼの単分子膜、  5Φ
・・基板、  6・・φグリセリンΦアセトン混合液、
  7・・・カタラーゼの単分子膜。 本発明 第1a図 本発明 第1b図
FIG. 1a is an explanatory diagram of a method for manufacturing a protein membrane according to a first embodiment of the present invention. FIG. 1b is an explanatory diagram of a method for manufacturing a protein membrane according to a second embodiment of the present invention. 100. Water tank, 200. Glycerin, 3...frame,
4. Conflict: Monolayer of glucose oxidase, 5Φ
...Substrate, 6..φglycerinφacetone mixture,
7... Monolayer of catalase. Figure 1a of the present invention Figure 1b of the present invention

Claims (1)

【特許請求の範囲】 [1]液状のタンパク質を、有機溶媒液の液面上に、滴
下して該液面上に前記タンパク質の単分子膜を浮遊させ
、 その上にタンパク質累積膜が製造される基板を前記タン
パク質の単分子膜に接触させて、前記タンパク質の単分
子膜を前記基板に転写してなすことを特徴とするタンパ
ク質累積膜の製造方法。 [2]前記単分子膜製造後に、前記有機溶媒液中に、架
橋剤を注入、混合することを特徴とする特許請求の範囲
第1項記載のタンパク質累積膜の製造方法。
[Claims] [1] Liquid protein is dropped onto the surface of an organic solvent solution to suspend a monomolecular film of the protein on the surface of the liquid, and a protein accumulation film is produced on top of the monomolecular film of the protein. 1. A method for producing a protein accumulation film, comprising: bringing a substrate into contact with the monomolecular film of the protein, and transferring the monomolecular film of the protein onto the substrate. [2] The method for producing a protein accumulation film according to claim 1, wherein a crosslinking agent is injected and mixed into the organic solvent solution after producing the monomolecular film.
JP61025008A 1986-02-07 1986-02-07 Preparation of protein built-up film Pending JPS62183882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025008A JPS62183882A (en) 1986-02-07 1986-02-07 Preparation of protein built-up film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025008A JPS62183882A (en) 1986-02-07 1986-02-07 Preparation of protein built-up film

Publications (1)

Publication Number Publication Date
JPS62183882A true JPS62183882A (en) 1987-08-12

Family

ID=12153904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025008A Pending JPS62183882A (en) 1986-02-07 1986-02-07 Preparation of protein built-up film

Country Status (1)

Country Link
JP (1) JPS62183882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1186659A1 (en) * 2000-03-16 2002-03-13 Matsushita Electric Industrial Co., Ltd. Nucleotide detector, process for producing the same and process for forming fine particle membrane
JP2005535095A (en) * 2002-08-06 2005-11-17 ソントル ナショナル ド ラ ルシェルシュ ションティフィーク Fuel cell using biofilm as catalyst for air electrode reaction and / or fuel electrode reaction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1186659A1 (en) * 2000-03-16 2002-03-13 Matsushita Electric Industrial Co., Ltd. Nucleotide detector, process for producing the same and process for forming fine particle membrane
EP1186659A4 (en) * 2000-03-16 2002-07-17 Matsushita Electric Ind Co Ltd Nucleotide detector, process for producing the same and process for forming fine particle membrane
US7129047B2 (en) 2000-03-16 2006-10-31 Matsushita Electric Industrial Co., Ltd. Method for manufacturing a nucleotide detector
JP2005535095A (en) * 2002-08-06 2005-11-17 ソントル ナショナル ド ラ ルシェルシュ ションティフィーク Fuel cell using biofilm as catalyst for air electrode reaction and / or fuel electrode reaction

Similar Documents

Publication Publication Date Title
DE10221435B4 (en) Enzyme electrode arrangement, a method for the production thereof and a biosensor arrangement comprising this enzyme electrode arrangement
US6241863B1 (en) Amperometric biosensors based on redox enzymes
Sato et al. Layer-by-layer thin films and microcapsules for biosensors and controlled release
Nassar et al. Electrochemical properties of myoglobin embedded in Langmuir–Blodgett and cast films of synthetic lipids
CN101023123A (en) Thin-filmy polymeric structure and method of preparing the same
Tieke Langmuir–Blodgett membranes for separation and sensing
JPH0235933B2 (en)
DE69825928D1 (en) Process and production of a thin layer
JPS62183882A (en) Preparation of protein built-up film
Lee et al. Enzyme-modified Langmuir-Blodgett membranes in glucose electrodes based on avidin-biotin interaction
Jimenez et al. Glucose sensor based on an amperometric microelectrode with a photopolymerizable enzyme membrane
JPH02272081A (en) Functional organic thin film
Nakagawa et al. New method for fabricating Langmuir-Blodgett films of water-soluble proteins with retained enzyme activity
JPH0454175B2 (en)
JPS61283377A (en) Preparation of organic membrane
JPS63218850A (en) Enzyme electrode and its preparation
CN106754860A (en) A kind of method to interface Rapid Modification Avidin based on liposome
Anzai et al. Use of the avidin-biotin system for immobilization of an enzyme on the electrode surface
JP2743535B2 (en) Integrated sensor and manufacturing method thereof
US20060141596A1 (en) Process for the immobilization of enzymes
JPH0661266B2 (en) Immobilized enzyme thin film
Charych et al. Lateral translational diffusion and electron transport in monolayer and bilayer assemblies of amphiphiles at interfaces
JPS61170389A (en) Production of immobilized enzyme membrane
JPH09141186A (en) Production of water-soluble protein thin film
PL241131B1 (en) Porous nano-structured layer of poly(2,3'-bithiophene) imprinted with follicle stimulating hormone (FSH), method of its preparation and its use as a selective recognition element of an electrochemical sensor for FSH determination