JPS62183601A - Microwave transmission line - Google Patents

Microwave transmission line

Info

Publication number
JPS62183601A
JPS62183601A JP2612186A JP2612186A JPS62183601A JP S62183601 A JPS62183601 A JP S62183601A JP 2612186 A JP2612186 A JP 2612186A JP 2612186 A JP2612186 A JP 2612186A JP S62183601 A JPS62183601 A JP S62183601A
Authority
JP
Japan
Prior art keywords
rectangular waveguide
terminal
coaxial
electromagnetic waves
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2612186A
Other languages
Japanese (ja)
Inventor
Munenori Mikami
三上 宗紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2612186A priority Critical patent/JPS62183601A/en
Publication of JPS62183601A publication Critical patent/JPS62183601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Connection Structure (AREA)

Abstract

PURPOSE:To adopt the simple structure subjecting no strain and to reduce the transmission loss by using a 3db directional coupler so as to divide an input electromagnetic wave into two with a phase difference of 90 deg. to each other and coupling them with a rectangular waveguide equally at a distance of a 1/4 of guide wavelength corresponding nearly to the center frequency in the frequency range of the operating electromagnetic wave. CONSTITUTION:An input terminal 1 is connected to the 1st terminal 9a of the 3db directional coupler 9 having four coaxial terminals 9a, 9b, 9c, 9d (1st, 2nd, 3rd and 4th coaxial terminals), an electromagnetic wave from the terminal 9a is divided equally into two electromagnetic waves having a phase difference of 90 deg. to each other, they are outputted to the 2nd and 3rd terminals 9b, 9c and the electromagnetic waves inputted to the 2nd and 3rd terminals 9b, 9c are combined and outputted to the 4th terminal 9d. Through the constitution above, one end of inner conductors 11a, 12a of coaxial lines 11, 12 is inserted into a rectangular waveguide 3 through a respective slit 3a with an equal insertion length and the distance of them is selected to be 1/4 of the guide wavelength in the axial direction of the rectangular waveguide 3. The 3db directional coupler 9 and the coaxial lines 11, 12 are constituted that they are supported incorporatedly to a support base 7 and moved axially along the slit 3a while the insertion length and the distance of the coaxial line inner conductors 11a, 12a are kept constant.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は同軸線路からの電磁波を矩形導波管に伝送し
て出力し、その入力端と出力端間の距離を自由に変えら
れるマイクロ波伝送線路に関する。
[Detailed Description of the Invention] [Industrial Application Fields] This invention is a microwave system that transmits electromagnetic waves from a coaxial line to a rectangular waveguide and outputs them, and allows the distance between the input end and the output end to be freely changed. Regarding transmission lines.

[従来の技術] 第3図は例えば特開昭56−47101号公報に示され
た従来のこの種伝送線路を示す斜視図であり、図におい
て(1)は信号の入力端、(2)は出力端、(3)は8
面の中央に軸方向に沿って設けられたスリット(3a)
を有する矩形導波管、(4)は同軸線路、(4a)はこ
の同軸線路(4)の内導体でそれの一端は矩形4波管(
3)のスリット(3a)を通ってその中に挿入されてい
る。(5)は導波管(3)の一端に接続された無反射終
端器、(6)は入力端(1)と同軸線路(4)間に設け
られたアイソレータであり、電磁波は入力端(1)から
同軸線路(4)の方へのみ伝送される。(7)は矩形導
波管(3)を把持するようそれの軸方向に移動可能に取
付けられた支持台で、これに同軸線路(4)の外導体(
4b)が機械的に固定されており、これは、同軸線路(
4)の内導体(4a)がスリンl”(3a)を通して矩
形導波管(3)の内に挿入される長さを一定に保ちつつ
、軸方向に移動できる構造となっている。
[Prior Art] FIG. 3 is a perspective view showing a conventional transmission line of this type, as disclosed in, for example, Japanese Patent Application Laid-Open No. 56-47101, in which (1) is a signal input end, and (2) is a signal input end. Output end, (3) is 8
A slit (3a) provided along the axial direction in the center of the surface
(4) is a coaxial line, (4a) is the inner conductor of this coaxial line (4), and one end of it is a rectangular four-wave tube (
3) is inserted into it through the slit (3a). (5) is a non-reflection terminator connected to one end of the waveguide (3), (6) is an isolator provided between the input end (1) and the coaxial line (4), and electromagnetic waves are transmitted from the input end ( 1) to the coaxial line (4) only. (7) is a support stand movable in the axial direction of the rectangular waveguide (3) so as to grip it, and the outer conductor (4) of the coaxial line (4) is attached to this support stand.
4b) is mechanically fixed, which is connected to the coaxial line (
The structure is such that the inner conductor (4a) of 4) can move in the axial direction while keeping the length of insertion into the rectangular waveguide (3) through the sulin l'' (3a) constant.

以上の構成において、入力端(1)に加えられた電磁波
はアイソレータ(6)を経て同軸線路(4)に伝送され
、スリット(3a)を通って矩形導波管(3)内に突出
した同軸線路(4)の内導体(4a)によって矩形導波
管(3)内に突出した同軸線路(4)の内導体(4a)
によって矩形導波管(3)内にそのエネルギーの一部を
伝送する。導波管(3)内に伝送された゛電磁波は同軸
線路(4)との結合点から導波管(3)の軸方向の双方
に伝播し、一方は出力端(2)にいたり、他方は無反射
終端器(5)にいたり、そのエネルギーがこの無反射終
端器(5)に吸収される。同軸線路(4)から矩形導波
管(3)に結合されずに反射した@、電磁波同軸線路(
4)からアイソレータ(6)に入りそこでエネルギーが
吸収され入力端(1)には伝送されない。無反射終端器
(5)は、これに伝送される電磁波を吸収するが、この
無反射終端器(5)がないとこの方向に伝播した電磁波
はここで反射されて出力端(2)の方向に進み、直接出
力端(2)に伝送された出力電磁波と干渉することにな
る。以上のように電磁波を伝送する伝送線路は支持台(
7)の移動により矩形導波管(3)のスリット(3a)
の長さにほぼ等しい距離だけ入力端(1)を移動するこ
とができ、入力端(1)と出力端(2)との距離を自由
に変えることができる。
In the above configuration, the electromagnetic wave applied to the input end (1) is transmitted to the coaxial line (4) via the isolator (6), and the coaxial line protrudes into the rectangular waveguide (3) through the slit (3a). The inner conductor (4a) of the coaxial line (4) protrudes into the rectangular waveguide (3) by the inner conductor (4a) of the line (4).
transmits a part of its energy into the rectangular waveguide (3). The electromagnetic waves transmitted into the waveguide (3) propagate in both directions in the axial direction of the waveguide (3) from the connection point with the coaxial line (4), with one reaching the output end (2) and the other reaching the output end (2). The energy reaches the non-reflection terminator (5) and is absorbed by the non-reflection terminator (5). Electromagnetic waves reflected from the coaxial line (4) without being coupled to the rectangular waveguide (3), the coaxial line (
4) enters the isolator (6), where the energy is absorbed and is not transmitted to the input end (1). The non-reflection terminator (5) absorbs the electromagnetic waves transmitted to it, but without the non-reflection terminator (5), the electromagnetic waves propagated in this direction would be reflected here and directed toward the output end (2). This will cause interference with the output electromagnetic wave directly transmitted to the output end (2). As mentioned above, the transmission line that transmits electromagnetic waves is supported by
7), the slit (3a) of the rectangular waveguide (3)
The input end (1) can be moved by a distance approximately equal to the length of the input end (1), and the distance between the input end (1) and the output end (2) can be freely changed.

第4図は、例えば特開昭56−47102号公報に示さ
れた他の従来例の縦断面図で、図において(1)〜(4
)及び(7)は第3図の同一符号と同−或は相当部分を
示し、第3図におけるアイソレータ(6)を削除し、無
反射終端器(5)を、同軸線路内導体(4a)と所定の
一定間隔を保って支持体(7)と共に軸方向に移動可能
な短絡板(8)におきがえた構成となっている。
FIG. 4 is a vertical cross-sectional view of another conventional example shown in, for example, Japanese Patent Application Laid-Open No. 56-47102, and in the figure, (1) to (4)
) and (7) indicate the same or equivalent parts as the same reference numerals in Fig. 3, the isolator (6) in Fig. 3 is deleted, the non-reflection terminator (5) is replaced with the coaxial line conductor (4a) The structure includes a shorting plate (8) that is movable in the axial direction together with the support body (7) at a predetermined constant interval.

この構成において、同軸線路内導体(4a)と短絡板(
8)との距離は通常矩形導波管(3)の伝送電磁波の管
内波長の約4分の1の長さに設定することにより、内導
体(4a)と矩形導波管(3)との結合点から直接出力
端(2)に進む電磁波の位相と、短絡板(8)で反射し
て出力端(2)に進む電磁波との位相を合わすことがで
き、無反射終端器(5)に吸収される場合に比し1/2
の伝送損失にしている。
In this configuration, the coaxial line inner conductor (4a) and the shorting plate (
The distance between the inner conductor (4a) and the rectangular waveguide (3) is normally set to about one-fourth of the internal wavelength of the electromagnetic wave transmitted by the rectangular waveguide (3). The phase of the electromagnetic wave that directly advances from the coupling point to the output end (2) can be matched with the phase of the electromagnetic wave that is reflected by the shorting plate (8) and advances to the output end (2), and the non-reflection terminator (5) 1/2 compared to when absorbed
transmission loss.

[発明が解決しようとする問題点] 従来の伝送線路は以上のように構成されているので、第
3図の例では無反射終端器に吸収される分だけ伝送損失
が生ずる欠点があり、第4図の例では上記に比し伝送損
失が改善させるが、支持台(7)と短絡板(8)との結
合を、細いスリット(3a)を介して行なうことになり
、その結合部の機械的強度が弱い上に、短絡板(8)が
矩形導波管(7)内壁と摺動しながら移動しなければな
らず、それだけ機械的負荷が大きく、強度的に無理がか
かりやすく。
[Problems to be Solved by the Invention] Since the conventional transmission line is configured as described above, the example shown in FIG. In the example shown in Figure 4, the transmission loss is improved compared to the above, but the support base (7) and the shorting plate (8) are connected through a thin slit (3a), and the mechanical In addition, the shorting plate (8) must move while sliding on the inner wall of the rectangular waveguide (7), which imposes a large mechanical load and tends to strain the strength.

破損しやすいという問題点があった。The problem was that it was easily damaged.

この発明は上記のような問題を解消するためになされた
もので、簡単で強度的に無理のかからない構造で、伝送
損失の低減をはかった入力端と出力端との距離が自由に
変えられるマイクロ波伝送線路を得ることを目的として
いる。
This invention was made to solve the above-mentioned problems, and it is a microcomputer with a simple structure that does not require excessive strength, and the distance between the input end and the output end can be freely changed to reduce transmission loss. The purpose is to obtain a wave transmission line.

[問題点を解決するための手段] この発明にかかるマイクロ波伝送線路は、第1、第2、
第3、第4の4個の同軸端子を有し、それの第1の端子
からの入力電磁波を90°の位相差をもった電磁波に2
等分して第2、第3の端子に出力し、この第2、第3の
端子からの入力電磁波を合成して第4の端子に出力する
3db方向方向性器を備え、この3db方向方向性器の
第1の端子に入力端を、第4の端子に無反射終端を接続
すると共に、上記第2、第3の端子に等長の一対の同軸
線路の一端を接続し、これら同軸線路の他端を。
[Means for solving the problem] The microwave transmission line according to the present invention includes a first, second,
It has four coaxial terminals, a third and a fourth, and converts the input electromagnetic wave from the first terminal into two electromagnetic waves with a phase difference of 90°.
A 3db directional directional generator is provided, which equally divides the waves and outputs them to second and third terminals, and combines the input electromagnetic waves from the second and third terminals and outputs them to a fourth terminal. The input end is connected to the first terminal of the , and the non-reflective termination is connected to the fourth terminal of the edge.

一端を出力端とする矩形導波管のH面の向火に軸方向に
沿って設けられたスリットに、内導体を等しい挿入長で
挿入し、そのスリットに沿い使用可能電磁波の周波数範
囲のほぼ中心周波数に対応する導波管管内波長の174
の間隔で保持された状態で、導波管管軸方向に移動可能
となるよう結合したものである。
The inner conductor is inserted with equal insertion length into a slit provided along the axial direction in the opposite direction of the H-plane of a rectangular waveguide with one end as the output end, and the inner conductor is inserted along the slit approximately in the frequency range of usable electromagnetic waves. 174 of the waveguide internal wavelength corresponding to the center frequency
They are connected so that they can be moved in the axial direction of the waveguide while being maintained at an interval of .

[作 用] この発明における伝送線は、入力端からの入力電磁波は
3db方向方向性器により互に90’の位相差をもった
電磁波に電力が2等分され、等長の同軸線路を介してス
リットから矩形導波管に結合する。矩形導波管内に結合
した90°の位相差をもった両型磁波は、2同軸線路の
内導体の矩形導波管内への挿入長は等しいので等電力と
なって、それぞれ矩形導波管内を両方向に分かれて伝播
する。また結合2同軸線路内導体は矩形導波管の管軸方
向に、そこで使用可能周波数範囲のほぼ中心周波数に対
応する管内波長の174の距離をおいて設置されている
ので、これらによって結合された等電力の両方向への電
磁波は、一方へは同相となって強め合って伝送され、他
方へは逆相となり打消し合って弱められて伝送される。
[Function] In the transmission line of the present invention, the input electromagnetic wave from the input end is divided into two electromagnetic waves having a phase difference of 90' by the 3db direction generator, and the power is divided into two electromagnetic waves with a phase difference of 90', and the power is divided into two electromagnetic waves with a phase difference of 90' from each other. Coupling from the slit to the rectangular waveguide. Both types of magnetic waves with a phase difference of 90° coupled into the rectangular waveguide have equal power because the insertion lengths of the inner conductors of the two coaxial lines into the rectangular waveguide are equal, and they each travel inside the rectangular waveguide. It splits and propagates in both directions. In addition, the conductors in the coupling 2 coaxial line are installed in the tube axis direction of the rectangular waveguide at a distance of 174 times the tube wavelength, which corresponds to the center frequency of the usable frequency range. Electromagnetic waves of equal power in both directions are transmitted to one side with the same phase and strengthen each other, and to the other side with opposite phases and cancel each other out and weaken.

この強め合う方向に出力端を設けることにより、電磁波
を少ない損失で入力端から出力端に伝送させることがで
きる。−万両同軸導波管と矩形導波管との結合点からの
反射波は3db方向方向性器に戻り、それの第4の端子
に接続された無反射端で吸収され、入力端に戻ることは
ない。
By providing the output ends in this mutually reinforcing direction, electromagnetic waves can be transmitted from the input end to the output end with less loss. - The reflected wave from the connection point between the ten-way coaxial waveguide and the rectangular waveguide returns to the 3db directionality device, is absorbed by the non-reflection end connected to its fourth terminal, and returns to the input end. There isn't.

[実施例] 以下この発明の一実施例を図について説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す斜視図、第2図はそ
れの動作説明図であり、図において(1) (2)(3
) (3a) (7)は第3図の従来のものと同様のも
のであり、(1)は入力端、(2)は出力端、(3)は
矩形導波管、(3a)はそれのH面中央に軸方向に沿っ
て設けられたスリット、(7)は矩形導波管(3)を把
持するようそれの軸方向に移動可能に取付けられた支持
台である。(9)は、第1、第2、第3、第4の4個の
同軸端子(9a) (9b) (9c) (9d)を有
する3db方向方向性器で、第1の端子(9a)に入力
端(1)を接続し、この端子(9a)からの電磁波は9
0”の位相差をもった電磁波に2等分されて第2、第3
の端子(9b) (9c)に出力され、第2、第3の端
子(9b)(9c)に入力された電磁波は合成して第4
の端子(9d)に出力されるよう構成されている。(1
0)は3db方向方向性器(9)の第4の端子(9d)
に接続される無反射終端、 (11)(12)は、一端
が3db方向方向性器(9)の第2、第3の端子(9b
) (9c)に接続された等長の一対の同軸線路、(l
la) (llb)はこれら同軸線路(11)(12)
の内導体で、それらの他端が矩形導波管(3)内にそれ
のスリット(3a)を通し等しい挿入長で挿入され、か
つ同軸線路内導体(lla)(12a)の距離が、矩形
導波管(3)の軸方向にそれの管内波長の174となる
よう配置され、これら3db方向方向性器(9)及び同
軸線路(11) (12)は一体に支持台(7)に支持
され、同軸線路内導体(lla) (12a)の挿入長
及びこれらの距離を一定に保って、スリット(3a)に
沿い軸方向に移動できるよう構成されている。
Fig. 1 is a perspective view showing one embodiment of the present invention, and Fig. 2 is an explanatory diagram of its operation.
) (3a) (7) is the same as the conventional one shown in Figure 3, (1) is the input end, (2) is the output end, (3) is the rectangular waveguide, and (3a) is the A slit (7) is provided along the axial direction in the center of the H-plane of the rectangular waveguide (3), and is a support base mounted movably in the axial direction to grip the rectangular waveguide (3). (9) is a 3db direction genitalia having four coaxial terminals (9a), (9b), (9c), and (9d), the first, second, third, and fourth, and the first terminal (9a) Connect the input terminal (1), and the electromagnetic wave from this terminal (9a) is 9
It is divided into two equal parts of electromagnetic waves with a phase difference of 0" and the second and third waves are divided into two.
The electromagnetic waves output to the terminals (9b) (9c) and input to the second and third terminals (9b) (9c) are combined to form the fourth
The configuration is such that the signal is output to the terminal (9d). (1
0) is the fourth terminal (9d) of the 3db direction genitalia (9)
The non-reflective terminals (11) and (12) are connected to the second and third terminals (9b) of the 3db directional genitalia (9).
) A pair of coaxial lines of equal length connected to (9c), (l
la) (llb) are these coaxial lines (11) (12)
The other ends of the inner conductors of the coaxial line are inserted into the rectangular waveguide (3) through the slit (3a) thereof with equal insertion length, and the distance of the inner conductor (lla) (12a) of the coaxial line is the same as that of the rectangular waveguide (3). They are arranged in the axial direction of the waveguide (3) so as to have an internal wavelength of 174, and these 3 db direction generator (9) and coaxial lines (11) and (12) are integrally supported on a support base (7). , the coaxial line inner conductor (lla) (12a) is configured to be able to move in the axial direction along the slit (3a) while keeping the insertion length and distance thereof constant.

入力端(1)に加えられた電磁波は、3db方向方向性
器(9)により互に90’の位相差をもった2つの電磁
波に分配され、それぞれ同軸線路(11)(12)に入
り矩形導波管(3)のスリット(3a)に挿入された上
記それぞれの同軸線路(11)(12)の内導体(ll
a) (llb)によって矩形導波管(3)にそれぞれ
エネルギーの一部を伝送する。矩形導波管(3)に伝送
された電磁波はそれぞれ出力端(2)の方向へ進むもの
とその反対に進むものとがある。また、矩形導波管(3
)に伝送されたのち、同軸線路(11)(12)に伝送
されるものがある。これらの電磁波の進行状態は第2図
において矢印で示すとおりである。
The electromagnetic wave applied to the input end (1) is divided into two electromagnetic waves with a phase difference of 90' by the 3db direction generator (9), which enter the coaxial lines (11) and (12) and are connected to a rectangular conductor. The inner conductor (ll) of each of the coaxial lines (11) and (12) inserted into the slit (3a) of the wave tube (3)
a) Transmit part of the energy by (llb) into the rectangular waveguide (3), respectively. Some of the electromagnetic waves transmitted to the rectangular waveguide (3) travel toward the output end (2), while others travel in the opposite direction. In addition, a rectangular waveguide (3
) and then to coaxial lines (11) and (12). The progress of these electromagnetic waves is as indicated by the arrows in FIG.

同軸線路(11)と矩形導波管(3)との結合において
、同軸線路(11)から矩形導波管(3)の出力端(2
)に進むように結合する結合係数(電界結合係数)をC
とすると、出力端(2)と反対の方向に進むよう結合す
る結合係数もCであり、また矩形導波管(3)内を出力
端(2)と反対方向へ進行している?in波が同軸線路
(11)に結合する結合係数もまたCである。
In coupling the coaxial line (11) and the rectangular waveguide (3), the coaxial line (11) is connected to the output end (2) of the rectangular waveguide (3).
), the coupling coefficient (electric field coupling coefficient) is C
Then, the coupling coefficient of the coupling going in the opposite direction to the output end (2) is also C, and the coupling coefficient goes in the opposite direction to the output end (2) inside the rectangular waveguide (3). The coupling coefficient by which the in-wave is coupled to the coaxial line (11) is also C.

同軸線路(12)は同軸線路(11)と同じであり、矩
形導波管(3)のスリット(3a)をとおして挿入する
内導体(12a)の長さも同軸線路(11)の内導体(
lla)と同じにしているので、同軸線路(12)と矩
形導波管(3)との結合は、上記同軸線路(11)の場
合と同じであり、その結合係数はCである。ここに端子
(9b)を同軸線路(11)に接続し、同軸線路(11
)と矩形導波管(3)の結合点と、同軸線路(12)と
矩形導波管(3)の結合点との間隔をLとすると、出力
端(2)の出力電力と入力端(1)の入力電力との比P
2及び出力端子(2)と反対方向に向う電力と入力端(
1)の入力電力との比P3はそれぞれ次のように2aは
矩形導波管のH面の幅である。
The coaxial line (12) is the same as the coaxial line (11), and the length of the inner conductor (12a) inserted through the slit (3a) of the rectangular waveguide (3) is also the same as the inner conductor (11) of the coaxial line (11).
lla), the coupling between the coaxial line (12) and the rectangular waveguide (3) is the same as that for the coaxial line (11), and its coupling coefficient is C. Connect the terminal (9b) to the coaxial line (11) here, and connect the coaxial line (11) to the coaxial line (11).
) and the rectangular waveguide (3), and the distance between the connection point of the coaxial line (12) and the rectangular waveguide (3) is L, then the output power of the output end (2) and the input end ( 1) Ratio P to the input power
2 and output terminal (2) and the power and input terminal (
The ratio P3 to the input power in 1) is as follows, where 2a is the width of the H-plane of the rectangular waveguide.

−力筒3図に示す従来のものの場合、出力端(2)の出
力電力と入力端(1)の入力電力の比をP2′、出力端
(2)と反対方向に向う電力と入力端(1)の入力電力
の比をp 31とすると p、’=c” p、’=c2 ここで L=−− となる。
- In the case of the conventional power cylinder shown in Figure 3, the ratio of the output power at the output end (2) to the input power at the input end (1) is P2', and the power going in the opposite direction to the output end (2) and the input end ( If the input power ratio of 1) is p31, then p,'=c''p,'=c2 where L=--.

矩形導波管(3)にWRJ−10を使用し、この矩形導
波管(3)の使用可能周波数範囲、即ち8GIIz〜1
2GHzの電磁波をこの実施例の伝送線路にとおすとす
る。
WRJ-10 is used for the rectangular waveguide (3), and the usable frequency range of this rectangular waveguide (3), that is, 8GIIz to 1
Assume that a 2 GHz electromagnetic wave is passed through the transmission line of this embodiment.

同波数!]、8G)Iz、8 GHz、12GHzに対
する自由空間波長、管内波長をそれぞれ、λg、λし、
λgし、λH1λgHとすれば、 λ。
Same wave number! ], 8G) The free space wavelength and pipe wavelength for Iz, 8 GHz, and 12 GHz are λg and λ, respectively,
If λg and λH1λgH, then λ.

一=0.6245 λgL λg。One = 0.6245 λgL λg.

一=1.38 P2′2 C′ F(c)=1−−+0.827f丁;フ=−vr:び+
o、527)2+1−(0,527)”)・・・・(1
0)F(c)=1.827となるので、 1.3347≦F(c)<1.827となり、L334
7≦−<1.827となる。
1=1.38 P2'2 C'F(c)=1--+0.827f;F=-vr:+
o, 527) 2+1-(0,527)")...(1
0) F(c)=1.827, so 1.3347≦F(c)<1.827, L334
7≦−<1.827.

P2′ (9)式の右辺をf (c)とおくと。P2' Letting the right side of equation (9) be f (c).

C2 f(c)=1−−−0.827fr;フ=−(fi−C
t−0,827)”+1−(0,827)2)・・・・
(12)=0.165となり、C=0のとき最小値をと
り、f(c)=0.158となるので、f(c)≦0.
165となる。
C2 f(c)=1---0.827fr;F=-(fi-C
t-0,827)"+1-(0,827)2)...
(12)=0.165, and takes the minimum value when C=0, and f(c)=0.158, so f(c)≦0.
It becomes 165.

上記の結果から矩形導波管WRJ−10では。From the above results, for the rectangular waveguide WRJ-10.

2個所の同軸線路と矩形導波管との結合部の間隔を周波
数9.8GHzに対応する管内波長の1/4にすること
によって、使用帯域全域(8〜12Gllz)にわたっ
て、入力端から出力端までの伝送損失を第3図に示す従
来のものより1.2db〜2 、6 db減らすことが
できる。また、出力端と反対方向に向う電力は第3図に
示す従来のものより、約8db減らすことができる。
By setting the spacing between the coupling parts between the two coaxial lines and the rectangular waveguide to 1/4 of the pipe wavelength corresponding to the frequency of 9.8 GHz, the distance between the input end and the output end can be improved over the entire operating band (8 to 12 Gllz). The transmission loss can be reduced by 1.2 db to 2.6 db compared to the conventional one shown in FIG. Further, the power directed in the opposite direction from the output end can be reduced by about 8 db compared to the conventional one shown in FIG.

同軸線路(11)(12)と矩形導波管(3)との2個
所の結合部において結合係数が1/fXより小さいとき
は同軸線路(11)(12)から矩形導波管(3)へ結
合されないで残る電力がある。この電力は結合部で反射
され、それぞれ再び3db方向性結器(9)に戻ってく
るが、この反射電力は3db方向性結器(9)で合成さ
れ、第4の端子(9b)に出力され無反射終端(10)
に吸収される。
When the coupling coefficient is smaller than 1/fX at the two coupling points between the coaxial line (11) (12) and the rectangular waveguide (3), the connection is made between the coaxial line (11) (12) and the rectangular waveguide (3). There is power that remains uncombined. This power is reflected at the coupling part and returns to the 3db directional coupler (9) again, but this reflected power is combined in the 3db directional coupler (9) and output to the fourth terminal (9b). Non-reflective termination (10)
absorbed into.

なお、上記実施例ではこの発明の基本的な構成を示した
が入力端(1)と3db方向性結器(9)の間に入力端
(1)から3db方向性結器(9)の方向に電磁波を通
すように方向性を考慮してアイソレータを挿入してもよ
く、また、矩形導波管(3)の出力端(2)と反対側に
無反射終端器を設けてもよい。上記アイソレータ及び無
反射終端器を設けることにより、反射電力との干渉を除
くことができ、より特性を良くすることができる。
Although the basic configuration of the present invention was shown in the above embodiment, there is a connection between the input end (1) and the 3db directional connector (9) in the direction from the input end (1) to the 3db directional connector (9). An isolator may be inserted in consideration of directionality so as to pass electromagnetic waves through the rectangular waveguide (3), and a non-reflection terminator may be provided on the side opposite to the output end (2) of the rectangular waveguide (3). By providing the above-mentioned isolator and non-reflection terminator, interference with reflected power can be eliminated, and the characteristics can be further improved.

[発明の効果] この発明は以上のように3db方向方向性器を使用して
入力電磁波を90”の位相差に2等分して矩形導波管に
、使用可能電磁波の周波数範囲のほぼ中心周波数に対応
する導波管内波長の1/4の距離をおいて等しく結合す
るようにしたので、伝送損失を少なくすることができ、
また1対の同軸線路のみが矩形導波管に結合した状態で
移動可能となるよう構成したので、矩形導波管内を摺動
する短絡板を設ける必要がなく、構造簡単で機械的に無
理なく容易に入力端と出力端の距離が自由に変えられる
ものが安価に得られる効果がある。
[Effects of the Invention] As described above, the present invention uses a 3 db direction generator to divide input electromagnetic waves into two equal parts with a phase difference of 90'', and transmits the input electromagnetic waves into a rectangular waveguide with approximately the center frequency of the frequency range of usable electromagnetic waves. Since they are coupled equally at a distance of 1/4 of the corresponding wavelength in the waveguide, transmission loss can be reduced.
In addition, since only one pair of coaxial lines can be moved while connected to the rectangular waveguide, there is no need to provide a shorting plate that slides inside the rectangular waveguide, making the structure simple and mechanically easy. This has the effect of making it possible to easily change the distance between the input end and the output end at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す一部欠栽して示す斜
視図、第2図はそれの動作説明図、第3図は従来のマイ
クロ波伝送線路の一例を示す一部欠栽斜視図、第4図は
従来のものの他の例を示す縦断面図である。 図において(1)は入力端、(2)は出力端、(3)は
矩形導波管、(3a)はスリット、(7)は支持台、(
9)は3db方向性結器、(9a) (9b) (9c
) (9d)は第1、第2、第3、第4の端子、(lO
)は無反射終端、(11)(12)は同軸線路、(ll
a)(12a)はそれらの内導体である。 図中同一符号は同−或は相当部分を示す。
Fig. 1 is a partially cut-out perspective view showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of its operation, and Fig. 3 is a partially cut-out view showing an example of a conventional microwave transmission line. The perspective view and FIG. 4 are longitudinal sectional views showing another example of the conventional one. In the figure, (1) is the input end, (2) is the output end, (3) is the rectangular waveguide, (3a) is the slit, (7) is the support base, (
9) is a 3db directional connector, (9a) (9b) (9c
) (9d) are the first, second, third, and fourth terminals, (lO
) is a reflection-free termination, (11) and (12) are coaxial lines, (ll
a) (12a) are their inner conductors. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)H面の中央に軸方向に沿って設けられたスリット
を有する矩形導波管に、それのスリットに軸方向に移動
可能な位置で結合した同軸線路を介して入力電磁波を伝
送し、上記矩形導波管の一端から出力するようにしたマ
イクロ波伝送線路において、第1、第2、第3、第4の
4個の同軸端子を有し、それの第1の端子からの入力電
磁波を90°の位相差をもった電磁波に2等分して第2
、第3の端子に出力し、この第2、第3の端子からの入
力電磁波を合成して第4の端子に出力する3db方向性
結合器を備え、この3db方向性結合器の上記第1の端
子に入力端を、第4の端子に無反射終端を接続すると共
に、上記第2、第3の端子に等長の1対の同軸線路の一
端を接続し、これら同軸線路の他端を、上記矩形導波管
に内導体が上記スリットを通し等しい挿入長で挿入され
、そのスリットに沿い使用可能電磁波の周波数範囲のほ
ぼ中心周波数に対応する導波管内波長の1/4の間隔に
保持された状態で、導波管軸方向に移動可能となるよう
結合したことを特徴とするマイクロ波伝送線路。
(1) Transmitting an input electromagnetic wave to a rectangular waveguide having a slit provided along the axial direction in the center of the H plane via a coaxial line coupled to the slit at a movable position in the axial direction, The microwave transmission line output from one end of the rectangular waveguide has four coaxial terminals, first, second, third, and fourth, and input electromagnetic waves from the first terminal thereof. is divided into two equal electromagnetic waves with a phase difference of 90°, and the second
, a 3db directional coupler which outputs to a third terminal, combines input electromagnetic waves from the second and third terminals, and outputs the resultant to a fourth terminal, Connect the input end to the terminal, connect the non-reflection termination to the fourth terminal, connect one end of a pair of coaxial lines of equal length to the second and third terminals, and connect the other end of these coaxial lines. , an inner conductor is inserted into the rectangular waveguide through the slit with an equal insertion length, and is maintained at intervals of 1/4 of the wavelength in the waveguide corresponding to approximately the center frequency of the frequency range of usable electromagnetic waves along the slit. A microwave transmission line characterized in that the microwave transmission line is coupled so that the waveguides can be moved in the axial direction when the waveguides are connected.
(2)上記3db方向性給電器及び1対の同軸導波管は
、上記矩形導波管に移動可能に、この導波管を把持する
よう設けた支持台上に載置されてなる特許請求の範囲第
1項記載のマイクロ波伝送線路。
(2) A patent claim in which the 3db directional power feeder and the pair of coaxial waveguides are placed on a support stand provided to grip the rectangular waveguide so as to be movable to the rectangular waveguide. The microwave transmission line according to item 1.
JP2612186A 1986-02-07 1986-02-07 Microwave transmission line Pending JPS62183601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2612186A JPS62183601A (en) 1986-02-07 1986-02-07 Microwave transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2612186A JPS62183601A (en) 1986-02-07 1986-02-07 Microwave transmission line

Publications (1)

Publication Number Publication Date
JPS62183601A true JPS62183601A (en) 1987-08-12

Family

ID=12184735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2612186A Pending JPS62183601A (en) 1986-02-07 1986-02-07 Microwave transmission line

Country Status (1)

Country Link
JP (1) JPS62183601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086750A1 (en) * 2000-05-05 2001-11-15 Schleifring & Apparatebau Gmbh Device for the broadband electrical signal and/or energy transmission with directional couplers
JP2014131115A (en) * 2012-12-28 2014-07-10 Furuno Electric Co Ltd High-frequency transmission line

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086750A1 (en) * 2000-05-05 2001-11-15 Schleifring & Apparatebau Gmbh Device for the broadband electrical signal and/or energy transmission with directional couplers
US7212101B2 (en) 2000-05-05 2007-05-01 Schleifring Und Apparatebau Gmbh Device for broadband electrical signal and/or energy transmission using a transmission system including couplers
JP2014131115A (en) * 2012-12-28 2014-07-10 Furuno Electric Co Ltd High-frequency transmission line

Similar Documents

Publication Publication Date Title
US3579149A (en) Waveguide to stripline transition means
US4498062A (en) Waveguide structure for separating microwaves with mutually orthogonal planes of polarization
Ikalainen et al. Wide-band, forward-coupling microstrip hybrids with high directivity
US6002305A (en) Transition between circuit transmission line and microwave waveguide
GB855723A (en) Improvements in or relating to electromagnetic wave transmission systems
US3146413A (en) Phase shifter
US5825260A (en) Directional coupler for the high-frequency range
US2975380A (en) Waveguide transducer
EP0408282A2 (en) Waveguide feed network for antenna array
US3715688A (en) Tm01 mode exciter and a multimode exciter using same
US2975381A (en) Duplexers
US4904966A (en) Suspended substrate elliptic rat-race coupler
GB2248726A (en) Waveguide-to-stripline directional coupler
US4922215A (en) Power divider in waveguide form
US7561013B2 (en) Small NRD guide bend
US4297658A (en) 3dB Waveguide directional coupler
GB2175145A (en) Wide-band polarization diplexer
US4366453A (en) Orthogonal mode transducer having interface plates at the junction of the waveguides
US3284725A (en) Microwave coupler for combining two orthogonally polarized waves utilizing a ridge-like impedance matching member
JPS62183601A (en) Microwave transmission line
US6127902A (en) Waveguide directional coupler capable of propagating higher order modes
US4093928A (en) Microstrip hybrid ring coupler
US4458217A (en) Slot-coupled microwave diplexer and coupler therefor
US4679008A (en) Sharp mode-transducer bend for overmoded waveguide
US2792550A (en) Directional coupler