JPS62183469A - Electrophotographic light receiving member - Google Patents
Electrophotographic light receiving memberInfo
- Publication number
- JPS62183469A JPS62183469A JP61026465A JP2646586A JPS62183469A JP S62183469 A JPS62183469 A JP S62183469A JP 61026465 A JP61026465 A JP 61026465A JP 2646586 A JP2646586 A JP 2646586A JP S62183469 A JPS62183469 A JP S62183469A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- atoms
- receiving member
- light
- surface layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010410 layer Substances 0.000 claims abstract description 290
- 239000002344 surface layer Substances 0.000 claims abstract description 103
- 230000000903 blocking effect Effects 0.000 claims abstract description 73
- 238000009826 distribution Methods 0.000 claims abstract description 72
- 239000000470 constituent Substances 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 23
- 230000003287 optical effect Effects 0.000 claims abstract description 16
- 125000004429 atom Chemical group 0.000 claims description 100
- 238000002347 injection Methods 0.000 claims description 80
- 239000007924 injection Substances 0.000 claims description 80
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 45
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 44
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 33
- 125000004432 carbon atom Chemical group C* 0.000 claims description 32
- 125000005843 halogen group Chemical group 0.000 claims description 29
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims 2
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 34
- 229910052799 carbon Inorganic materials 0.000 abstract description 20
- 229910052710 silicon Inorganic materials 0.000 abstract description 19
- 239000000758 substrate Substances 0.000 abstract description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 120
- 238000000034 method Methods 0.000 description 42
- 239000002994 raw material Substances 0.000 description 39
- 238000004519 manufacturing process Methods 0.000 description 34
- 239000001257 hydrogen Substances 0.000 description 21
- 238000004544 sputter deposition Methods 0.000 description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 17
- 238000000151 deposition Methods 0.000 description 16
- 230000008021 deposition Effects 0.000 description 16
- 239000007858 starting material Substances 0.000 description 16
- -1 polyethylene Polymers 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 14
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 13
- 230000007547 defect Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 12
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 8
- 239000012790 adhesive layer Substances 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000003377 silicon compounds Chemical class 0.000 description 7
- 239000005977 Ethylene Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 150000001721 carbon Chemical group 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 125000002346 iodo group Chemical group I* 0.000 description 6
- 229910052720 vanadium Inorganic materials 0.000 description 6
- 206010034972 Photosensitivity reaction Diseases 0.000 description 5
- LZDSILRDTDCIQT-UHFFFAOYSA-N dinitrogen trioxide Inorganic materials [O-][N+](=O)N=O LZDSILRDTDCIQT-UHFFFAOYSA-N 0.000 description 5
- 239000011049 pearl Substances 0.000 description 5
- 230000036211 photosensitivity Effects 0.000 description 5
- 229930195734 saturated hydrocarbon Natural products 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- KDKYADYSIPSCCQ-UHFFFAOYSA-N but-1-yne Chemical compound CCC#C KDKYADYSIPSCCQ-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 150000002366 halogen compounds Chemical class 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052990 silicon hydride Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 3
- 229910007264 Si2H6 Inorganic materials 0.000 description 3
- 206010047571 Visual impairment Diseases 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- WFPZPJSADLPSON-UHFFFAOYSA-N dinitrogen tetraoxide Chemical compound [O-][N+](=O)[N+]([O-])=O WFPZPJSADLPSON-UHFFFAOYSA-N 0.000 description 3
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 3
- 108091008695 photoreceptors Proteins 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 229910020667 PBr3 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- JUINSXZKUKVTMD-UHFFFAOYSA-N hydrogen azide Chemical compound N=[N+]=[N-] JUINSXZKUKVTMD-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 125000004437 phosphorous atom Chemical group 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- IPNPIHIZVLFAFP-UHFFFAOYSA-N phosphorus tribromide Chemical compound BrP(Br)Br IPNPIHIZVLFAFP-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- 150000003376 silicon Chemical class 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- UJPMYEOUBPIPHQ-UHFFFAOYSA-N 1,1,1-trifluoroethane Chemical compound CC(F)(F)F UJPMYEOUBPIPHQ-UHFFFAOYSA-N 0.000 description 1
- 229910021630 Antimony pentafluoride Inorganic materials 0.000 description 1
- 229910017011 AsBr3 Inorganic materials 0.000 description 1
- 229910017049 AsF5 Inorganic materials 0.000 description 1
- 229910015845 BBr3 Inorganic materials 0.000 description 1
- 229910014263 BrF3 Inorganic materials 0.000 description 1
- 229910014271 BrF5 Inorganic materials 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910020323 ClF3 Inorganic materials 0.000 description 1
- 101100441092 Danio rerio crlf3 gene Proteins 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910017852 NH2NH2 Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910007260 Si2F6 Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004014 SiF4 Inorganic materials 0.000 description 1
- 241000519995 Stachys sylvatica Species 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910000074 antimony hydride Inorganic materials 0.000 description 1
- VBVBHWZYQGJZLR-UHFFFAOYSA-I antimony pentafluoride Chemical compound F[Sb](F)(F)(F)F VBVBHWZYQGJZLR-UHFFFAOYSA-I 0.000 description 1
- GUNJVIDCYZYFGV-UHFFFAOYSA-K antimony trifluoride Chemical compound F[Sb](F)F GUNJVIDCYZYFGV-UHFFFAOYSA-K 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910000070 arsenic hydride Inorganic materials 0.000 description 1
- YBGKQGSCGDNZIB-UHFFFAOYSA-N arsenic pentafluoride Chemical compound F[As](F)(F)(F)F YBGKQGSCGDNZIB-UHFFFAOYSA-N 0.000 description 1
- JMBNQWNFNACVCB-UHFFFAOYSA-N arsenic tribromide Chemical compound Br[As](Br)Br JMBNQWNFNACVCB-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910000072 bismuth hydride Inorganic materials 0.000 description 1
- BPBOBPIKWGUSQG-UHFFFAOYSA-N bismuthane Chemical compound [BiH3] BPBOBPIKWGUSQG-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- XHVUVQAANZKEKF-UHFFFAOYSA-N bromine pentafluoride Chemical compound FBr(F)(F)(F)F XHVUVQAANZKEKF-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- ZTHNOZQGTXKVNZ-UHFFFAOYSA-L dichloroaluminum Chemical compound Cl[Al]Cl ZTHNOZQGTXKVNZ-UHFFFAOYSA-L 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052909 inorganic silicate Inorganic materials 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- OUULRIDHGPHMNQ-UHFFFAOYSA-N stibane Chemical compound [SbH3] OUULRIDHGPHMNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- SDNBGJALFMSQER-UHFFFAOYSA-N trifluoro(trifluorosilyl)silane Chemical compound F[Si](F)(F)[Si](F)(F)F SDNBGJALFMSQER-UHFFFAOYSA-N 0.000 description 1
- FQFKTKUFHWNTBN-UHFFFAOYSA-N trifluoro-$l^{3}-bromane Chemical compound FBr(F)F FQFKTKUFHWNTBN-UHFFFAOYSA-N 0.000 description 1
- JOHWNGGYGAVMGU-UHFFFAOYSA-N trifluorochlorine Chemical compound FCl(F)F JOHWNGGYGAVMGU-UHFFFAOYSA-N 0.000 description 1
- ZQTYRTSKQFQYPQ-UHFFFAOYSA-N trisiloxane Chemical compound [SiH3]O[SiH2]O[SiH3] ZQTYRTSKQFQYPQ-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08221—Silicon-based comprising one or two silicon based layers
- G03G5/08228—Silicon-based comprising one or two silicon based layers at least one with varying composition
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08235—Silicon-based comprising three or four silicon-based layers
- G03G5/08242—Silicon-based comprising three or four silicon-based layers at least one with varying composition
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する分野の説明〕
本発明は光(ここでは広義の光であって紫外線、可視光
線、赤外線、X線、γ線などを意味する。)のような電
磁波に対して感受性のある電子写真用光受容部材に関す
る。[Detailed description of the invention] [Description of the field to which the invention pertains] The present invention relates to electromagnetic waves such as light (here, light in a broad sense, meaning ultraviolet rays, visible light, infrared rays, X-rays, γ-rays, etc.). The present invention relates to an electrophotographic light-receiving member that is sensitive to.
像形、成分野において、電子写真用光受容部材における
光受容層を形成する光導電材料としては、高感度で、S
N比〔光電流(I p) /暗電流(I d) )が高
く、照射する電磁波のスペクトiし特性に適合した吸収
スペクトル特性を有すること、光応答性が速く、所望の
暗抵抗値を有すること、使用時において人体に対して無
公害であること、等の特性が要求される。殊に、事務機
としてオフィスで使用される電子写真装置内に組込まれ
る電子写真用光受容部材の場合には、上記の使用時にお
ける無公害性は重要な点である。In the field of image forming and forming, high sensitivity, S
It has a high N ratio [photocurrent (I p) / dark current (I d)), has absorption spectrum characteristics that match the spectrum characteristics of the irradiated electromagnetic wave, has fast photoresponsiveness, and has a desired dark resistance value. It is required to have characteristics such as having the same properties and being non-polluting to the human body during use. Particularly in the case of an electrophotographic light receiving member incorporated into an electrophotographic apparatus used in an office as a business machine, the above-mentioned non-polluting property during use is an important point.
このような点に立脚して最近注目されている光導電材料
にアモルファスシリコン(以IA−3iと表記す)があ
り、例えば、独国公開第2746967号公報、同第2
855718号公報には電子写真用光受容部材としての
応用が記載されている。Based on this point, amorphous silicon (hereinafter referred to as IA-3i) is a photoconductive material that has recently attracted attention.
855718 describes its application as a light-receiving member for electrophotography.
しかしながら、従来のA−3iで構成された光受容層を
有する電子写真用光受容部材は、暗抵抗値、光感度、光
応答性などの電気的、光学的、光導電的特性および使用
環境特性の点、更には経時的安定性及び耐久性の点にお
いて1各々、個々には特性の向上が計られているが、総
合的な特性向上を計る上で更に改良される余地が存する
のが実情である。However, electrophotographic light-receiving members having a light-receiving layer composed of conventional A-3i have electrical, optical, and photoconductive properties such as dark resistance, photosensitivity, and photoresponsiveness, and use environment characteristics. Individual improvements have been made in terms of stability, stability over time, and durability, but the reality is that there is still room for further improvement in terms of improving overall properties. It is.
例えば、電子写真用光受容部材に適用した場合に、高光
感度化、高暗抵抗化を同時に計ろうとナス)−洋ヰLご
セいてt士矛の伸町1こおいで韓留電位が残る場合が度
々観測され、この種の光受容部材は長時間繰返し使用し
続けると、繰返し使用による疲労の蓄積が起こって、残
像が生ずる所謂ゴースト現象を発する様になる等の不都
合な点が少なくなかった。For example, when applied to a light-receiving member for electrophotography, when high photosensitivity and high dark resistance are to be achieved at the same time, a Korean potential remains at Nobucho 1 in YowiL. is often observed, and when this type of light-receiving member is used repeatedly for a long period of time, fatigue accumulates due to repeated use, and there are many disadvantages such as the so-called ghost phenomenon that causes afterimages. .
又、A−3i材料で光受容層を構成する場合には、その
電気的、光導電的特性の改良を計るために、水素原子或
いは弗素原子や塩素原子などのハロゲン原子、および電
気的伝導型の制御のために硼素原子や燐原子等が或いは
その他の特性改良のために他の原子が、各々構成原子と
して光導電層中に含有されるが、これ等の構成原子の含
有の仕方如何によっては、形成した層の電気的あるいは
光導電的特性や耐圧性に問題が生ずる場合があった。In addition, when forming a photoreceptive layer using A-3i material, in order to improve its electrical and photoconductive properties, hydrogen atoms, halogen atoms such as fluorine atoms and chlorine atoms, and electrically conductive type Boron atoms, phosphorus atoms, etc. are contained in the photoconductive layer as constituent atoms to control the properties of the photoconductive layer, and other atoms are included in the photoconductive layer to improve properties. In this case, problems may arise in the electrical or photoconductive properties or voltage resistance of the formed layer.
即ち、例えば、形成した光導電層中に光照射によって発
生したフォトキャリアの該層中での寿命が充分でないこ
とや、或いは、転写紙に転写された画像に俗に「白ヌケ
」と呼ばれる、局所的な放電破壊現象によると思われる
画像欠陥や、クリーニングにブレードを用いると、その
摺擦によると思われる、俗に「白スジ」と云われている
画像欠陥が生じたりしていた。又例えば表面に一定の膜
厚の表面層を有しこれが使用光に対して実質的に透明で
あるような場合には長時間の摺擦による摩耗によって表
面層の反射スペクトルに変化が生じ、特に感度等に関し
好ましくない経時的な変化が生じる場合が少なくなかっ
た。又、多湿雰囲気中で使用したり、或いは多湿雰囲気
中に長時間放置した直後に使用すると俗に云う画像のボ
ケが生ずる場合が少なくなかった。That is, for example, the lifespan of photocarriers generated in the formed photoconductive layer by light irradiation is not sufficient, or the image transferred to the transfer paper has what is commonly called "white spots". Image defects that are thought to be caused by local discharge breakdown phenomena and image defects that are commonly referred to as "white streaks" that are thought to be caused by rubbing when a blade is used for cleaning have occurred. For example, if the surface has a surface layer with a certain thickness and is substantially transparent to the light used, the reflection spectrum of the surface layer will change due to wear due to long-term rubbing. There were many cases in which unfavorable changes in sensitivity etc. occurred over time. Furthermore, when used in a humid atmosphere or immediately after being left in a humid atmosphere for a long time, so-called blurring of the image often occurs.
従ってA−Si材料そのものの特性改良が計られる一方
で光受容部材を設計する際に、上記したような問題の総
てが解決されるように層構成、各層の化学的組成、作成
法などが工夫される必要がある。Therefore, while efforts are being made to improve the properties of the A-Si material itself, when designing light-receiving members, the layer structure, chemical composition of each layer, manufacturing method, etc. must be adjusted in order to solve all of the problems mentioned above. It needs to be improved.
本発明は、上述のごときA−5tで構成された従来の光
受容層を有する電子写真用光受容部材における諸問題を
解決することを目的とするものである。The present invention aims to solve various problems in electrophotographic light-receiving members having conventional light-receiving layers made of A-5t as described above.
即ち、本発明の主たる目的は、電気的、光学的、光導電
的特性が使用環境に殆んど依存することなく実質的に常
時安定しており、耐光疲労に優れ、繰返し使用に際して
も劣化現象を起こさず耐久性、耐湿性に優れ、残留電位
が全くかまたは殆んど観測されない、A−3iで構成さ
れた光受容層を有する電子写真用光受容部材を提供する
ことにある。That is, the main object of the present invention is to have electrical, optical, and photoconductive properties that are virtually always stable without depending on the usage environment, have excellent light fatigue resistance, and exhibit no deterioration phenomenon even after repeated use. An object of the present invention is to provide a light-receiving member for electrophotography, which has a light-receiving layer made of A-3i, which has excellent durability and moisture resistance, and has no or almost no residual potential observed.
本発明の他の目的は、支持体上に設けられる層と支持体
との間や積層される層の各層間における密着性に優れ、
構造配列的に緻密で安定的であり、層品質の高い、A−
5iで構成された光受容層を有する電子写真用光受容部
材を提供することにある。Another object of the present invention is to provide excellent adhesion between a layer provided on a support and the support, and between each layer of laminated layers.
A- has a dense and stable structure and high layer quality.
An object of the present invention is to provide an electrophotographic light-receiving member having a light-receiving layer composed of 5i.
本発明の更に他の目的は、電子写真用光受容部材として
適用させた場合、静電像形成のための帯電処理の際の電
荷保持能力が充分であり、通常の電子写真法が極めて有
効に適用され得る優れた電子写真特性を示す、A−St
で構成された光受容層を有する電子写真用光受容部材を
提供することにある。Still another object of the present invention is that, when applied as a light-receiving member for electrophotography, the present invention has sufficient charge retention ability during charging processing for electrostatic image formation, making ordinary electrophotographic methods extremely effective. A-St exhibits excellent electrophotographic properties that can be applied
An object of the present invention is to provide a light-receiving member for electrophotography having a light-receiving layer composed of the following.
本発明の別の目的は、長期の使用において画像欠陥や画
像のボケが全くなく、濃度が高く、ハーフトーンが鮮明
に出て、且つ解像度の高い高品質画像を得ることが容易
にできる、電子写真用のA−3iで構成された光受容層
を宥する光受容部材を提供することにある。Another object of the present invention is to easily obtain high-quality images with high density, clear halftones, and high resolution without any image defects or image blurring during long-term use. An object of the present invention is to provide a light-receiving member that accommodates a light-receiving layer made of A-3i for photography.
本発明の更に別の目的は、高光感度性、高SN比特性お
よび高電気的耐圧性を有する、A−5iで構成された光
受容層を有する電子写真用光受容部材を提供することに
ある。Still another object of the present invention is to provide an electrophotographic light-receiving member having a light-receiving layer made of A-5i and having high photosensitivity, high SN ratio characteristics, and high electrical voltage resistance. .
本発明の電子写真用光受容部材は、支持体と、該支持体
上に、シリコン原子を母体とする多結晶材料で構成され
、伝導性を制御する物質を含有する電荷注入阻止層と、
シリコン原子を母体とし、少なくとも水素原子、及びハ
ロゲン原子の少なくともいずれか一方を構成要素として
含む非晶質材料で(以後rA−5i(H。The electrophotographic light-receiving member of the present invention includes a support, and a charge injection blocking layer on the support, which is made of a polycrystalline material containing silicon atoms as a host and contains a substance that controls conductivity.
An amorphous material having silicon atoms as its base material and containing at least one of hydrogen atoms and halogen atoms as a constituent element (hereinafter referred to as rA-5i (H)).
X)Jと略記する)構成され、光導電性を示す光導電層
と、シリコン原子と炭素原子と水素原子とを構成要素と
して含む非晶質材料で構成されている表面層とから成る
光受容層とを有し、前記表面層が少くとも前記光導TL
層との界面において光学的バンドギャップの整合性が得
られるような形に構成要素の層厚方向の濃度分布を変化
させてあり、かつ水素原子の表面層内最大濃度が41〜
70原子%であるこ特徴とする。A photoreceptor comprising a photoconductive layer that exhibits photoconductivity and a surface layer that is made of an amorphous material containing silicon atoms, carbon atoms, and hydrogen atoms as constituent elements. layer, the surface layer has at least the light guide TL.
The concentration distribution of the constituent elements in the layer thickness direction is changed in such a way that optical bandgap consistency is obtained at the interface with the layer, and the maximum concentration of hydrogen atoms in the surface layer is 41~
It is characterized by being 70 atomic %.
又、前記表面層にはハロゲン原子が含有されてもよく、
更に前記光導電層には炭素原子、酸素原子、窒素原子の
中央なくとも1種類の原子を含有してもよい。Further, the surface layer may contain halogen atoms,
Further, the photoconductive layer may contain at least one type of atom among carbon atoms, oxygen atoms, and nitrogen atoms in the center.
支持体からの電荷の注入を阻止する機能を有する前記電
荷注入阻止層は層厚方向に均一に又は支持体側に多く分
布する分布状態で構成原子として、伝導性を制御する物
質を含有する。The charge injection blocking layer, which has the function of blocking charge injection from the support, contains a substance that controls conductivity as a constituent atom, either uniformly in the layer thickness direction or in a distributed state with a large distribution on the support side.
さらに電荷注入阻止層は層厚方向に均一に又は支持体側
に多く分布する分布状yムで構成原子として酸素原子又
は/及び窒素原子を含有してもよい。前記電荷注入阻止
層中の酸素原子又は/及び窒素原子は支持体側に内在し
てもよい。Further, the charge injection blocking layer may contain oxygen atoms and/or nitrogen atoms as constituent atoms uniformly in the layer thickness direction or in a distribution pattern such that they are distributed in large numbers on the support side. The oxygen atoms and/or nitrogen atoms in the charge injection blocking layer may reside on the support side.
又、前記光導電層は構成原子として炭素原子、酸素原子
、窒素原子及び伝導性を制御する物質の少なくとも一方
を含有してもよい。さらに、前記電荷注入阻止層と支持
体の間にシリコン原子を母体とし酸素原子又は窒素原子
の少なくとも一方を有する非晶質材料又は多結晶材料で
構成された密着層を設けてもよい。Further, the photoconductive layer may contain at least one of a carbon atom, an oxygen atom, a nitrogen atom, and a substance that controls conductivity as constituent atoms. Furthermore, an adhesion layer made of an amorphous material or a polycrystalline material having silicon atoms as a host and at least one of oxygen atoms and nitrogen atoms may be provided between the charge injection blocking layer and the support.
上記した様な層構成を取る様にして設計された本発明の
電子写真用光受容部材は、前記した諸問題の総てを解決
し得、極めて優れた電気的、光学的、光導電的特性、耐
圧性及び使用環境特性を示す。The electrophotographic light-receiving member of the present invention designed to have the above-mentioned layer structure can solve all of the above-mentioned problems, and has extremely excellent electrical, optical, and photoconductive properties. , pressure resistance and use environment characteristics.
すなわち、電子写真用光受容部材として適用させた場合
には、画像形成への残留電位の影響が全くなく、そのW
i、気的特性か安定しており高感度で、高SN比を有す
るものであって、耐光疲労、繰返し使用特性に長け、濃
度が高く、ハーフトーンが鮮明に出て、且つ解像度の高
い、高品質の画像を安定して繰返し得ることができる。That is, when applied as a light-receiving member for electrophotography, there is no influence of residual potential on image formation, and the W
i. It has stable mechanical properties, high sensitivity, and high signal-to-noise ratio, has excellent light fatigue resistance and repeated use characteristics, and has high density, clear halftones, and high resolution. High quality images can be stably and repeatedly obtained.
以下、図面に従って本発明の電子写真用光受容部材に就
いて詳細に説明する。Hereinafter, the electrophotographic light receiving member of the present invention will be described in detail with reference to the drawings.
第1−1図及び第1−2図は、本発明の′電子写真用光
受容部材を説明する為に模式的に示した模式的構成図で
ある。FIGS. 1-1 and 1-2 are schematic configuration diagrams schematically shown to explain the electrophotographic light-receiving member of the present invention.
第1−1図及び第1−2図に示す電子写真用光受容部材
は、光受容層100が光受容部材用としての支持体10
1の上に設けられており、該光受容層100は、電荷注
入阻止層102、A−3i(H,X)から成り、光導電
層性を有する光導電層103と、シリコン原子と、炭素
原子と水素原子とを構成要素とする非晶質材料で構成さ
れ、これら構成要素の濃度が少くとも前記光導電層との
界面において光学的バンドギャップの整合性が得られる
ような形に変化しておりかつ水素原子の最大濃度が41
〜70原子%である表面層104とからなる層構成を有
する。又106は密着層を表わす。In the electrophotographic light-receiving member shown in FIGS. 1-1 and 1-2, the light-receiving layer 100 is a support 10 for the light-receiving member.
The photoreceptive layer 100 is formed of a charge injection blocking layer 102, A-3i(H,X), a photoconductive layer 103 having photoconductive layer properties, silicon atoms, and carbon atoms. It is composed of an amorphous material whose constituent elements are atoms and hydrogen atoms, and the concentration of these constituent elements is changed in such a manner that optical bandgap consistency is obtained at least at the interface with the photoconductive layer. and the maximum concentration of hydrogen atoms is 41
It has a layer structure consisting of a surface layer 104 of ~70 atomic %. Further, 106 represents an adhesive layer.
以下、第1−1図及び第1−2図に示される電子写真用
光受容部材を構成する各層について記載する。Each layer constituting the electrophotographic light-receiving member shown in FIGS. 1-1 and 1-2 will be described below.
叉且潜
本発明において使用される支持体としては、導電性でも
電気絶縁性であっても良い。導電性支持体としては、例
えば、NiCr、ステンレス、AM、Cr、Mo、Au
、Nb、Ta、V、Ti、PL、Pd等の金属またはこ
れ等の合金が挙げられる。The support used in the present invention may be electrically conductive or electrically insulating. Examples of the conductive support include NiCr, stainless steel, AM, Cr, Mo, and Au.
, Nb, Ta, V, Ti, PL, Pd, or alloys thereof.
電気絶縁性支持体としては、ポリエステル、ポリエチレ
ン、ポリカーボネート、セルロースアセテート、ポリプ
ロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
スチレン、ポリアミド等の合成樹脂のフィルム又はシー
ト、ガラス、セラミック、紙などが通常使用される。As the electrically insulating support, films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramic, paper, etc. are usually used. .
これ等の電気絶縁性支持体は、好適には少なくともその
一方の表面を導電処理され、該導電処理された表面側に
他の層が設けられるのが望ましい。Preferably, at least one surface of these electrically insulating supports is conductively treated, and another layer is preferably provided on the conductively treated surface side.
例えば、ガラスであれば、その表面に、NiCr、Au
、Cr、Mo、Au、Ir、Nb、Ta、V、Ti、P
t、Pd、In2O3、S n02、ITO(I n2
03+5n02)等から成る薄膜を設けることによって
導電性が付与され、或いはポリエステルフィルム等の合
成樹脂フィルムであれば、N+Cr、A交、Ag、Pb
、Zn、Ni、Au、Cr、Mo、I r。For example, if it is glass, NiCr, Au
, Cr, Mo, Au, Ir, Nb, Ta, V, Ti, P
t, Pd, In2O3, S n02, ITO(I n2
03+5n02), etc., or if it is a synthetic resin film such as polyester film, N+Cr, A-cross, Ag, Pb.
, Zn, Ni, Au, Cr, Mo, Ir.
Nb、Ta、V、Ti、Pt等の金属の薄膜を真空蒸着
、電子ビーム蒸着、スパッタリング等でその表面に設け
、又は前記金属でその表面をラミネート処理して、その
表面に導電性が付与される。支持体の形状としては、円
筒状、ベルト状、板状等任意の形状とし得、所望によっ
て、その形状は決定されるが、例えば、連続高速複写の
場合には、無端ベルト状又は円筒状とするのが望ましい
。支持体の厚さは、所望通りの電子写真用光受容部材が
形成される様に適宜決定されるが、電子写真用光受容部
材として可撓性が要求される場合には、支持体としての
機能が充分発揮される範囲内であれば可能な限り薄くさ
れる。しかしながら、この様な場合、支持体の製造上及
び取扱い上、機械的強度等の点から、通常は、10g以
上とされる。A thin film of a metal such as Nb, Ta, V, Ti, Pt, etc. is provided on the surface by vacuum evaporation, electron beam evaporation, sputtering, etc., or the surface is laminated with the above metal to impart conductivity to the surface. Ru. The shape of the support may be any shape such as a cylinder, a belt, or a plate, and the shape is determined as desired. For example, in the case of continuous high-speed copying, an endless belt or a cylinder may be used. It is desirable to do so. The thickness of the support is appropriately determined so as to form a desired electrophotographic light-receiving member, but when flexibility is required as an electrophotographic light-receiving member, the thickness of the support is determined as appropriate. It is made as thin as possible within the range where its functions can be fully demonstrated. However, in such a case, the weight is usually 10 g or more in view of manufacturing and handling of the support, mechanical strength, etc.
特にレーザー光などの可干渉性光を用いて像記録を行な
う場合には、可視画像において現われる、所謂、干渉縞
模様による画像不良を解消するために、支持体表面に凹
凸を設けてもよい。In particular, when recording an image using coherent light such as a laser beam, the surface of the support may be provided with irregularities in order to eliminate image defects caused by so-called interference fringes that appear in visible images.
支持体表面に設けられる凹凸は、7字形状の切刃を有す
るバイトをフライス盤、旋盤等の切削加工機械の所定位
置に固定し、例えば円筒状支持体をあらかじめ所望に従
って設計されたプログラムに従って回転させながら規則
的に所定方向に移動させることにより、支持体表面を正
確に切削加工することで所望の凹凸形状、ピッチ、深さ
で形成される。この様な切削加工法によって形成される
凹凸が作り出す逆V字形線状突起部は、円筒状支持体の
中心軸を中心にした螺線描造を有する。逆V字形突起部
の螺線描造は、二重、三重の多重螺線描造、又は交叉[
lI!g線構造とされても差支えない。The unevenness provided on the surface of the support can be obtained by fixing a cutting tool having a 7-shaped cutting edge in a predetermined position on a cutting machine such as a milling machine or a lathe, and rotating the cylindrical support according to a program designed in advance as desired. However, by regularly moving in a predetermined direction, the surface of the support can be accurately cut to form a desired uneven shape, pitch, and depth. The inverted V-shaped linear protrusion created by the unevenness formed by such a cutting method has a spiral pattern centered on the central axis of the cylindrical support. The spiral drawing of the inverted V-shaped protrusion may be a double or triple spiral drawing, or a crossing [
lI! There is no problem even if it has a g-line structure.
或いは、螺線描造に加えて中心軸に沿った平行線構造を
導入しても良い。Alternatively, in addition to the spiral drawing, a parallel line structure along the central axis may be introduced.
支持体表面に設けられる凹凸の凸部の縦断面形状は形成
される各層の微小カラム内に於ける層厚の管理された不
均一化と、支持体と該支持体上に直接設けられる層との
間の良好な!5着性や所望の電気的接触性を確保する為
に逆■字形とされるが、好ましくは第14図に示される
様に実質的に二等辺三角形、直角三角形成いは不等辺三
角形とされるのが望ましい。これ等の形状の中殊に二等
辺三角形、直角三角形が望ましい。The vertical cross-sectional shape of the uneven convex portions provided on the surface of the support is determined by the controlled non-uniformity of the layer thickness within the microcolumns of each layer formed, and by the difference between the support and the layer directly provided on the support. Good between! 5 In order to ensure adhesion and desired electrical contact, it is formed into an inverted ■-shape, but preferably it is substantially shaped into an isosceles triangle, a right triangle, or a scalene triangle, as shown in FIG. It is desirable to Of these shapes, isosceles triangles and right triangles are particularly desirable.
本発明に於ては、管理された状態で支持体表面に設けら
れる凹凸の各ディメンジョンは、以下の点を考慮した上
で、本発明の目的を結果的に達成出来る様に設定される
。In the present invention, the dimensions of the irregularities provided on the surface of the support in a controlled manner are set in such a way that the object of the present invention can be achieved as a result, taking into account the following points.
即ち、第1は光受容層を構成するA−Sr(H,X)層
は、層形成される表面の状態に構造敏感であって、表面
状態に応じて層品質は大きく変化する。That is, first, the A-Sr(H,
従って、A−St(H,X)層の層品質の低下を招来し
ない様に支持体表面に設けられる凹凸のディメンジョン
を設定する必要がある。Therefore, it is necessary to set the dimensions of the irregularities provided on the surface of the support so as not to cause deterioration in the layer quality of the A-St(H,X) layer.
第2には光受容層の自由表面に極端な凹凸があると、画
像形成後のクリーニングに於てクリーニングを完全に行
なうことが出来なくなる。Secondly, if the free surface of the photoreceptive layer is extremely uneven, it becomes impossible to perform cleaning completely after image formation.
又、ブレードクリーニングを行う場合、ブレードのいた
みが早くなるという問題がある。Further, when cleaning the blade, there is a problem that the blade becomes damaged quickly.
上記した層堆積上の問題点、電子写真法のプロセス上の
問題点、および干渉縞模様を防ぐ条件を検討した結果、
支持体表面の凹部のピッチは、好ましくは500pm〜
0.3 g m、より好ましくは200鉢m〜lpm、
最適には50gm〜57zmであるのが望ましい。After considering the above-mentioned problems in layer deposition, process problems in electrophotography, and conditions for preventing interference fringes, we found that:
The pitch of the recesses on the surface of the support is preferably 500 pm to
0.3 g m, more preferably 200 pots m~lpm,
The optimum range is 50gm to 57zm.
また、凹部の最大の深さは、好ましくは0.1用m〜5
ルm、より好ましくはO13ILm〜3pm、最適には
0.6JLm〜2pmとされるのが望ましい。支持体表
面の凹部のピッチと最大深さが上記の範囲にある場合、
凹部(又は線上突起部)の傾斜面の傾きは、好ましくは
1度〜20度、より好ましくは3度〜15度、最適には
4度〜10度とされるのが望ましい。Further, the maximum depth of the recess is preferably 0.1 m to 5 m.
It is desirable that the temperature is O13ILm, more preferably O13ILm~3pm, optimally 0.6JLm~2pm. If the pitch and maximum depth of the recesses on the support surface are within the above range,
The inclination of the inclined surface of the recess (or linear protrusion) is preferably 1 degree to 20 degrees, more preferably 3 degrees to 15 degrees, and most preferably 4 degrees to 10 degrees.
又、この様な支持体上に堆積される各層の層圧の不均一
に基く層厚差の最大は、同一ピッチ内で好ましくは0.
1pm〜2ルm、より好ましくは0.1 gm”1.5
Bm、最適には0.2pm〜IBmとされるのが望ま
しい。Further, the maximum difference in layer thickness due to non-uniform layer pressure of each layer deposited on such a support is preferably 0.
1 pm to 2 lm, more preferably 0.1 gm"1.5
Bm, preferably 0.2 pm to IBm.
又、レーザー光などの可干渉性光を用いた場合の干渉縞
模様による画像不良を解消する別の方法として、支持体
表面に複数の球状痕跡窪みによる凹凸形状を設けてもよ
い。Further, as another method for eliminating image defects caused by interference fringe patterns when coherent light such as laser light is used, an uneven shape formed by a plurality of spherical trace depressions may be provided on the surface of the support.
即ち支持体の表面が電子写真用光受容部材に要求される
解像力よりも微小な凹凸を有し、しかも該凹凸は、複数
の球状痕跡窪みによるものである。That is, the surface of the support has irregularities smaller than the resolving power required for electrophotographic light-receiving members, and the irregularities are caused by a plurality of spherical trace depressions.
以下に、本発明の電子写真用光受容部材における支持体
の表面の形状及びその好適な製造例を第15図及び第1
6図により説明するが、本発明の光受容部材における支
持体の形状及びその製造法は、これによって限定される
ものではない。Below, the shape of the surface of the support in the electrophotographic light receiving member of the present invention and a preferred manufacturing example thereof are shown in FIGS. 15 and 1.
Although this will be explained with reference to FIG. 6, the shape of the support in the light-receiving member of the present invention and the manufacturing method thereof are not limited thereto.
第15図は、本発明の電子写真用光受容部材における支
持体の表面の形状の典型的−例を、その凹凸形状の一部
を部分的に拡大して模式的に示すものである。FIG. 15 schematically shows a typical example of the surface shape of the support in the electrophotographic light-receiving member of the present invention, partially enlarging a part of the uneven shape.
第15図において1501は支持体、1502は支持体
表面、1503は剛体真珠、1504は球状痕跡窪みを
示している。In FIG. 15, 1501 is a support, 1502 is a surface of the support, 1503 is a rigid pearl, and 1504 is a spherical trace depression.
さらに第15図は、該支持体表面形状を得るのに好まし
い製造方法の1例をも示すものである。即ち、剛体真珠
1503を、支持体表面1502より所定高さの位置よ
り自然落下させて支持体表面1502に衝突させること
により、球状窪み1504を形成しうることを示してい
る。そして、はぼ同一径R′の剛体真珠1503を複数
個用い、それらを同一の高さhより、同時あるいは逐時
、落下させることにより、支持体表面1502に、はぼ
同一曲率半径R及び同一幅りを有する複数の球状痕跡窪
み1504を形成することができる。Furthermore, FIG. 15 also shows one example of a preferred manufacturing method for obtaining the surface shape of the support. That is, it is shown that a spherical depression 1504 can be formed by allowing the rigid pearl 1503 to fall naturally from a predetermined height from the support surface 1502 and collide with the support surface 1502. Then, by using a plurality of rigid pearls 1503 with approximately the same diameter R' and dropping them simultaneously or sequentially from the same height h, the pearls 1503 with approximately the same radius of curvature R and the same A plurality of spherical trace depressions 1504 having a width can be formed.
前述のごとくして、剛体真球1603によって表面に複
数の球状痕跡窪み1604による凹凸形状の形成された
支持体1601の典型例を第16図に示す。1602は
支持体1601の凸部の位置を示す。As described above, FIG. 16 shows a typical example of a support 1601 having an uneven shape formed by a plurality of spherical trace depressions 1604 on the surface of a rigid true sphere 1603. 1602 indicates the position of the convex portion of the support body 1601.
ところで、本発明の電子写真用光受容部材の支持体表面
の球状痕跡窪みによる凹凸形状の曲率半径R及び幅りは
、こうした本発明の光受容部材における干渉縞の発生を
防止する作用効果を効率的に達成するためには重要な要
因である。本発明者らは、各種実験を重ねた結果以下の
ところを究明した。即ち、曲率半径R及び幅りが次式:
%式%
を満足する場合には、各々の痕跡窪み内にシェアリング
干渉によるニュートンリングが0.5本以上存在するこ
ととなる。更に次式:
を満足する場合には、各々の痕跡窪み内にシェアリング
干渉によるニュートンリングが1本以上存在することと
なる。By the way, the radius of curvature R and the width of the uneven shape formed by the spherical trace depressions on the surface of the support of the light-receiving member for electrophotography of the present invention efficiently prevent the occurrence of interference fringes in the light-receiving member of the present invention. This is an important factor in achieving the goal. The present inventors have investigated the following points as a result of various experiments. That is, when the radius of curvature R and the width satisfy the following formula: % formula %, there are 0.5 or more Newton rings due to shearing interference in each trace depression. Furthermore, if the following formula is satisfied, one or more Newton rings due to shearing interference will exist in each trace depression.
こうした事から、光受容部材の全体に発生する干渉縞を
各々の痕跡窪み内に分散せしめ、光受容部材に於ける干
渉縞の発生を防止する為に上とすることが望ましい。For this reason, it is desirable to disperse the interference fringes generated throughout the light-receiving member into each trace recess, and to place the interference fringes upward in order to prevent the occurrence of interference fringes in the light-receiving member.
又、痕跡窪みによる凹凸の幅りは、大きくとも500涛
m程度、好ましくは200色m以下、より好ましくは1
100p以下とするのが好ましい。In addition, the width of the unevenness due to the trace depression is at most about 500 m, preferably 200 m or less, more preferably 1
It is preferable to set it to 100p or less.
第17図は、上記方法によって形成された凹凸形状を有
する支持体1701上にその凹凸の傾斜面に沿って、光
受容層1700を備えた光受容部材を示している。17
02は電荷注入阻止層、1703は光導電層、1704
は表面層である。FIG. 17 shows a light-receiving member in which a light-receiving layer 1700 is provided on a support 1701 having an uneven shape formed by the above method and along the slope of the unevenness. 17
02 is a charge injection blocking layer, 1703 is a photoconductive layer, 1704
is the surface layer.
第17図に示す光受容部材の場合には、自由表面170
5並びに光受容層1700中に形成される界面における
傾斜の程度が異なるため、自由表面1705並びに光受
容層1700中に形成される界面での反射光の反射角度
が各々異なる。従って、いわゆるニュートンリング現象
に相当するシェアリング干渉が生起し、干渉縞は窪み内
に分散されるところとなる。これによりこうした光受容
部材を介して現出される可視画像は、ミクロ的には干渉
縞が仮に現出されたとしても、それらは視覚的にはとら
えられない程度のものとなる。即ち、かくなる表面形状
を有する支持体の使用は、その上に多層構成の光受容層
を形成してなる光受容部材によって、該光受容層を通過
した光が、層界面及び支持体表面で反射し、それらが干
渉することにより、形成される画像が縞模様となること
を効率的に防止する。In the case of the light receiving member shown in FIG.
Since the degree of inclination at the interface formed in the free surface 1705 and the photoreceptive layer 1700 is different, the reflection angle of the reflected light at the interface formed in the free surface 1705 and the photoreceptor layer 1700 is different. Therefore, shearing interference corresponding to the so-called Newton's ring phenomenon occurs, and interference fringes are dispersed within the depression. As a result, even if microscopic interference fringes appear in the visible image appearing through such a light-receiving member, they are of such a degree that they cannot be visually perceived. In other words, the use of a support having such a surface shape allows the light that has passed through the light-receiving layer to reach the layer interface and the surface of the support by a light-receiving member having a multi-layered light-receiving layer formed thereon. This effectively prevents the formed image from having a striped pattern due to reflection and interference.
ヱj二二去玉U=虐
大発明における電荷注入阻止層は、多結晶シリコンで構
成され、核層の全層領域に伝導性を制御する物質を均一
に又は好ましくは支持体側に多く分布中るように不均一
状態で含有する。The charge injection blocking layer in the ヱJ22Kakudama U = Atsudai invention is composed of polycrystalline silicon, and a substance for controlling conductivity is distributed uniformly in the entire layer region of the core layer or preferably in a large amount on the support side. It is contained in a non-uniform state.
さらに必要に応じて電荷注入阻止層の全層領域又は一部
のR@域に酸素原子又は/及び窒素原子を均一に、又は
好ましくは支持体側に多く分布するように不均一状態で
含有させることで、電荷注入阻止層と支持体との図の密
着性の改善や、バンドギャップの調整を計る事が出来る
。Furthermore, if necessary, oxygen atoms and/or nitrogen atoms may be contained uniformly in the entire layer region or a part of the R@ region of the charge injection blocking layer, or preferably in a non-uniform state so that they are distributed more on the support side. This makes it possible to improve the adhesion between the charge injection blocking layer and the support and to adjust the band gap.
電荷注入阻止層に含有される前記の伝導性を制御する物
質としては、半導体分野に於ける、いわゆる不純物を挙
げる事が出来、本発明に於ては、p型伝導特性を与える
周期律表第■族に屈する原子(以下「第■族原子」とい
う。)、又はN型伝導特性を与える周期律表V族に属す
る原子(以下「第V族原子」という。)を用いる。第■
族原子としては、具体的には、B(硼素) 、 AJI
(アルミニウム)、Ga(ガリウム)、In(インジ
ウム)、Ti(タリウム)等があり、特にB、Gaか好
適である。第■族原子としては、具体的には、P(憐)
、As(砒素)、sb(アンチモン) 、Bi
(ビスマス)等があり、特にP、Asが好適である。Examples of the conductivity controlling substance contained in the charge injection blocking layer include so-called impurities in the semiconductor field. An atom that belongs to group (2) (hereinafter referred to as "group (2) atom") or an atom that belongs to group V of the periodic table (hereinafter referred to as "group V atom") that provides N-type conductivity is used. Part ■
Specifically, as group atoms, B (boron), AJI
(aluminum), Ga (gallium), In (indium), Ti (thallium), etc., with B and Ga being particularly preferred. Specifically, as a group ■ atom,
, As (arsenic), sb (antimony), Bi
(bismuth), etc., with P and As being particularly preferred.
第2図乃至第6図には電荷注入阻止層に含有される第■
族原子又は第■族原子の層厚方向の分布状態の典型的例
が示される。第2図乃至第6図の例に於いて横軸は第■
族原子又は第■族原子の分布濃度Cを、縦軸は電荷注入
阻止層の層厚tを示し、tBは支持体側の界面位置を、
tTは、支持体側とは反対側の界面の位置を示す。即ち
、電荷注入阻止層層はtB側よりtT側に向って層形成
がなされる。FIGS. 2 to 6 show the charge injection blocking layer containing
A typical example of the distribution state of group atoms or group (Ⅰ) atoms in the layer thickness direction is shown. In the examples shown in Figures 2 to 6, the horizontal axis is
The distribution concentration C of group atoms or group Ⅰ atoms is shown, the vertical axis shows the layer thickness t of the charge injection blocking layer, tB is the interface position on the support side,
tT indicates the position of the interface on the side opposite to the support side. That is, the charge injection blocking layer is formed from the tB side toward the tT side.
第2図には電荷注入阻止層中に含有される第■族原子又
は第V族原子の層厚方向に分布状態の第一の典型例が示
される。FIG. 2 shows a first typical example of the distribution state of group (I) or group V atoms contained in the charge injection blocking layer in the layer thickness direction.
第2図に示される例では界面位置tBよりもtlの位置
までは、第■族原子又は第■族原子の含有濃度Cが01
なる一定の値を取り乍ら含有され、位置t1より分布濃
度Cは界面位置t7に至るまでC2より徐々に連続的に
減少されている。界面位置tTに於いては分布濃度Cは
C3とされる。In the example shown in FIG. 2, from the interface position tB to the position tl, the content concentration C of group (III) atoms or group (III) atoms is 01.
The distribution concentration C gradually and continuously decreases from the position C2 from the position t1 to the interface position t7. At the interface position tT, the distribution concentration C is C3.
第3図に示される例に於いては、含有される第■族原子
又は第V族原子の分布濃度Cは位置tBより位置tTに
至るまでC4から徐々に連続的に減少して位置tTに於
いてC5となる様な分布状態を形成している。In the example shown in FIG. 3, the distribution concentration C of the contained Group II atoms or Group V atoms gradually and continuously decreases from C4 from position tB to position tT, and then reaches position tT. A distribution state such as C5 is formed.
第4図に示す例に於いては、第■族原子又は第V族原子
の分布濃度Cは、位置tBと位置t2間に於いては、C
6と一定値であり、位置tTに於いてはC7とされる。In the example shown in FIG. 4, the distribution concentration C of group (IV) atoms or group V atoms is C between position tB and position t2.
It is a constant value of 6, and is set to C7 at position tT.
位置t2と位置t7との間では1分布濃度Cは一次関数
的に位置t2より位置tTに至るまで減少されている。Between the position t2 and the position t7, the one-distribution concentration C is linearly decreased from the position t2 to the position tT.
第5図に示される例に於いては、分布濃度Cは位@を日
より位置し3まではC8の一定値を取り、位置t3より
位置t7まではC9よりCIOまで一次関数的に減少す
る分布状態とされている。In the example shown in FIG. 5, the distribution concentration C takes a constant value of C8 from position @ to 3, and decreases linearly from position t3 to position t7 from C9 to CIO. It is considered to be a state of distribution.
第6図に示される例に於いては、分布濃度Cは位it日
より位置tTまでC11の一定値を取る。In the example shown in FIG. 6, the distribution concentration C takes a constant value of C11 from position it to position tT.
本発明に於いて電荷注入阻止層が第■族原子又は第V族
原子を支持体側に於いて多く分布する分布状態で含有す
る場合、第m族原子又は第V族原子の分布濃度値の最大
値が好ましくは50原子ppm以上、より好適には80
原子ppm以上、最適には100原子ppm以上とされ
る様な分布状態となり得る様に層形成されるのが望まし
い。In the present invention, when the charge injection blocking layer contains group (IV) atoms or group V atoms in a distribution state in which they are distributed in large numbers on the support side, the maximum distribution concentration value of group m atoms or group V atoms The value is preferably 50 atomic ppm or more, more preferably 80
It is desirable that the layer be formed in such a manner that it can be distributed in a concentration of atomic ppm or more, most preferably 100 atomic ppm or more.
本発明に於いて電荷注入阻止層層中に含有される第m族
原子又は第V族原子の含有量としては1本発明の目的が
効果的に達成される様に所望に従って適宜法められるが
好ましくは30〜5X104原子ppm、より好ましく
は50〜1X104原子ppm、最適にはl×102〜
5X103原子ppmとされるのが望ましいものである
。In the present invention, the content of Group M atoms or Group V atoms contained in the charge injection blocking layer is 1, which may be determined as desired so as to effectively achieve the object of the present invention. Preferably from 30 to 5 x 104 atomic ppm, more preferably from 50 to 1 x 104 atomic ppm, optimally from 1 x 102 to
Preferably, the amount is 5×10 3 atomic ppm.
電荷注入阻止層は前記したように酸素原子又は/及び窒
素原子の含有によって、重点的に支持体101と電荷注
入用(ヒ層との間の密着性の向−ヒ及び電荷注入用1F
層と光導電層との間の密着性の向ヒ又は、電荷注入用1
F層のバンドギャップのM8整が図られる。As described above, the charge injection blocking layer mainly improves the adhesion between the support 101 and the charge injection layer (1F for charge injection) by containing oxygen atoms and/or nitrogen atoms.
For improving adhesion between a layer and a photoconductive layer or for charge injection 1
The bandgap of the F layer is adjusted to M8.
第7図乃至第13図には電荷注入用1F層に含有される
酸素原子又は/及び窒素原子の層厚方向の分布状態の典
型的例が示される。第7図乃至第13図の例に於いて横
軸は酸素原子又は/及び窒素原子の分布濃度Cを、縦軸
は電荷注入用1ヒ層の層厚りを示し、tBは支持体側の
界面位置を、tTは支持体側とは反対側の界面の位置を
示す。即ち、電荷注入用1ヒ層はtB側よりtT側に向
って層形成がなされる。7 to 13 show typical examples of the distribution state of oxygen atoms and/or nitrogen atoms contained in the charge injection 1F layer in the layer thickness direction. In the examples shown in FIGS. 7 to 13, the horizontal axis shows the distribution concentration C of oxygen atoms and/or nitrogen atoms, the vertical axis shows the layer thickness of the first layer for charge injection, and tB is the interface on the support side. tT indicates the position of the interface on the opposite side to the support side. That is, the charge injection layer 1 is formed from the tB side toward the tT side.
第7図には電荷注入阻止層中に含有される酸素原子又は
/及び窒素原子の層厚方向の分布状態の第一の典型例が
示される。FIG. 7 shows a first typical example of the distribution state of oxygen atoms and/or nitrogen atoms contained in the charge injection blocking layer in the layer thickness direction.
第7図に示される例では界面位置を日よりt乙の位置ま
では、酸素原子又は/及び窒素原子の含有濃度CがC1
2なる一定の値を取り乍ら含有され位置t4より分布濃
度Cは界面位置t7に至るまでC13より徐々に連続的
に減少されている。界面位置t7に於いては分布濃度C
はC14とされる。In the example shown in FIG. 7, from the interface position to the position t, the content concentration C of oxygen atoms and/or nitrogen atoms is C1.
While taking a constant value of 2, the distribution concentration C gradually and continuously decreases from position t4 to interface position t7 from C13. At the interface position t7, the distribution concentration C
is assumed to be C14.
第8図に示される例に於いては、含有される酸素原子又
は/及び窒素原子の分布濃度Cは位置を日より位置tT
に至るまでC15から徐々に連続的に減少して位置t7
に於いてC16となる様な分布状態を形成している。In the example shown in FIG. 8, the distribution concentration C of the contained oxygen atoms and/or nitrogen atoms varies from the position tT
gradually and continuously decreases from C15 until reaching position t7.
The distribution state is such that C16 is formed at .
第9図の場合には、位置を日より位置t5までは酸素原
子又は/及び窒素原子の分布濃度CはC17と一定値と
され、位置t5と位置t7との間に於いて、徐々に連続
的に減少され、位置tTに於いて、実質的に零とされて
いる。In the case of FIG. 9, the distribution concentration C of oxygen atoms and/or nitrogen atoms is constant at C17 from position 1 to position t5, and gradually becomes continuous between position t5 and position t7. is substantially reduced to zero at position tT.
第10図の場合には、酸素原子又は/及び窒素原子は位
置tBより位置t7に至るまで、分布濃度CはC19よ
り連続的に徐々に減少され、位置t7に於いて実質的に
零とされている。In the case of FIG. 10, the distribution concentration C of oxygen atoms and/or nitrogen atoms is gradually decreased continuously from C19 from position tB to position t7, and becomes substantially zero at position t7. ing.
第11図に示す例に於いては、酸素原子又は/及び窒素
原子の分布濃度Cは位置tBより位置t7まではC22
の一定値を取り、位置t7より位置tTまではC23よ
りC24まで一次関数的に減少する分布状態とされてい
る。In the example shown in FIG. 11, the distribution concentration C of oxygen atoms and/or nitrogen atoms is C22 from position tB to position t7.
takes a constant value, and from position t7 to position tT, the distribution state decreases in a linear function from C23 to C24.
第11図に示す例に於いては、酸素原子又は/及び窒素
原子の分布1農度Cは、位置tBと位置ts間に於いて
は、C20と一定値であり、位置tTに於いてはC21
とされる。位置上6と位置tTとの間では、分布濃度C
は一次関数的に位置t6より位置tTに至るまで減少さ
れている。In the example shown in FIG. 11, the distribution 1 degree C of oxygen atoms and/or nitrogen atoms is a constant value of C20 between the position tB and the position ts, and at the position tT. C21
It is said that Between position 6 and position tT, the distribution concentration C
is decreased linearly from position t6 to position tT.
第12図に示される例に於いては1分布濃度Cは位置を
日より位置tTまではC25の一定値を取る。In the example shown in FIG. 12, the 1-distribution concentration C takes a constant value of C25 from position 1 to position tT.
本発明に於いて電荷注入阻止層102が酸素原子又は/
及び窒素原子を支持体101側に於いて多く分布する分
布状態で含有する場合、酸素原子又は/及び窒素原子の
分布濃度値又は両頁子の和の最大値が、好ましくは50
0原子ppm以上、より好適には800原子PPm以上
、最適には1000原子ppm以上とされる様な分布状
態となり得る様に層形成されるのが望ましい。In the present invention, the charge injection blocking layer 102 is made of oxygen atoms or/
and nitrogen atoms are contained in a distributed state in a large amount on the support 101 side, the distribution concentration value of oxygen atoms and/or nitrogen atoms or the maximum value of the sum of both pages is preferably 50
It is desirable that the layer be formed in such a manner that a distribution state of 0 atomic ppm or more, more preferably 800 atomic ppm or more, and optimally 1000 atomic ppm or more can be obtained.
本発明に於いて電荷注入阻止層中に含有される酸素原子
又は/及び窒素原子の含有量又は両者の和としては、本
発明の目的が効果的に達成される様に所望に従って適宜
法められるが、好ましくはo、 o o i〜50原子
%、より好ましくは0.002〜40原子%、最適には
0.003〜30原子%とされるのが望ましい。In the present invention, the content of oxygen atoms and/or nitrogen atoms contained in the charge injection blocking layer, or the sum of both, may be appropriately determined as desired so as to effectively achieve the object of the present invention. However, it is preferably o, o o i to 50 atomic %, more preferably 0.002 to 40 atomic %, most preferably 0.003 to 30 atomic %.
本発明に於いて電荷注入阻止層の層厚は所望の電子写真
特性が得られること及び経済的効果等の点から、好まし
くは0.01〜10角、より好ましくは0.05〜8用
、最適には0.1〜5用とされるのが望ましい。In the present invention, the thickness of the charge injection blocking layer is preferably 0.01 to 10 square, more preferably 0.05 to 8 square, from the viewpoint of obtaining desired electrophotographic properties and economical effects. The optimum range is preferably 0.1 to 5.
本発明の電子写真用光受容部材に於いては、支持体10
1と電荷注入阻止層との間に密着性の一層の向上を計る
目的で、例えば、Si3N4,5i02.SiO2,S
iC,SiO。In the electrophotographic light receiving member of the present invention, the support 10
1 and the charge injection blocking layer, for example, Si3N4, 5i02. SiO2,S
iC, SiO.
水素原子及びハロゲン原子の少なくとも一方と、空素原
子、酸素原子、炭素原子の少なくとも一つと、シリコン
原子とを含む非晶質材料等で構成される畜着層を設けて
も良い。An adhesion layer made of an amorphous material or the like containing at least one of hydrogen atoms and halogen atoms, at least one of air atoms, oxygen atoms, and carbon atoms, and silicon atoms may be provided.
i豆ヱj 本発明に於ける光導電層は、A−5i(H。i bean ej The photoconductive layer in the present invention is A-5i (H.
X)で構成され所望の電子写真特性を満足する光導電特
性を有する。X) and has photoconductive properties that satisfy desired electrophotographic properties.
尚、光導電層の全層領域に伝導性を制御する物質を光導
電層に要求される特性を損なわない範囲に於いて含有し
てもよい。Incidentally, the entire layer region of the photoconductive layer may contain a substance for controlling conductivity within a range that does not impair the properties required of the photoconductive layer.
又、光導電層の全層領域に光導電層に要求される特性を
損なわない範囲に於いて炭素原子。Further, carbon atoms are added to the entire layer region of the photoconductive layer within a range that does not impair the properties required for the photoconductive layer.
酸素原子及び窒素原子の少なくとも一方を含有してもよ
い。It may contain at least one of an oxygen atom and a nitrogen atom.
前記の伝導性を制御する物質としては前述の電荷注入阻
止層と同様に、第■族原子や第V族原子を用いる事が出
来る。As the substance for controlling the conductivity, Group I atoms or Group V atoms can be used, as in the charge injection blocking layer described above.
本発明に於ける光導電層の全層領域に第m族原子又は第
■族原子を含有する場合は主として伝導型及び/又は伝
導率を制御する効果を奏し、前記第■族原子又は第V族
原子の含有量は比較的少にであり、好適にはI X 1
0−3〜3×102原子ppm、より好適には5X10
−3〜102原子ppm、最適には1×10−2〜5゜
原子ppmとされるのが望ましい。In the case where the photoconductive layer in the present invention contains group m atoms or group Ⅰ atoms in the entire layer region, it is mainly effective to control the conductivity type and/or conductivity, and the group Ⅰ atoms or group The content of group atoms is relatively small, preferably I
0-3 to 3 x 102 atomic ppm, more preferably 5 x 10
-3 to 102 atomic ppm, most preferably 1 x 10-2 to 5° atomic ppm.
又、本発明に於ける光導電層の全層領域に酸素原子又は
炭素原子を含有する場合は、主として高暗抵抗化と、電
荷注入阻止層と光導電層との間の密着性の向上等の効果
を奏するが、殊に該層の光導電特性を劣化させない為に
酸素原子の含有量は比較的少量とされるかの望ましい。In addition, in the case where oxygen atoms or carbon atoms are contained in the entire layer region of the photoconductive layer in the present invention, the main effects are increased dark resistance, improved adhesion between the charge injection blocking layer and the photoconductive layer, etc. However, in order not to deteriorate the photoconductive properties of the layer, it is desirable that the content of oxygen atoms be relatively small.
窒素原子の場合は、上記の点に加えて、例えば第■族原
子、殊にBとの共存に於いて光感度の向上を計る事が出
来る。光導電層中に含有される酸素原子又は窒素原子の
含有量、又は、両者の和は、好適にはlXl0−3〜1
03原子ppm、より好適には5X10−2〜5X10
2原子ppm、最適にはlXl0−1〜2X102原子
ppmとされるのが望ましい。In the case of nitrogen atoms, in addition to the above-mentioned points, the photosensitivity can be improved in coexistence with, for example, group (I) atoms, particularly B. The content of oxygen atoms or nitrogen atoms contained in the photoconductive layer, or the sum of both, is preferably 1X10-3 to 1
03 atomic ppm, more preferably 5X10-2 to 5X10
It is desirable that the content be 2 atomic ppm, most preferably 1X10-1 to 2X102 atomic ppm.
本発明に於いて、その目的を効果的に達成する為に、支
持体上に形成され、光受容層の一部を構成する光導電層
は下記に示す半導体特性を有し、照射される光に対して
光導電性を示すA−Si(H,X)で構成される。In order to effectively achieve the object of the present invention, the photoconductive layer formed on the support and forming a part of the photoreceptive layer has the semiconductor characteristics shown below, and has the following semiconductor characteristics. It is composed of A-Si(H,X) which exhibits photoconductivity against
■ p型A −S i (H、X) −−−−−−7ク
セプターのみを含むもの。或いはドナーとアクセプター
との両方を含み、アクセプターの相対的濃度が高いもの
。■ p-type A-S i (H, X) --- Contains only 7 receptors. Or one that contains both donor and acceptor and has a high relative concentration of acceptor.
■ p−型A −S i (H、X)−−−−−−■
のタイプに於いてアクセプターの濃度(N a)が低い
か、又はアクセプターの相対的濃度が低いもの。■ p-type A -S i (H, X)---■
Types with low acceptor concentration (Na) or low acceptor relative concentration.
■ n型A −S i (H、X) −−−−一−ドナ
ーのみを含むもの。或いはドナーとアクセプターの両方
を含み、ドナーの相対的濃度が高いもの。(2) n-type A-S i (H,X) - Contains only one-donor. Or one that contains both donor and acceptor and has a high relative concentration of donor.
・■ n−型A −S i (H、X)−−−−−−■
のタイプに於いてドナーの濃度(Nd)が低いが、又は
アクセプターの相対的濃度が低いもの。・■ n-type A -S i (H, X)---■
type in which the concentration of donor (Nd) is low or the relative concentration of acceptor is low.
■ i型A−S i (H、X) −−−−−−N a
−N bご0のもの又は、NazNdのもの。■ Type i A-S i (H, X) ------N a
-Nbgo0 or NazNd.
本発明に於いて、電荷注入阻止層又は/及び光導電層中
に含有されるハロゲン原子(X)として好適なものはF
、0文、Br、Iであり、殊にF、C4Q、が望ましい
ものである。In the present invention, a preferable halogen atom (X) contained in the charge injection blocking layer and/or photoconductive layer is F.
, 0 sentences, Br, I, and F, C4Q, is particularly desirable.
本発明に於いて、多結晶シリコンで構成される電荷注入
阻止層層又は/及びA−3i(H。In the present invention, a charge injection blocking layer made of polycrystalline silicon or/and A-3i (H) is used.
X)で構成される光導電層を形成するには、例えばグロ
ー放電法、マイクロ波放電法、スパッタリング法、或い
はイオンブレーティング法等の放電現象を利用する真空
堆積法によって成される。例えば、グロー放電法によっ
て、多結晶シリコン又は/及びA−5i(H,X)で構
成される非晶質層を形成するには、基本的にはシリコン
原子(Si)を供給し得るSi供給用の原料ガスと共に
、水素原子(H)導入用の又は/及びハロゲン原子(X
)導入用の原料カスを、内部が減圧にし得る堆積室内に
導入して、該堆積室内にグロー放電を生起させ、予め所
定位置に設置されである所定の支持体表面上に多結晶シ
リコンからなる層及びA−Si(H。The photoconductive layer composed of X) is formed by, for example, a vacuum deposition method that utilizes a discharge phenomenon such as a glow discharge method, a microwave discharge method, a sputtering method, or an ion blating method. For example, in order to form an amorphous layer composed of polycrystalline silicon or/and A-5i (H, Along with the raw material gas for hydrogen atoms (H) and/or halogen atoms (X
) The raw material sludge for introduction is introduced into a deposition chamber whose interior can be reduced in pressure to generate a glow discharge in the deposition chamber, and placed on the surface of a predetermined support made of polycrystalline silicon that has been placed in a predetermined position in advance. layer and A-Si(H.
X)からなる層を形成させれば良い。又、スノくツタリ
ング法で形成する場合には、例えばAr。What is necessary is to form a layer consisting of X). In addition, in the case of forming by the snow ivy method, for example, Ar.
He等の不活性ガス又はこれ等のガスをベースとした混
合カス雰囲気中でSiで構成されたターゲットをスパッ
タリングする際、水素原子(H)又は/及び/\ロゲン
原子(X)導入用のガスをスパッタリング用の堆積室に
導入してやれば良い。When sputtering a target composed of Si in an inert gas such as He or a mixed gas atmosphere based on these gases, a gas for introducing hydrogen atoms (H) or / and /\ \ \ \ rogen atoms (X) is used. may be introduced into the deposition chamber for sputtering.
本発明に於いて使用されるSi供給用の原料ガスとして
は、SiH4,Si2H6,5i3HB、Si4H10
等のガス状態の又はガス化し得る水素化硅素(シラン類
)が有効に使用されるものとして挙げられ、殊に1層作
成作業の扱い易さ、Si供給効率の良さ等の点で5iH
a、5i2Hsが好ましいものとして挙げられる。The raw material gas for Si supply used in the present invention includes SiH4, Si2H6, 5i3HB, Si4H10
Silicon hydride (silanes) in a gaseous state or which can be gasified such as
a, 5i2Hs are preferred.
本発明に於いて使用される/Xロゲン原子導入用の原料
ガスとして有効なのは、多くの/\ロゲン化合物が挙げ
られ、例えば/\ロゲンガス、/\ロゲン化物、ハロゲ
ン間化合物、ノ\ロゲンで置換されたシラン誘導体等の
ガス状態の又はガス化し得るハロゲン化合物が好ましく
挙げられる。Effective raw material gases for introducing the /X halogen atoms used in the present invention include many /\rogen compounds. Preferred examples include gaseous or gasifiable halogen compounds such as silane derivatives.
又、更には、シリコン原子とハロゲン原子とを構成要素
とするガス状態の又はガス化し得る、ハロゲン原子を含
む硅素化合物も有効なものとして本発明に於いては挙げ
る事が出来る。Further, silicon compounds containing halogen atoms, which are in a gaseous state or can be gasified and whose constituent elements are silicon atoms and halogen atoms, can also be cited as effective in the present invention.
本発明に於いて好適に使用し得るハロゲン化合物として
は、具体的には、フッ素、塩素、臭素、ヨウ素のハロゲ
ンガス、ErF、Cf1F。Specifically, halogen compounds that can be suitably used in the present invention include halogen gases such as fluorine, chlorine, bromine, and iodine, ErF, and Cf1F.
ClF3.BrF5.BrF3.IF3 。ClF3. BrF5. BrF3. IF3.
IF7.ICi、IBr等のハロゲン間化合物を挙げる
事が出来る。IF7. Examples include interhalogen compounds such as ICi and IBr.
ハロゲン原子を含む硅素化合物、所謂、ハロゲン原子で
置換されたシラン誘導体としては、具体的には例えばS
iF4.Si2F6.Si0M4,5iBra等のハロ
ゲン化硅素が好ましいものとして挙げる事が出来る。As silicon compounds containing halogen atoms, so-called silane derivatives substituted with halogen atoms, specifically, for example, S
iF4. Si2F6. Preferred examples include silicon halides such as Si0M4,5iBra.
この様なハロゲン原子を含む硅素化合物を採用してグロ
ー放電法によって本発明の特徴的な光導電部材を形成す
る場合には、Siを供給し得る原料ガスとしての水素化
硅素ガスを使用しなくとも、所定の支持体上にハロゲン
原子を構成要素として含む多結晶シリコン又はA−3i
:Hから成る層を形成する事が出来る。When forming the characteristic photoconductive member of the present invention by a glow discharge method using such a silicon compound containing a halogen atom, silicon hydride gas is not used as a raw material gas capable of supplying Si. Both are polycrystalline silicon or A-3i containing halogen atoms as constituent elements on a predetermined support.
:A layer consisting of H can be formed.
グロー放電法に従って、ハロゲン原子を含む層を製造す
る場合、基本的にはSi供給用の原料ガスであるハロゲ
ン化硅素ガスとAr、H2゜He等のガス等を所定の混
合比とガス流量になる様にして所望の層を形成する堆積
室内に導入し、グロー放電を生起してこれ等のガスのプ
ラズマ雰囲気を形成する事によって、所定の支持体−ヒ
に所望の層を形成し得るものであるが、水素原子の導入
を計る為にこれ等のガスに更に水素原子を含む硅素化合
物のガスを所定量混合して層形成しても良い。When manufacturing a layer containing halogen atoms according to the glow discharge method, basically silicon halide gas, which is a raw material gas for supplying Si, and gases such as Ar, H2゜He, etc. are mixed at a predetermined mixing ratio and gas flow rate. A desired layer can be formed on a predetermined support by introducing the gas into a deposition chamber and generating a glow discharge to form a plasma atmosphere of these gases. However, in order to introduce hydrogen atoms, a layer may be formed by further mixing a predetermined amount of a silicon compound gas containing hydrogen atoms with these gases.
又、各ガスは単独種のみでなく所定の混合比で複数種混
合して使用しても差支えないものである。Moreover, each gas may be used not only as a single species but also as a mixture of multiple species at a predetermined mixing ratio.
反応スパッタリング法或いはイオンブレーティング法に
依って多結晶シリコン又はA−5t(H、X)から成る
層を形成するには、例えばスパッタリング法の場合には
Siから成るターゲットを使用して、これを所定のガス
プラズマ雰囲気中でスパッタリングし、イオンブレーテ
ィング法の場合には、多結晶シリコン又は単結晶シリコ
ンを蒸発源として蒸着ポートに収容し、このシリコン蒸
発源を抵抗加熱法、或いはエレクトロンビーム法CEB
法〕等によって加熱蒸発させ飛翔蒸発物を所定のガスプ
ラズマ雰囲気中を通過させる事で行う事が出来る。To form a layer of polycrystalline silicon or A-5t (H, Sputtering is carried out in a predetermined gas plasma atmosphere, and in the case of the ion blating method, polycrystalline silicon or single crystal silicon is housed in the evaporation port as an evaporation source, and this silicon evaporation source is used by resistance heating method or electron beam method CEB.
This can be carried out by heating and evaporating the flying evaporated material using a method such as the above method, and passing the flying evaporated material through a predetermined gas plasma atmosphere.
この際、スパッタリング法、イオンブレーティング法の
何れの場合にも形成される層中にハロゲン原子を導入す
るには、前記のハロゲン化合物又は前記のハロゲン原子
を含む硅素化合物のガスを堆積室中に導入して該ガスの
プラズマ雰囲気を形成してやれば良いものである。At this time, in order to introduce halogen atoms into the layer formed by either the sputtering method or the ion blasting method, a gas of the above-mentioned halogen compound or a silicon compound containing the above-mentioned halogen atoms is introduced into the deposition chamber. It is sufficient to introduce the gas to form a plasma atmosphere of the gas.
又、水素原子を導入する場合には、水素原子導入用の原
料ガス、例えば、H2、或いは前記したシラン類等のガ
スをスパッタリング用の堆積室中に導入して該ガスのプ
ラズマ雰囲気を形成してやれば良い。Further, when introducing hydrogen atoms, a raw material gas for introducing hydrogen atoms, such as H2 or the above-mentioned silane gases, is introduced into the deposition chamber for sputtering to form a plasma atmosphere of the gas. Good.
本発明に於いては、ハロゲン原子導入用の原料ガスとし
て上記されたハロゲン化合物或いはハロゲンを含む硅素
化合物が有効なものとして使用されるものであるが、そ
の他に、HF。In the present invention, the above-mentioned halogen compounds or halogen-containing silicon compounds are effectively used as the raw material gas for introducing halogen atoms, but HF is also used.
He文、HBr、HI等のハロゲン化水素。Hydrogen halides such as He, HBr, and HI.
SiH2F2.5iH2I2,5iH2C交2゜5iH
(,13,5iH2Br2,5iHBr3等のハロゲン
置換水素化硅素、等々のガス状態の或いはガス化し得る
、水素原子を構成要素の1つとするハロゲン化物も有効
な電荷注入阻止層及び光導電層形成用の出発物質として
挙げる事が出来る。SiH2F2.5iH2I2, 5iH2C cross 2゜5iH
(,13,5iH2Br2, 5iHBr3 and other halogen-substituted silicon hydrides, gaseous or gasifiable halides containing hydrogen atoms as one of their constituents are also effective for forming charge injection blocking layers and photoconductive layers. It can be mentioned as a starting material.
これ等の水素原子を含む)λロゲン化物は、層形成の際
に形成される層中に/\ロゲン原子の導入と同時に電気
的或いは光電的特性の制御に極めて有効な水素原子も導
入されるので、本発明に於いては好適なハロゲン原子導
入用の原料として使用される。These λ rogenides (containing hydrogen atoms) are used to introduce hydrogen atoms, which are extremely effective in controlling electrical or photoelectric properties, at the same time as introducing rogen atoms into the layer formed during layer formation. Therefore, in the present invention, it is used as a suitable raw material for introducing halogen atoms.
水素原子を、形成される層中に構造的に導入するには、
上記の他にH2、或いはS iH4゜Si2H6,5i
3HB、5i4HtO等の水素化硅素のガスをSiを供
給する為のシリコン化合物と堆積室中に共存させて放電
を生起させる事でも行う事が出来る。To structurally introduce hydrogen atoms into the formed layer,
In addition to the above, H2 or SiH4゜Si2H6,5i
This can also be achieved by causing a discharge by causing a silicon hydride gas such as 3HB or 5i4HtO to coexist with a silicon compound for supplying Si in the deposition chamber.
例えば、反応スパッタリング法の場合には、Siターゲ
ットを使用し、ハロゲン原子導入用のガス及びH2ガス
を必要に応じてHe、Ar等の不活性ガスを含めて堆積
室内に導入してプラズマ雰囲気を形成し、前記Siター
ゲットをスパッタリングする事によって、基板上に多結
晶シリコン又はA−3i(H,X)から成る層が形成さ
れる。For example, in the case of the reactive sputtering method, a Si target is used, and a plasma atmosphere is created by introducing a gas for introducing halogen atoms and H2 gas, including inert gases such as He and Ar as necessary, into the deposition chamber. By forming and sputtering the Si target, a layer of polycrystalline silicon or A-3i(H,X) is formed on the substrate.
更には不純物のドーピングも兼ねてB2H6等のガスを
導入してやる事も出来る。Furthermore, it is also possible to introduce a gas such as B2H6 to also serve as impurity doping.
本発明に於いて、形成される電子写真用光受容部材の電
荷注入阻止層及び光導電層中に含有される水素原子(H
)の量又はハロゲン原子(X)の量又は水素原子とハロ
ゲン原子の量の和は好ましくは1〜40原子%、より好
適には5〜30原子%とされるのが望ましい。In the present invention, hydrogen atoms (H
), the amount of halogen atoms (X), or the sum of the amounts of hydrogen atoms and halogen atoms is preferably 1 to 40 atom %, more preferably 5 to 30 atom %.
形成される層中に含有される水素原子(H)又は/及び
ハロゲン原子(X)の量を制御するには、例えば支持体
温度又は/及び水素原子(H)、或いはハロゲン原子(
X)を含有させる為に使用される出発物質の堆積装置系
内へ導入する量、放電電力等を制御してやれば良い。In order to control the amount of hydrogen atoms (H) and/or halogen atoms (X) contained in the formed layer, for example, the support temperature or/and the amount of hydrogen atoms (H) or halogen atoms (
The amount of the starting material used to contain X) introduced into the deposition system, the discharge power, etc. may be controlled.
電荷注入阻止層や光導電層に、第■族原子又は第V族原
子、及び炭素原子、酸素原子又は窒素原子を含有させる
には、グロー放電法や反応スパッタリング法等による電
荷注入阻止層や光導電層の形成の際に、第m族原子又は
第V族原子導入用の出発物質、及び酸素原子導入用、窒
素原子導入用、炭素原子導入用の出発物質を夫々前記し
た電荷注入阻[F層や光導電層形成用の出発物質と共に
使用して、形成される層中にその量を制御し乍ら含有し
てやる事によって成される。In order to make the charge injection blocking layer or the photoconductive layer contain Group Ⅰ atoms or Group V atoms, as well as carbon atoms, oxygen atoms, or nitrogen atoms, the charge injection blocking layer or photoconductive layer can be formed by a glow discharge method, a reactive sputtering method, etc. When forming a conductive layer, a starting material for introducing a group M atom or a group V atom, and a starting material for introducing an oxygen atom, a nitrogen atom, and a carbon atom are used as charge injection inhibitors [F This is accomplished by incorporating the compound in a controlled amount into the layer to be formed, in conjunction with the starting material for forming the layer or photoconductive layer.
その様な炭素原子導入用の、酸素原子導入用の又は/及
び窒素原子導入用の出発物質、又は第■族原子又は第V
族原子導入用の出発物質としては、少なくとも炭素原子
、酸素原子及び窒素原子のいずれか、或いは第■族原子
又はmV族原子を構成原子とするガス状の物質又はガス
化し得る物質をガス化したものの中の大概のものが使用
され得る。Such starting materials for introducing carbon atoms, for introducing oxygen atoms, and/or for introducing nitrogen atoms, or for group I atoms or group V atoms.
As a starting material for introducing group atoms, a gaseous substance or a gasified substance whose constituent atoms are at least one of carbon atoms, oxygen atoms, and nitrogen atoms, or group Ⅰ atoms or mV group atoms is used. Most of them can be used.
例えば酸素原子を含有させるのであればシリコン原子(
S i)を構成原子とする原料ガスと、酸素原子(0)
を構成原子とする原料ガスと、必要に応じて水素原子(
H)又は及びノ\ロゲン原子(X)を構成原子とする原
料ガスとを所望の混合比で混合して使用するか、又は、
シリコン原子(Si)を構成原子とする原料ガスと、酸
素原子(○)及び水素原子(H)を構成原子とする原料
ガスとを、これも又所望の混合比で混合するか、或いは
、シリコン原子(Si)を構成原子とする原料ガスと、
シリコン原子(Si)、酸素原子(0)及び水素原子(
H)の3つを構成原子とする原料ガスとを混合して使用
する事が出来る。For example, if you want to include oxygen atoms, silicon atoms (
A raw material gas whose constituent atoms are S i) and an oxygen atom (0)
A raw material gas consisting of constituent atoms and hydrogen atoms (
H) or and a raw material gas containing a halogen atom (X) at a desired mixing ratio, or
Either a raw material gas containing silicon atoms (Si) and a raw material gas containing oxygen atoms (○) and hydrogen atoms (H) are mixed at a desired mixing ratio, or silicon A source gas containing atoms (Si) as constituent atoms;
Silicon atom (Si), oxygen atom (0) and hydrogen atom (
H) can be used in combination with a raw material gas having three constituent atoms.
又、別には、シリコン原子(Si)と水素原子(H)と
を構成原子とする原料ガスに酸素原子(0)を構成原子
とする原料ガスを混合して使用しても良い・
酸素原子導入用の及び窒素原子導入用の出発物質となる
ものとして具体的には、例えば酸素(02)、オゾン(
03)、−酸化窒素(No)、二酸化窒素(NO2)、
−二酸化窒素(N20)、三二酸化窒素(N203)、
四二酸化窒素(N204)、三二酸化窒素(N205)
、三酸化窒素(NO3)、窒素(N2)。Alternatively, a raw material gas containing silicon atoms (Si) and hydrogen atoms (H) as constituent atoms may be mixed with a raw material gas containing oxygen atoms (0) as constituent atoms. Introduction of oxygen atoms Specifically, starting materials for nitrogen atom introduction and nitrogen atom introduction include, for example, oxygen (02), ozone (
03), -nitrogen oxide (No), nitrogen dioxide (NO2),
-nitrogen dioxide (N20), nitrogen sesquioxide (N203),
Nitrogen tetroxide (N204), nitrogen sesquioxide (N205)
, nitrogen trioxide (NO3), nitrogen (N2).
アンモニア(NM3)、アジ化水素(HN3)。Ammonia (NM3), hydrogen azide (HN3).
ヒドラジン(NH2NH2)、シリコン原子(Sl)と
酸素原子(0)と水素原子(H)とを構成原子とする、
例えば、ジシロキサン(H3SiO3iH3)、 トリ
シロキサン(H3SiO3iH20S i B3)等の
低級シロキサン等を挙げる事が出来る。Hydrazine (NH2NH2), whose constituent atoms are a silicon atom (Sl), an oxygen atom (0), and a hydrogen atom (H),
Examples include lower siloxanes such as disiloxane (H3SiO3iH3) and trisiloxane (H3SiO3iH20S i B3).
炭素原子導入用の原料となる炭素原子含有化合物として
は、例えば炭素数1〜4の飽和炭化水素、炭素数2〜4
のエチレン系炭化水素、炭素数2〜3のアセチレン系炭
化水素等が挙げられる。Examples of carbon atom-containing compounds that serve as raw materials for introducing carbon atoms include saturated hydrocarbons having 1 to 4 carbon atoms, and saturated hydrocarbons having 2 to 4 carbon atoms.
Examples include ethylene hydrocarbons, acetylene hydrocarbons having 2 to 3 carbon atoms, and the like.
具体的には、飽和炭化水素としては、メタン(CH4)
、エタン(C2)(s) 、プロパン(C3He)、
n−ブタン(n−C4H10) 。Specifically, as a saturated hydrocarbon, methane (CH4)
, ethane (C2)(s), propane (C3He),
n-Butane (n-C4H10).
ペンタン(C5HL2)、エチレン系炭化水素としてハ
、エチレン(C2Ha)、プロピレン(C3H6)、ブ
テン−1(C4H8)、ブテン−2(C4H8)、イン
ブチレン(C4H8)、ペンテン(C5H10)、アセ
チレン系炭化水素としては、アセチレン(C2H2)。Pentane (C5HL2), ethylene hydrocarbon, ethylene (C2Ha), propylene (C3H6), butene-1 (C4H8), butene-2 (C4H8), inbutylene (C4H8), pentene (C5H10), acetylene carbonization As hydrogen, acetylene (C2H2).
メチルアセチレン(C3H4)、ブチン(C4Hs)等
が挙げられる。Examples include methylacetylene (C3H4) and butyne (C4Hs).
SiとCとHとを構成原子とする原料ガスとしては、S
i (CH3)4 、St (C2H4) 4等のケ
イ化アルキルを挙げる事が出来る。As a raw material gas containing Si, C, and H as constituent atoms, S
Examples include alkyl silicides such as i (CH3)4 and St (C2H4)4.
第■族原子又は第V族原子の含有される電荷注入阻止層
層及び光導電層を形成するのにグロー放電法を用いる場
合、該層形成用の原料ガスとなる出発物質は、前記した
多結晶シリコンで構成される電荷注入阻止層及びA−3
t(H。When a glow discharge method is used to form a charge injection blocking layer and a photoconductive layer containing group (IV) atoms or group V atoms, the starting materials that serve as the raw material gas for forming the layer may be Charge injection blocking layer made of crystalline silicon and A-3
t(H.
X)で構成される光導電層形成用の出発物質の中から適
宜選択したものに、第■族原子又は第■族原子導入用の
出発物質が加えられたものである。その様な第■族原子
又は第■族原子導入用の出発物質としては第■族原子又
は第V族原子を構成原子とするガス状態の物質又はガス
化しうる物質をガス化したものであれば、いずれのもの
であってもよい。A group (I) atom or a starting material for introducing a group (II) atom is added to the starting material suitably selected from the starting materials for forming a photoconductive layer consisting of X). The starting material for the introduction of such group (III) atoms or group (III) atoms may be a gaseous substance or a gasified substance whose constituent atoms are group (IV) atoms or group (V) atoms. , any one may be used.
本発明に於いて第■族原子導入用の出発物質として有効
に使用されるものとしては、具体的には硼素原子導入用
として、B2H6,B4HIO,B5H9、B5H11
,B6H10,B6H12,B6H14等の水素化硼素
、BF3.BC文3.BBr3等のハロゲン化硼素等を
挙げることができるが、この他、AlCl2.GaC1
3、I ncl 3 、TuCu3等も挙げる事が出来
る。In the present invention, starting materials that can be effectively used for introducing group (I) atoms include B2H6, B4HIO, B5H9, and B5H11, specifically for introducing boron atoms.
, B6H10, B6H12, B6H14, etc., BF3. BC sentence 3. Examples include boron halides such as BBr3, but also AlCl2. GaC1
3, I ncl 3 , TuCu3, etc. can also be mentioned.
本発明に於いて第V族原子導入用の出発物質として有効
に使用されるのは、具体的には燐原子導入用としては、
PH3、P2H4等の水素比隣、PH4I 、PF3
、PFs 、PCC84PCl5.PBr3.PBr3
.PI3等17)ハロゲン他項が挙げられる。この他、
AsH3゜AsF3 、AsCn3 、AsBr3 、
AsF5 。In the present invention, the starting materials that are effectively used for introducing Group V atoms are, specifically, those for introducing phosphorus atoms:
Hydrogen ratios such as PH3, P2H4, PH4I, PF3
, PFs, PCC84PCl5. PBr3. PBr3
.. PI3 etc. 17) Halogen and other items may be mentioned. In addition,
AsH3゜AsF3, AsCn3, AsBr3,
AsF5.
SbH3,SbF3 、SbF5.Sb0文3゜5bC
JLs、BiH3,B1Cu3.B1Br3等も挙げる
事が出来る。SbH3, SbF3, SbF5. Sb0 sentence 3゜5bC
JLs, BiH3, B1Cu3. B1Br3 etc. can also be mentioned.
第■族原子又は第V族原子を含有する電荷注入阻止層及
び光導電層に導入される第■族原子又は第V族原子の含
有量は、堆積室中に流入される第■族原子又は第V族原
子導入用の出発物質のガス流量、ガス流量比、放電パワ
ー、支持体温度、堆積室内の圧力等を制御する事によっ
て任意に制御されうる。The content of Group ■ atoms or Group V atoms introduced into the charge injection blocking layer and photoconductive layer containing Group ■ atoms or Group V atoms is the same as the content of Group ■ atoms or Group V atoms introduced into the deposition chamber. It can be arbitrarily controlled by controlling the gas flow rate of the starting material for group V atom introduction, gas flow rate ratio, discharge power, support temperature, pressure in the deposition chamber, etc.
本発明に於ける目的が効果的に達成される為の支持体温
度は、適宜最適範囲を選択するがA−Si(H,X)か
らなる光導電層を形成する場合1通常50℃〜350℃
、好適には100°C〜300°Cとするのが望ましい
。又、多結晶シリコンからなる電荷注入阻止層を形成す
る場合 通常200°C〜700℃、好適には250゛
℃〜600℃とするのが望ましい。The support temperature for effectively achieving the purpose of the present invention is appropriately selected from an optimum range, but when forming a photoconductive layer made of A-Si(H, ℃
, preferably 100°C to 300°C. Further, when forming a charge injection blocking layer made of polycrystalline silicon, the temperature is usually 200°C to 700°C, preferably 250°C to 600°C.
本発明に於ける電荷注入阻止層及び光導電層の形成には
層を構成する原子の組成比の微妙な制御や層厚の制御
が他の方法に比較して容易である事から、グロー放電法
やスパッタリング法の採用が望ましいが、これ等の層形
成法で電荷注入阻止層及び光導電層を形成する場合には
、前記の支持体温度と同様に、層の形成の際の放電パワ
ー、ガス圧が作成される電荷注入阻止層や光導電層の結
晶化、非晶質化その他の特性を左右する重要な要因であ
る。In the formation of the charge injection blocking layer and the photoconductive layer in the present invention, glow discharge is used because delicate control of the composition ratio of atoms constituting the layer and control of the layer thickness are easier than with other methods. However, when forming a charge injection blocking layer and a photoconductive layer using these layer forming methods, the discharge power during layer formation, the same as the support temperature described above, Gas pressure is an important factor that influences crystallization, amorphization, and other properties of the charge injection blocking layer and photoconductive layer to be created.
本発明の目的を達成しうる特性を有する電荷注入阻止層
及び光導電層を生産性良く且つ効率的に作成するに当っ
ては、放電パワー条件については、多結晶シリコンから
なる電荷注入阻止層を形成する場合、通常100〜50
00W、好適には200〜2000Wとするのが望まし
く又、A−5i(H,X)からなる光導電層を形成する
場合1通常10〜100OW、好適には20〜500W
とするのか望ましい。堆積室内のガス圧については、多
結晶シリコンからなる電荷注入阻止層を形成する場合、
10−3〜0.8Torr、好適には5XlO−3〜0
15Torr程度とするのが望ましい。In order to efficiently and productively produce a charge injection blocking layer and a photoconductive layer having characteristics that can achieve the object of the present invention, it is necessary to set the charge injection blocking layer made of polycrystalline silicon as the discharge power condition. When forming, usually 100 to 50
00W, preferably 200 to 2000W, and when forming a photoconductive layer made of A-5i(H,X)1 usually 10 to 100OW, preferably 20 to 500W.
It is desirable to do so. Regarding the gas pressure in the deposition chamber, when forming a charge injection blocking layer made of polycrystalline silicon,
10-3 to 0.8 Torr, preferably 5XlO-3 to 0
It is desirable to set it to about 15 Torr.
本発明に於いては、電荷注入阻止層及び光導電層を作成
する為の支持体温度、放電パワーの望ましい数値範囲と
して前記した範囲が挙げられるが、これらの層作成ファ
クターは、通常は独立的に別々に決められるものではな
く、所望の特性を有する電荷注入阻止層層及び光導電層
を形成すべく、相互的且つ有機的関連性に基づいて、各
層作成ファクターの最適値を決めるのが望ましい。In the present invention, the above-mentioned ranges are mentioned as desirable numerical ranges for the support temperature and discharge power for creating the charge injection blocking layer and the photoconductive layer, but these layer creation factors are usually independent. In order to form a charge injection blocking layer and a photoconductive layer having desired characteristics, it is preferable to determine the optimum value of each layer forming factor based on mutual and organic relationships. .
本発明に於いて、形成される光導電層中に含有される炭
素、酸素又は窒素の量は、形成される電子写真用光受容
部材の特性を大きく左右するものであって、所望に応じ
て適宜決定されねばならないが、好ましくは0.000
5〜30原子%、より好適には0.001〜20原子%
、最適にはO,OO2〜15原子%とされるのが望まし
い。In the present invention, the amount of carbon, oxygen, or nitrogen contained in the photoconductive layer to be formed greatly influences the characteristics of the electrophotographic light-receiving member to be formed, and can be adjusted as desired. It must be determined appropriately, but preferably 0.000
5 to 30 at%, more preferably 0.001 to 20 at%
, the optimum content is preferably 2 to 15 atomic % of O, OO.
光導電層の層厚は、所望のスペクトル特性を有する光の
照射によって発生されるフォトキャリアが効率良く輸送
される様に所望に従って適宜法められ、通常は1〜10
0p、好適には2〜50μとされるのが望ましい。The layer thickness of the photoconductive layer is determined as desired so that photocarriers generated by irradiation with light having desired spectral characteristics are efficiently transported, and is usually 1 to 10 mm thick.
It is desirable that the thickness be 0p, preferably 2 to 50μ.
1皿1
光導電層上に形成される表面層は、自由表面を有し、主
に耐湿性、連続繰返し使用特性、電気的耐圧性使用環境
特性、耐久性に於いて本発明の目的を達成する為に設け
られる。1 Plate 1 The surface layer formed on the photoconductive layer has a free surface and achieves the objectives of the present invention mainly in terms of moisture resistance, continuous repeated use characteristics, electrical pressure resistance, use environment characteristics, and durability. established for the purpose of
そして本発明の光受容部材にあっては表面層と光導電層
との界面に於いて両層の光学的バンドギャップが整合す
るか又は表面層と光導電層との界面に於ける入射光の反
射を実質的に防止しうる程度には少なくとも整合する様
に構成される事が極めて重要なポイントであると同時に
これが水素含有率との相関に於いて極めて特異な好適条
件を現出せしめる事も又、重要なポイントである。更に
、本発明に於いては、表面層104の表面に近い領域、
少なくとも最表面に於いて含有水素量を所定の濃度に設
定する事が必要である。以上の諸条件を満たす上で、表
面層内の構成要素の分布状態は、厳密な条件制御のちと
に決定づけられる必要がある。In the light-receiving member of the present invention, the optical band gaps of both layers match at the interface between the surface layer and the photoconductive layer, or the amount of incident light at the interface between the surface layer and the photoconductive layer matches. It is extremely important to have a configuration that matches at least to the extent that reflection can be substantially prevented, and at the same time, this also creates very unique favorable conditions in relation to the hydrogen content. Also, this is an important point. Furthermore, in the present invention, a region near the surface of the surface layer 104,
It is necessary to set the hydrogen content to a predetermined concentration at least on the outermost surface. In order to satisfy the above conditions, the distribution state of the constituent elements within the surface layer needs to be determined after strict condition control.
更に、上述の条件に加えて、表面層の自由表面側の端部
に於いては1表面層の下に設けられている光導電層に到
達する入射光の光量が充分に確保出来る檎にする為1表
面層の自由表面側の端部に於いては、表面層の有する光
学的バンドギャップEoptを充分に大きくする様に構
成される事も考慮すべき点である。そして1表面層と光
導電層との界面に於いて光学的バンドギャップEopt
が整合する様に構成するとともに1表面層の自由表面側
の端部に於いて光学的バンドギャップEoptを充分に
大きくする様に構成する場合、表面層の有する光学的バ
ンドキャップが、表面層の層厚方向に於いて連続的に変
化する領域を少なくとも含む様に構成される。Furthermore, in addition to the above-mentioned conditions, at the end of the surface layer on the free surface side, a sufficient amount of incident light can be ensured to reach the photoconductive layer provided under one surface layer. Therefore, it is also important to consider that the end of the first surface layer on the free surface side is constructed so that the optical band gap Eopt of the surface layer is sufficiently large. At the interface between the first surface layer and the photoconductive layer, the optical band gap Eopt
When the optical band gap Eopt of one surface layer is made sufficiently large at the free surface side end of one surface layer, the optical band gap of the surface layer is equal to that of the surface layer. The layer is configured to include at least a region that changes continuously in the layer thickness direction.
表面層の光学的バンドギャップEoptの層厚方向に於
ける値を前述のごとく制御するには、代表的には光学的
バンドギャップの主な調整原子であるところの炭素原子
(C)の表面層に含有せしめる蚤を制御する事によって
行なえば良く、又、バンドギャップの変化に応じた形で
表面層のその他の特性を最適条件にマツチングさせる働
きを持つ水素に関しても特定の分布状態になる様に含有
量を制御する。In order to control the value of the optical bandgap Eopt of the surface layer in the layer thickness direction as described above, it is necessary to control the surface layer of carbon atoms (C), which are typically the main adjusting atoms of the optical bandgap. This can be done by controlling the fleas contained in the hydrogen, and also by controlling the flea content in the hydrogen, which has the function of matching other properties of the surface layer to optimal conditions in response to changes in the band gap. Control content.
以下、表面層に於ける炭素原子及び水素原子の分布状態
の典型的な例のいくつかを第19図乃至第22図によっ
て説明するが、本発明はこれらの例によって限定される
ものではない。Hereinafter, some typical examples of the distribution state of carbon atoms and hydrogen atoms in the surface layer will be explained with reference to FIGS. 19 to 22, but the present invention is not limited to these examples.
第19図乃至第22図に於いて横軸は原子(C,Si)
及゛び原子(H)の分布濃度C1縦軸は表面層の層厚t
を示しており、図中、t4は感光層と表面層との界面位
置、tFは自由表面位置、実線は原子(C)の分布75
度の変化、破線はシリコン原子(Si)の分布濃度の変
化又、一点鎖線は水素原子(H)の分布濃度の変化をそ
れぞれ示している。In Figures 19 to 22, the horizontal axis represents atoms (C, Si).
and the distribution concentration C1 of atoms (H), the vertical axis is the layer thickness t of the surface layer.
In the figure, t4 is the interface position between the photosensitive layer and the surface layer, tF is the free surface position, and the solid line is the distribution of atoms (C) 75
The broken line shows the change in the distribution concentration of silicon atoms (Si), and the dashed line shows the change in the distribution concentration of hydrogen atoms (H).
第19図は、表面層中に含有せしめる原子(C)とシリ
コン原子(Si)及び水素原子(H)の層厚方向の分布
状態の第一の典型例を示している。鎖側では、界面位置
tTより位置t7まで、原子(C)の分布濃度Cがゼロ
より濃度C26となるまで一次関数的に増加し、一方、
シリコン原子の分布濃度は、濃度C27から濃度C28
となるまで一次関数的に減少し、又水素原子の分布濃度
はC29からC30となるまで一次関数的に増加し、位
置t7から位置tFにいたるまでは、原子(C)及びシ
リコン原子及び水素原子の分布濃度Cは各々濃度C25
及び濃度C2B及び濃度C30の一定値を保つ、尚ここ
では、説明の便宜上、各成分とも分布状態の変曲点をt
Tとしたが、互いにずれても実質上何ら支障ない。FIG. 19 shows a first typical example of the distribution state of atoms (C), silicon atoms (Si), and hydrogen atoms (H) contained in the surface layer in the layer thickness direction. On the chain side, from the interface position tT to the position t7, the distribution concentration C of atoms (C) increases linearly from zero until the concentration C26, and on the other hand,
The distribution concentration of silicon atoms is from concentration C27 to concentration C28.
The distribution concentration of hydrogen atoms increases linearly from C29 to C30, and from position t7 to position tF, atoms (C), silicon atoms, and hydrogen atoms The distribution concentration C of is each concentration C25
For convenience of explanation, the inflection point of the distribution state of each component is defined as t.
T, but there is virtually no problem even if they deviate from each other.
第20図に示す例では、位置tTから位置1)−まで、
炭素原子(C)はゼロから濃度C31まで又、シリコン
原子(Si)はC32からc33まで、又、水素原子(
H)はC34がらC35まで、それぞれ−次間数的に変
化させている。この例の場合は表面層全域にわたって成
分が変化する為、成分の不連続に起因する弊害を尚一層
改善する事が可能である。In the example shown in FIG. 20, from position tT to position 1)-,
Carbon atoms (C) range from zero to concentration C31, silicon atoms (Si) range from C32 to c33, and hydrogen atoms (
H) is changed numerically from C34 to C35. In this example, since the components change over the entire surface layer, it is possible to further improve the adverse effects caused by discontinuity of the components.
又例えば第21図乃至第22図の様に成分の変化率が刻
々と変わるようなパターン及び第19図から第22図で
述べた典型例の組合せも可能で、所望のロタ特性又は製
造装置上の条件等に応じて適宜選択され得る。更に界面
に於けるバンドギャップの整合性は前述した通り実質的
に充分な値であれば良くその意味に於いてtTに於ける
炭素量は0とは限らずある有限の値を有しても良く、又
分布領域に於いて成分の変化が一定区間停滞する事もこ
の観点から許され得る。For example, it is also possible to combine patterns in which the rate of change of the components changes moment by moment as shown in FIGS. 21 and 22, and typical examples shown in FIGS. 19 to 22, depending on the desired rotor characteristics or manufacturing equipment. It can be selected as appropriate depending on the conditions and the like. Furthermore, as mentioned above, the consistency of the bandgap at the interface only needs to be a substantially sufficient value. From this point of view, it is also acceptable for the changes in the components to stagnate over a certain period in the distribution region.
表面層の形成はグロー放電法、マイクロ波放電法、スパ
ッタリング法、イオンインプランテーション法、イオン
ブレーティング法、エレクトロンビーム法等によって成
される。これ等の製造法は、製造条件、設備資本投下の
負荷程度、製造規模、作製される電子写真用光受容部材
に所望される特性等の要因によって適宜選択されて採用
されるが、所望する特性を有する電子写真用光受容部材
を製造する為の作成条件の制御が比較的容易である。シ
リコン原子と共に炭素原子及び水素原子を作製する表面
層中に導入するが容易に行える等の利点からグロー放電
法或はスパッタリング法が好適に採用される。The surface layer is formed by a glow discharge method, a microwave discharge method, a sputtering method, an ion implantation method, an ion blating method, an electron beam method, or the like. These manufacturing methods are selected and adopted as appropriate depending on factors such as manufacturing conditions, the level of equipment capital investment, manufacturing scale, and the desired characteristics of the electrophotographic light-receiving member to be manufactured. It is relatively easy to control the production conditions for producing an electrophotographic light-receiving member having the following properties. The glow discharge method or the sputtering method is preferably employed because of the advantages of easy introduction of carbon atoms and hydrogen atoms together with silicon atoms into the surface layer to be formed.
更に本発明に於いては、グロー放電法とスパッタリング
法とを同一装置系内で併用して表面層を形成しても良い
。Furthermore, in the present invention, a glow discharge method and a sputtering method may be used together in the same apparatus system to form the surface layer.
グロー放電法によって表面層を形成するには、A−(S
iXCt−x)y:Ht y形成用の原料ガスを、必
要に応じて稀釈ガスと所定量の混合比で混合して、支持
体の設置しである真空堆積用の堆積室に導入し、導入さ
れたガスをグロー放電を生起させる事でガスプラズマ化
して前記支持体101上に既に形成されである光導電層
103丘にA (SixCt−x)y:Hl−yを堆
積させれば良い。分布領域の形成は、変化させる成分、
例えば炭素原子含有カス及びシリコン原子含有ガス及び
水素原子等を夫々スタート時流量から所望の分布パター
ンになる様に□設定された特定のシーケンスに従って増
減させれば容易になされる。To form the surface layer by the glow discharge method, A-(S
iXCt-x)y:Hty The raw material gas for forming y is mixed with a dilution gas at a predetermined mixing ratio as necessary, and introduced into a deposition chamber for vacuum deposition where a support is installed. The resulting gas may be turned into gas plasma by causing a glow discharge, and A (SixCt-x)y:Hl-y may be deposited on the photoconductive layer 103 already formed on the support 101. The formation of the distribution area is caused by the changing components,
For example, this can be easily done by increasing or decreasing the amount of carbon atom-containing scum, silicon atom-containing gas, hydrogen atoms, etc., respectively, from the starting flow rate according to a specific sequence set so as to obtain a desired distribution pattern.
本発明に於てA −(S ixC1−X) y :H1
−’Y形成用の原料ガスとしては、Si。In the present invention, A −(S ixC1-X) y :H1
-'Si is used as a raw material gas for forming Y.
C,Hの中の少なくとも1つを構成原子とするカス状の
物質又はガス化し得る物質をガス化したものの中の大概
のものが使用され得る。Most of the dregs-like substances containing at least one of C and H as a constituent atom or gasified substances that can be gasified can be used.
Si、C,Hの中の1つとしてSiを構成原子とする原
料ガスを使用する場合は、例えばStを構成原子とする
原料ガスと、Cを構成原子とする原料ガスと、Hを構成
原子とする原料ガスとを所望の混合比で混合して使用す
るか、又は、Stを構成原子とする原料ガスと、C及び
Hを構成原子とする原料ガスとを、これも又所望の混合
比で混合するか、或いはSiを構成原子とする原料カス
と、Si、C及びHの3つを構成原子とする原料カスと
を混合して使用する事が出来る。When using a raw material gas containing Si as one of Si, C, and H, for example, a raw material gas containing St as a constituent atom, a raw material gas containing C as a constituent atom, and a raw material gas containing H as a constituent atom. Alternatively, a source gas containing St as a constituent atom and a source gas containing C and H as constituent atoms may be mixed at a desired mixing ratio. Alternatively, raw material scraps containing Si as a constituent atom and raw material scraps containing Si, C, and H as constituent atoms can be mixed and used.
又、別には、SiとHとを構成原子とする原料ガスにC
を構成原子とする原料ガスを混合して使用しても良い。Separately, C is added to the raw material gas containing Si and H as constituent atoms.
A mixture of raw material gases having constituent atoms may be used.
又、分布領域に於いては、上記混合率を所定のシーケン
スに従って変化させればよい。Further, in the distribution region, the mixing ratio may be changed according to a predetermined sequence.
本発明に於いて、表面層104形成用の原料ガスとして
有効に使用されるのは、SiとHとを構成原子とするS
iH4,Si2H6゜S i 3H3、S 14HH)
等フシラン(Silane)類等の水素化硅素ガス、C
とHとを構成原子とする、例えば炭素数1〜4の飽和炭
化水素、炭素a2〜4のエチレン系炭化水素、炭素数2
〜3のアセチレン系炭化水素等が挙げられる。In the present invention, S containing Si and H as constituent atoms is effectively used as the raw material gas for forming the surface layer 104.
iH4, Si2H6゜S i 3H3, S 14HH)
Silicon hydride gas such as Silane, C
and H as constituent atoms, for example, saturated hydrocarbons having 1 to 4 carbon atoms, ethylene hydrocarbons having 2 to 4 carbon atoms, and 2 carbon atoms.
-3 acetylenic hydrocarbons and the like.
具体的には、飽和炭化水素としては メタン(CH乙)
、エタン(c2Hら)、プロパン(cqHR)、n−
ブタ7 (n−CaHlo) 。Specifically, as a saturated hydrocarbon, methane (CH)
, ethane (c2H et al.), propane (cqHR), n-
Pig 7 (n-CaHlo).
ペンタン(C5H12)、エチレン系炭化水素としては
、エチレン(C2H4)、7’ロピレン(C3H6)、
ブテン−1(C4HEl)、ブテン−2(C4H8)、
インブチレン(C4HB )。Pentane (C5H12), ethylene hydrocarbons include ethylene (C2H4), 7'lopylene (C3H6),
Butene-1 (C4HEl), Butene-2 (C4H8),
Inbutylene (C4HB).
ペンテン(CsHlo)、アセチレン系炭化水Xとして
は、アセチレン(C2H2)、メチルアセチレン(C3
Ha)、ブチン(C4H,e)等が挙げられる。Pentene (CsHlo), acetylene hydrocarbon X includes acetylene (C2H2), methylacetylene (C3
Ha), butyne (C4H,e), and the like.
StとCとHとを構成原子とする原料ガスとしては、S
i (CH3)a、Si (C2H5)a等のケイ化
アルキルを挙げる事が出来る。これ等の原墾ガスの他、
H導入用の原料ガスとしては勿論H2も有効なものとし
て使用される。As a raw material gas containing St, C, and H as constituent atoms, S
Examples include alkyl silicides such as i (CH3)a and Si (C2H5)a. In addition to these raw gases,
Of course, H2 is also effectively used as the raw material gas for introducing H.
スパッタリング法によって表面層を形成するには、単結
晶又は多結晶のSiウェーハー又はCウェーハー又はS
iとCが混合されて含有されているウェーハーをターゲ
ットとして、これ等を種々のガス雰囲気中でスパッタリ
ングする事によって行えば良い。To form the surface layer by the sputtering method, a single crystal or polycrystalline Si wafer, a C wafer, or an S
This can be carried out by using a wafer containing a mixture of i and C as a target and sputtering them in various gas atmospheres.
例えば、Siウェーハーをターゲット−として使用すれ
ば、CとHを導入する為の原料ガスを、必要に応じて稀
釈ガスで稀釈して、スパッタ用の堆積室中に導入し、こ
れ等のガスのガスプラズマを形成して前記Siウェーハ
ーをスパッタリングすれば良い。この場合の分布領域は
例えばCを含有する原料ガス濃度を一定のシーケンスに
従って変化させればよい。For example, if a Si wafer is used as a target, the raw material gases for introducing C and H are diluted with diluent gas as necessary and introduced into the deposition chamber for sputtering. The Si wafer may be sputtered by forming gas plasma. The distribution region in this case may be determined by, for example, changing the concentration of the raw material gas containing C according to a certain sequence.
又、別には、SiとCとは別々のターゲットとして、又
はSiとCの混合した一枚のターゲットを使用する事に
よって、少なくとも水素原子を含有するガス雰囲気中で
スパッタリングする事によって成される。この場合の分
布領域はC又はSiの少なくともどちらか一方を含有す
るカスを併用し、これらガス濃度を一定のシーケンスに
従って変化させる必要がある。Alternatively, sputtering may be performed in a gas atmosphere containing at least hydrogen atoms, using separate targets for Si and C, or a single target containing a mixture of Si and C. In this case, the distribution region requires the use of gas containing at least one of C or Si, and the concentrations of these gases must be changed according to a certain sequence.
C又はH導入用の原料ガスとしては、先述したグロー放
電の例で示した原料ガスが、スパッタリングの場合にも
有効なガスとして使用され得る。As the raw material gas for introducing C or H, the raw material gas shown in the glow discharge example described above can be used as an effective gas also in the case of sputtering.
未発明に於いて、表面層104をグロー放電法又はスパ
ッタリング法で形成する際に使用される稀釈カスとして
は、所謂、稀ガス、例えばHe 、Ne 、Ar等を好
適なものとして挙げる事が出来る。In the present invention, so-called rare gases such as He, Ne, Ar, etc. can be cited as suitable dilution residues used when forming the surface layer 104 by a glow discharge method or a sputtering method. .
本発明に於ける表面層104は、その要求される特性が
所望通りに与えられる様に注意深く形成される。The surface layer 104 in the present invention is carefully formed to provide the required properties as desired.
則ち、Si、C及びHを構成原子とする物質はその作成
条件によって構造的には結晶からアモルファスまでの形
態を取り、電気物性的番こは導電性から半導体性、絶縁
性までの間の性質を、又光導電的性質から非光導電的性
質までの間の性質を各々示すので、本発明に於いては、
目的に応じた所望の特性を有するA−5txC1−Xが
形成される様に、所望に従ってその作成条件の選択が厳
密に成される。In other words, substances whose constituent atoms are Si, C, and H can have structural forms ranging from crystalline to amorphous depending on the conditions of their creation, and their electrical properties range from conductive to semiconductive to insulating. In the present invention, since each exhibits properties ranging from photoconductive properties to non-photoconductive properties,
In order to form A-5txC1-X having the desired characteristics according to the purpose, the conditions for production are strictly selected according to the desired purpose.
例えば、表面層104を耐圧性の向上を主な目的として
設けるには、A −(S ixc 1−X)y:Hl−
Yは使用環境に於いて電気絶縁性的挙動の顕著な非晶質
材料として作成される。For example, in order to provide the surface layer 104 with the main purpose of improving pressure resistance, A - (S ixc 1-X)y:Hl-
Y is made as an amorphous material with pronounced electrically insulating behavior in the environment of use.
又、連続繰返し使用特性や使用環境特性の向上を主たる
目的として表面層が設けられる場合には、上記の電気絶
縁性の度合はある程度緩和され、照射される光に対しで
ある程度の感度を有する非晶質材料としてA−3iXC
t−xが作成される。In addition, when a surface layer is provided with the main purpose of improving the characteristics of continuous repeated use or the characteristics of the usage environment, the above-mentioned degree of electrical insulation is relaxed to some extent, and a non-woven material with a certain degree of sensitivity to the irradiated light is provided. A-3iXC as a crystalline material
t-x is created.
光導電層の表面にA −(S ixCL−x) yHl
−Yから成る表面層を形成する際、層形成中の支持体温
度は、形成される層の構造及び特性を左右する重要な因
子であって、本発明に於いては、目的とする特性を有す
るA−(SiXC1−x)yHt−yが所望通りに作成
され得る様に層作成時の支持体温度が厳密に制御される
のが望ましい。A-(SixCL-x)yHl on the surface of the photoconductive layer
- When forming a surface layer consisting of Y, the temperature of the support during layer formation is an important factor that influences the structure and properties of the formed layer. It is desirable that the temperature of the support during layer formation be strictly controlled so that A-(SiXC1-x)yHt-y having the following properties can be formed as desired.
本発明に於ける目的が効果的に達成される為の表面層を
形成する際の支持体温度としては表面層の形成法に併せ
て適宜最適範囲が選択されて、表面層の形成が実行され
るが、通常の場合50 ”0〜350℃、好適には10
0℃〜300°Cとされるのが望ましいものである。表
面層の形成には、層を構成する原子の組成比の微妙な制
御や層厚の制御が他の方法に較べて比較的容易である事
などの為に、グロー放電法やスパッタリング法の採用が
有利であるが、これ等の層形成法で表面層を形成する場
合には、前記の支持体温度と同様に層形成の際の放電パ
ワー、ガス圧が作成されるA −(S iXc t−x
) y :Hl−’/の特性を左右する重要な因子の1
つである。In order to effectively achieve the purpose of the present invention, the optimal range of the support temperature when forming the surface layer is selected as appropriate in accordance with the method of forming the surface layer, and the formation of the surface layer is carried out. However, in normal cases, the temperature is 50" to 350°C, preferably 10
It is desirable that the temperature be 0°C to 300°C. Glow discharge and sputtering methods are used to form the surface layer, as it is relatively easy to finely control the composition ratio of the atoms that make up the layer and control the layer thickness compared to other methods. However, when forming the surface layer by these layer forming methods, the discharge power and gas pressure during layer formation are adjusted in the same way as the support temperature described above. -x
) y: One of the important factors that influences the characteristics of Hl-'/
It is one.
本発明に於ける目的が達成される為の特性を有するA−
(SiXC1−x)y:Ht−yが生産性良く効果的に
作成される為の放電パワー条件としては、通常10〜1
000W、好適には20〜500Wとされるのが望まし
い。堆積室内のガス圧は通常0.01〜lTo r r
、好適には0.1〜0.5Torr程度とされるのが望
ましい。A- having the characteristics for achieving the object of the present invention
(SiXC1-x)y: The discharge power conditions for effectively creating Ht-y with good productivity are usually 10 to 1
000W, preferably 20 to 500W. The gas pressure inside the deposition chamber is usually 0.01 to 1 Torr.
, preferably about 0.1 to 0.5 Torr.
本発明に於いては、表面層を作成する為の支持体温度、
放電パワーの望ましい数値範囲として前記した範囲の値
が挙げられるが、これ等の層作成ファクターは、独立的
に別々に決められるものではなく、所望特性のA−Si
xC1−Xから成る表面層が形成される様に相互的有機
的関連性に基づいて、各層形成ファクターの最適値が決
められるのが望ましい。In the present invention, the support temperature for creating the surface layer,
The values in the above-mentioned range are listed as the desirable numerical range of the discharge power, but these layer creation factors cannot be determined independently and separately, and the A-Si with desired characteristics
It is desirable that the optimum value of each layer forming factor be determined based on mutual organic relationship so that a surface layer consisting of xC1-X is formed.
本発明の電子写真用光受容部材に於ける表面層に含有さ
れる炭素原子及び水素原子の量は、表面層の作製条件と
同様、未発明の目的を達成する所望の特性が得られる表
面層が形成される重要な因子である。The amounts of carbon atoms and hydrogen atoms contained in the surface layer of the electrophotographic light-receiving member of the present invention are the same as the production conditions of the surface layer, so that the surface layer can obtain the desired characteristics to achieve the uninvented object. is an important factor in the formation of
本発明に於ける表面層に含有される炭素原子の量は、分
布領域に於いてはシリコン原子と炭素原子の総量に対し
て通常は0〜90原子%、好ましくはO〜85原子%原
子溝にはO〜80原子%の範囲内で変化させるのが望ま
しく、一定領域に於いては通常はlXl0−3〜90原
子%、好ましくは1〜90原子%、最適には10〜80
原子%とされるのが望ましいものである。水素原子の含
有量としては、分布領域に於いては構成原子のffi量
に対して、1〜70原子%の範囲内で一定もしくは変化
させるのが望ましく又、一定領域もしくは少なくとも最
表面に於いては通常は41〜70原子%、好適には45
〜60原子%とされるのが望ましい。The amount of carbon atoms contained in the surface layer in the present invention is usually 0 to 90 at%, preferably 0 to 85 at%, based on the total amount of silicon atoms and carbon atoms in the distribution region. It is desirable to change the range of O to 80 at%, and in a certain region, usually lXl0-3 to 90 at%, preferably 1 to 90 at%, optimally 10 to 80 at%.
It is preferable to express it in atomic percent. The content of hydrogen atoms is desirably constant or varied within the range of 1 to 70 atomic % with respect to the ffi amount of the constituent atoms in the distribution region, and in a certain region or at least on the outermost surface. is usually 41 to 70 atom%, preferably 45
It is desirable that the content be 60 atomic %.
上記した様な量範囲及び前記分布状態更には前記作製条
件のもとに作成された表面層を有する光受容部材は実際
面に於いて従来にない格段に優れたものとして充分適用
され得るものである。以下2,3の例によりその作用を
説明する。A light-receiving member having a surface layer prepared under the above-mentioned amount range, the above-mentioned distribution state, and the above-mentioned manufacturing conditions can be sufficiently applied as a material that is far superior to anything previously available in practice. be. The effect will be explained below using a few examples.
まず、バンドギャップの整合性の面について説明すると
、例えば、従来の様な表面層と光導1ff、層との間に
明確な光学的界面が存在する場合には、該界面での入射
光の反射が生じるがこれと自由表面での反射が干渉し合
うことにより光導電層への入射光量が多少なりとも左右
される現象がみられる。殊に光源として可干渉性の光例
えばレーザー光などを用いた場合にはこの傾向が顕著で
ある。一方例えばブレードクリーコンク法を用いた複写
機の場合では、長期の使用により表面層か多かれ少なか
れ摩耗するのが社けられないが、この摩耗になる表面層
の膜厚変化は前記干渉状態に変化を及ぼす。即ち、摩耗
する事によって光導電層への入射光量が多少なりとも左
右される現象がみられるという事になる。本発明に於け
るバンドギャップの整合性の制御は、一つは前記界面で
の反射を成分の連続性の面から最小にするという効果を
奏するという一面をもち、又別にはバンドキャップを変
化させている事により光の吸収性それ自体に連続性を持
たせるという2重の好ましい作用を生じる。従って既に
述べた好ましい電子写真特性の中でも特に長期使用の際
の特性の維持に関し抜群の効果を示すというのがこの場
合の特筆すべき作用であるといえる。First, to explain the aspect of band gap consistency, for example, when there is a clear optical interface between the surface layer and the light guide 1ff layer as in the conventional case, the reflection of the incident light at the interface However, due to interference between this and reflection on the free surface, a phenomenon is observed in which the amount of light incident on the photoconductive layer is influenced to some extent. This tendency is particularly noticeable when coherent light such as laser light is used as a light source. On the other hand, for example, in the case of a copying machine that uses the blade clicon method, it is inevitable that the surface layer will wear out more or less due to long-term use, but changes in the film thickness of the surface layer that cause this wear will lead to the above-mentioned interference state. effect. In other words, there is a phenomenon in which the amount of light incident on the photoconductive layer is influenced to some extent by wear. Controlling bandgap consistency in the present invention has one aspect of minimizing reflection at the interface from the viewpoint of component continuity, and another aspect of controlling the bandgap consistency. This produces a two-fold favorable effect of giving continuity to the light absorption property itself. Therefore, it can be said that a noteworthy effect in this case is that, among the above-mentioned preferable electrophotographic properties, it exhibits an outstanding effect in maintaining the properties during long-term use.
次に表面層中での水素の役割について述へる。Next, we will discuss the role of hydrogen in the surface layer.
表面層内に存在する欠陥(主にシリコン原子や炭素原子
のダングリングボンド)は電子写真用光受容部材として
の特性に悪影響を及ぼすことが知られ、例えば自由表面
からの電荷の注入による帯電特性の劣化、使用環境、例
えば高い湿度のもとて表面構造が変化する事による帯電
特性の変動、更にコロナ帯電時や光照射時に光導電層よ
り表面層に電荷が注入し、前記表面層内の欠陥に電荷が
トラップされる事による繰り返し使用時の残像現象等が
あげられる。Defects existing in the surface layer (mainly dangling bonds of silicon atoms and carbon atoms) are known to have an adverse effect on the properties of light-receiving materials for electrophotography, such as charging properties due to charge injection from the free surface. deterioration of the photoconductive layer, fluctuations in charging characteristics due to changes in the surface structure due to the use environment, such as high humidity, and charge injection into the surface layer from the photoconductive layer during corona charging or light irradiation. Examples include an afterimage phenomenon during repeated use due to charges being trapped in defects.
面乍ら、表面層中の水素含有量を41原子%以上に制御
する事で表面層中の欠陥が大巾に減少し、その結果、前
記の問題点は全て解消し、殊に従来のに較べて電気的特
性面及び高速連続使用性に於いて飛躍的な向上を計る事
が出来る。However, by controlling the hydrogen content in the surface layer to 41 atomic percent or more, the defects in the surface layer are greatly reduced, and as a result, all of the above problems are solved, especially when compared to the conventional one. In comparison, dramatic improvements can be made in terms of electrical characteristics and high-speed continuous usability.
一方、前記表面層中の水素含有量が71原子%以上にな
ると表面層の硬度が低下する為に、繰り返し使用に耐え
られない、従って、表面層中の水素含有量を前記の範囲
内に制御する事が格段に優れた所望の電子写真特性を得
る上で非常に重要な因子の1つである。表面層中の水素
含有量はH2ガスの流量、支持体温度。On the other hand, if the hydrogen content in the surface layer exceeds 71 atomic percent, the hardness of the surface layer decreases and it cannot withstand repeated use. Therefore, the hydrogen content in the surface layer is controlled within the above range. This is one of the very important factors in obtaining significantly superior desired electrophotographic properties. The hydrogen content in the surface layer depends on the flow rate of H2 gas and the temperature of the support.
放電パワー、ガス圧等によって制御し得る。It can be controlled by discharge power, gas pressure, etc.
又、前記バンドギャップの整合性と水素含有状態との間
にも特異な相関性があり、特にバンドギャップの代表的
な変化成分である炭素原子(C)の分布領域に於いては
、水素の含有状態は、その領域での構造を最適化する様
に又はそれに、ダングリングボンドを最少にする様にそ
の含有量が設定されてあり、且つ前記表面層中での水素
の役割で述べた作用をするのに必要な値になる様に、い
いかえれば少なくとも自由表面側に向って水素量が増加
する様な傾向にするのに最も無理のない形に設定されて
いる。Furthermore, there is a unique correlation between the consistency of the bandgap and the hydrogen content state, especially in the distribution region of carbon atoms (C), which is a typical change component of the bandgap. The content is set so as to optimize the structure in that region or to minimize dangling bonds, and the content is set so as to optimize the structure in that region, and to satisfy the effect described in the role of hydrogen in the surface layer. In other words, it is set in the most reasonable form so that the amount of hydrogen tends to increase at least toward the free surface side.
従って、本発明に於ける表面層の水素含有状態は/ヘン
ドギャップの整合性の作用と、水素含有率それ自体によ
る作用が共に最大限に発揮される様に両者間のマツチン
グをとるというもう一つの作用も有しているという事が
できる。Therefore, in the present invention, the hydrogen content state of the surface layer is determined by matching the effect of the consistency of the /hend gap and the effect of the hydrogen content itself so that they are both maximized. It can be said that it also has two effects.
表面層中にはハロゲン原子を含有させてもよい。表面層
中にハロゲン原子を含有させる方法として、例えば原料
ガスにSiF4,5iFH3,5t2F6,5iF3S
iH3,Si0文4等のハロゲン化シリコンガスを混合
させるか又は/及びCF4.CC交4.CH3CF3等
のハロゲン化炭素ガスを混合させてグロー放電分解法又
はスパッタリング法で形成すればよい。The surface layer may contain halogen atoms. As a method for containing halogen atoms in the surface layer, for example, SiF4,5iFH3,5t2F6,5iF3S is added to the raw material gas.
Mix halogenated silicon gas such as iH3, Si04, etc. or/and CF4. CC intersection 4. It may be formed by a glow discharge decomposition method or a sputtering method by mixing a halogenated carbon gas such as CH3CF3.
本発明に於ける層厚の数値範囲は、本発明の目的を効果
的に達成する為の重要な因子の1つである。The numerical range of the layer thickness in the present invention is one of the important factors for effectively achieving the object of the present invention.
本発明に於ける表面層の層厚の数値範囲は、本発明の目
的を効果的に達成する様に所期の目的に応じて適宜所望
に従って決められる。The numerical range of the layer thickness of the surface layer in the present invention is appropriately determined as desired depending on the intended purpose so as to effectively achieve the purpose of the present invention.
又、表面層の層厚は、光導電層の層厚との関係に於いて
も、各々の層領域に要求される特性に応じた宥機的な関
連性の下に所望に従って適宜決定される必要がある。更
に加え得るに、生産性や量産性を加味した経済性の点に
於いても考慮されるのが望ましい。In addition, the thickness of the surface layer is appropriately determined as desired in relation to the thickness of the photoconductive layer, with consideration given to the characteristics required for each layer region. There is a need. In addition, it is desirable to take into consideration economic efficiency, which takes into account productivity and mass production.
本発明に於ける表面層の層厚としては、通常0.003
〜30#、好適には0.004〜2og、最適には0.
005〜10弘とされるのが望ましいものである。The thickness of the surface layer in the present invention is usually 0.003
~30#, preferably 0.004-2og, optimally 0.
It is desirable that the range is between 0.005 and 10 hiro.
本発明に於ける電子写真用光受容部材の光受容層の層厚
としては、目的に適合させて所望に従って適宜決定され
る。The layer thickness of the light-receiving layer of the electrophotographic light-receiving member in the present invention is suitably determined as desired in accordance with the purpose.
本発明に於いては、光受容層の層厚としては、光受容層
を構成する光導電層と表面層に付与される特性が各々有
効に活されて本発明の目的が効果的に達成される様に光
導電層と表面層との層厚関係に於いて適宜所望に従って
決められるものであり、好ましくは表面層の層厚に対し
て光導電層の層厚が数百〜数千倍以上となる様にされる
のが好ましいものである。In the present invention, the layer thickness of the photoreceptive layer is such that the characteristics imparted to the photoconductive layer and the surface layer constituting the photoreceptor layer are effectively utilized to effectively achieve the object of the present invention. The layer thickness relationship between the photoconductive layer and the surface layer is determined as desired so that the thickness of the photoconductive layer is preferably several hundred to several thousand times the thickness of the surface layer. It is preferable to do so.
具体的な値としては、通常3〜100.、好適には5〜
70ル、最適には5〜50牌の範囲とされるのが望まし
い。A specific value is usually 3 to 100. , preferably 5~
70 tiles, preferably in the range of 5 to 50 tiles.
次に本発明の光導電部材の製造方法の概略について説明
する。Next, the outline of the method for manufacturing a photoconductive member of the present invention will be explained.
第18図に電子写真用光受容部材の製造装置の一例を示
す。FIG. 18 shows an example of an apparatus for manufacturing a light-receiving member for electrophotography.
図中の1102〜1106のガスポンベには、本発明の
夫々の層を形成するための原料ガスが密封されており、
その−例としてたとえば1102は、5iH4(純度9
9.999%)ボンベ、1103はB2で稀釈されたB
2H6ガス(純度99.999%、以下B 2 H6/
Heと略す。)、1104はB2ガス(純度99.9
9999%)ボンベ、1105はNoガス(純度99.
999%)ボンベ、t 106はCH4ガス(純度99
.99%)ボンベである。In the gas cylinders 1102 to 1106 in the figure, raw material gas for forming each layer of the present invention is sealed.
As an example, 1102 is 5iH4 (purity 9
9.999%) cylinder, 1103 is B diluted with B2
2H6 gas (purity 99.999%, hereinafter referred to as B 2 H6/
It is abbreviated as He. ), 1104 is B2 gas (purity 99.9
9999%) cylinder, 1105 is No gas (purity 99.
999%) cylinder, t106 is CH4 gas (purity 99%)
.. 99%) cylinder.
これらのガスを反応室1101に流入させるにはガスポ
ンベ1102〜1106のバルブ1122〜1126.
リークバルブ1135が閉じられていることを確認し、
又、流入バルブ1112〜1116、流出バルブ111
7〜1121、補助バルブ1132.1133が開かれ
ていることを確認して先づメインバルブ1134を開い
て反応室1101、ガス配管内を排気する。次に真空計
1136の読みが約5X10−Gtorrになった時点
で補助バルブ1132.1133、流出バルブ1117
〜1121を閉じる。In order to flow these gases into the reaction chamber 1101, valves 1122 to 1126 of gas pumps 1102 to 1106.
Make sure the leak valve 1135 is closed,
In addition, inflow valves 1112 to 1116 and outflow valve 111
After confirming that 7 to 1121 and auxiliary valves 1132 and 1133 are open, first open the main valve 1134 to exhaust the reaction chamber 1101 and gas piping. Next, when the vacuum gauge 1136 reads approximately 5X10-Gtorr, the auxiliary valves 1132, 1133 and the outflow valve 1117
~Close 1121.
次にシリンダー状基体1137上に第1図に示す層構成
の電子写真用光受容部材を形成する場合の一例をあげる
と、ガスボンベ1102よりSiH4ガス、ガスポンベ
1104よりB2ガスを、ガスポンベ1103よりB2
H6/B2ガスを、ガスポンベ1105よりNoガスを
夫々バルブ1122〜1125を開いて出口圧ゲージ1
127〜1130の圧を夫々1Kg/ c m’に調整
し、流入バルブ1112〜1115を夫々徐々に開けて
、マスフロコントローラ1107〜1110内に夫々流
入させる。引き続いて流出バルブ1117〜1120補
Uバルブ1132を徐々に開いて夫々のガスを反応室1
101に流入させる。このときのSiH4ガス流量とB
2H6/B2ガス流量、Noガス流量との比が所望の値
になるように流出バルブ1117〜1120を調整し、
又、反応室内の圧力が所望の値になるように真空計11
36の読みを見ながらメインバルブ1134の開口を調
整する。そして基体シリンダー1137の温度が加熱ヒ
ーター1138により5,0〜350°Cの範囲の温度
に設定されていることを確認された後、電源1140を
所望の電力に設定して反応室1101内にグロー放電を
生起させ、同時にあらかじめ設計された変化率曲線に従
ってB2H6/H2ガス又は/及びNoガスの流量を手
動あるいは外部駆動モータ等の方法によってバルブ11
18又は/及び1120を漸次変化させる操作を行なっ
て形成される層中に含有される硼素原子又は/及び酸素
原子の層厚方向の分布濃度を制御する。Next, to give an example of forming an electrophotographic light-receiving member having the layer structure shown in FIG.
Open the valves 1122 to 1125 to supply H6/B2 gas and No gas from the gas pump 1105, respectively, and check the outlet pressure gauge 1.
The pressures at 127 to 1130 are adjusted to 1 Kg/cm', respectively, and the inflow valves 1112 to 1115 are gradually opened to allow the inflow into the mass flow controllers 1107 to 1110, respectively. Subsequently, the outflow valves 1117 to 1120 and the auxiliary U valve 1132 are gradually opened to supply each gas to the reaction chamber 1.
101. At this time, the SiH4 gas flow rate and B
Adjust the outflow valves 1117 to 1120 so that the ratio of the 2H6/B2 gas flow rate and the No gas flow rate becomes the desired value,
In addition, the vacuum gauge 11 is adjusted so that the pressure inside the reaction chamber reaches the desired value.
Adjust the opening of the main valve 1134 while checking the reading of 36. After confirming that the temperature of the base cylinder 1137 is set to a temperature in the range of 5,0 to 350°C by the heating heater 1138, the power source 1140 is set to the desired power and the glow inside the reaction chamber 1101 is set. At the same time, the flow rate of B2H6/H2 gas or/and No gas is controlled by the valve 11 manually or by an externally driven motor, etc. according to a pre-designed rate of change curve.
18 and/or 1120 is performed to control the distribution concentration in the layer thickness direction of boron atoms and/or oxygen atoms contained in the formed layer.
上記の様にして、所望層厚に硼素原子と酸素原子の含有
された電荷注入阻止層が形成された時点で、流出バルブ
1120及び1118を閉じ、反応室1101内へのB
2H6/Heガス及びNoガスの流入を遮断し同時に流
出バルブ1117及び1119を調整して5tH4ガス
及びH2ガスの流量を制御し、引続き層形成を行なうこ
とによって、酸素原子及び硼素原子を含有しない光導電
層を電荷注入阻止層上に所望の層厚に形成する。As described above, when the charge injection blocking layer containing boron atoms and oxygen atoms is formed to a desired thickness, the outflow valves 1120 and 1118 are closed, and the B inflow into the reaction chamber 1101 is completed.
By blocking the inflow of 2H6/He gas and No gas and simultaneously adjusting the outflow valves 1117 and 1119 to control the flow rates of 5tH4 gas and H2 gas and subsequently forming a layer, light containing no oxygen atoms and boron atoms is produced. A conductive layer is formed on the charge injection blocking layer to a desired thickness.
又、酸素原子又は/及び硼素原子を含有する光導電層を
形成する場合には流出バルブ1118又は/及び112
0を閉じるかわりに所望の流量に調整すればよい。In addition, when forming a photoconductive layer containing oxygen atoms and/or boron atoms, the outflow valve 1118 or/and 112
Instead of closing 0, the flow rate can be adjusted to the desired flow rate.
電荷注入阻止層及び光導電層中にハロゲン原子を含有さ
せる場合には上記のガスにたとえばSiF4ガスを、更
に付加して反応室1101内に送り込む。When halogen atoms are contained in the charge injection blocking layer and the photoconductive layer, SiF4 gas, for example, is further added to the above gas and fed into the reaction chamber 1101.
各層を形成する際ガス種の選択によっては。Depending on the choice of gas species when forming each layer.
層形成速度を更に高めることが出来る。例えばSiH4
ガスのかわりにSi2H6ガスを用いて層形成を行なえ
ば、数倍高めることが出来、生産性が向上する。The layer formation speed can be further increased. For example, SiH4
If layer formation is performed using Si2H6 gas instead of gas, the productivity can be increased several times, improving productivity.
上記の様にして作成された光導′F!!層上に表面層を
形成するには、光導電層の形成の際と同様なバルブ操作
によって、例えばS iH4ガス。Light guide 'F' created as above! ! To form a surface layer on the layer, e.g. SiH4 gas is applied by the same valve operation as during the formation of the photoconductive layer.
CH4ガス、及び必要に応じてH2等の稀釈ガスを、所
望の流量比で反応室1101中に流し、所望の条件に従
って、グロー放電を生起させることによって成される。This is accomplished by flowing CH4 gas and, if necessary, diluting gas such as H2 into the reaction chamber 1101 at a desired flow rate ratio to generate glow discharge according to desired conditions.
表面層中に含有される炭素原子の量は例えば、SiH4
ガスと、CH4ガスの反応室1101内に導入される流
量比を所望に従って任意に変えることによって、所望に
応じて制御することが出来る。The amount of carbon atoms contained in the surface layer is, for example, SiH4
It can be controlled as desired by arbitrarily changing the flow rate ratio of gas and CH4 gas introduced into the reaction chamber 1101 as desired.
又、表面層中に含有される水素原子の量は例えば、H2
ガスの反応室1101内に導入される流量を所望に従っ
て任意に変えることによって、所望に応じて制御するこ
とが出来る。Further, the amount of hydrogen atoms contained in the surface layer is, for example, H2
It can be controlled as desired by arbitrarily changing the flow rate of gas introduced into the reaction chamber 1101 as desired.
夫々の層を形成する際に必要なガス以外の流出バルブは
全て閉じることは言うまでもなく、又、夫々の層を形成
する際、前層の形成に使用したガスが反応室1101内
、流出バルブ1117〜1121から反応室1101内
に至る配管内に残留することを避けるために、流出バル
ブ1117〜1121を閉じ補助バルブ1132を開い
てメインバルブ1134を全[して系内を一旦高真空に
排気する操作を必要に応じて行う。Needless to say, all outflow valves other than those for gases required when forming each layer are closed, and when forming each layer, the gas used to form the previous layer is inside the reaction chamber 1101 and the outflow valve 1117 is closed. In order to avoid remaining in the piping leading from ~1121 into the reaction chamber 1101, the outflow valves 1117~1121 are closed, the auxiliary valve 1132 is opened, and the main valve 1134 is fully closed, and the system is once evacuated to high vacuum. Perform operations as necessary.
又、層形成を行っている間は層形成の均一化を図るため
基体シリンダー1137は、モータ1139によって所
望される速度で一定に回転させる。Further, during layer formation, the base cylinder 1137 is constantly rotated at a desired speed by a motor 1139 in order to ensure uniform layer formation.
〈実施例1〉
第18図の製造装置を用い、第1表の作製条件に従って
鏡面加工を施したアルミシリンダー上に電子写真用光受
容部材を形成した。又、第18図と同型の装置を用い、
同一仕様のシリンダー上に電荷注入阻止層のみを形成さ
せたサンプルを別個に用意した。光受容部材(以後ドラ
ムと表現)の方は、電子写真装置にセットして、種々の
条件のもとに、初期の帯電能、残留電位、ゴースト等の
電子写真特性をチェックし、又、150万故実機耐久後
の帯電能低下、感度劣化、画像欠陥の増加を調べた。更
に、35°C185%の高温φ高湿雰囲気中でのドラム
の画像流れについても評価した。そして、評価の終了し
たドラムは1画像部の上・中・下に相当する部分を切り
出し、SIMSを利用して表面層中に含まれる水素の定
量分析に供した。<Example 1> Using the manufacturing apparatus shown in FIG. 18, an electrophotographic light-receiving member was formed on a mirror-finished aluminum cylinder according to the manufacturing conditions shown in Table 1. Also, using the same type of device as in Figure 18,
A separate sample was prepared in which only a charge injection blocking layer was formed on a cylinder with the same specifications. The light-receiving member (hereinafter referred to as a drum) is set in an electrophotographic device and checked for electrophotographic characteristics such as initial chargeability, residual potential, and ghost under various conditions. We investigated the decrease in charging ability, deterioration in sensitivity, and increase in image defects after testing with a real machine. Furthermore, image deletion on the drum was also evaluated in a high temperature φ high humidity atmosphere of 35° C. 185%. Then, from the drum for which evaluation was completed, parts corresponding to the upper, middle, and lower parts of one image area were cut out and subjected to quantitative analysis of hydrogen contained in the surface layer using SIMS.
又、電荷注入阻止層のみのサンプルの方は、同要領で切
り出し後、X線回折装置にて回折角27°付近の5t(
111)に対応する回折パターンを求め、結晶性の有無
を調べた。上記の評価結果及び表面層中の水素含有量の
最大値、又、電荷注入阻止層の結晶性の有無を総合して
第2表に示す。第2表に見られる様に、特に初期帯電能
、画像流れ、残留電位、ゴースト、画像欠陥の増加、及
び母線方向光感度ムラ、感度劣化の多項目にわたり、著
しい優位性が認められた。In addition, for samples with only a charge injection blocking layer, after cutting out in the same manner, the sample was cut out using an X-ray diffraction device at a diffraction angle of 5t (around 27°).
A diffraction pattern corresponding to 111) was obtained, and the presence or absence of crystallinity was investigated. The above evaluation results, the maximum hydrogen content in the surface layer, and the presence or absence of crystallinity of the charge injection blocking layer are summarized in Table 2. As shown in Table 2, remarkable superiority was observed in many areas, including initial charging ability, image deletion, residual potential, ghost, increase in image defects, unevenness in photosensitivity in the generatrix direction, and deterioration in sensitivity.
く比較例1〉
作製条件を第3表のように変えた以外は、実施例1と同
様の装置、方法でドラム及び分析用サンプルを用意し、
同様の評価・分析に供した。その結果を第4表に示す。Comparative Example 1> A drum and a sample for analysis were prepared using the same equipment and method as in Example 1, except that the production conditions were changed as shown in Table 3.
It was subjected to similar evaluation and analysis. The results are shown in Table 4.
第4表にみられる様に、実施例1と比べて諸々の項目に
ついて劣ることが認められた。As shown in Table 4, it was found that the sample was inferior to Example 1 in various items.
〈実施例2〉
第18図の製造装置を用い、第5表の作製条件に従って
鏡面加工を施したアルミシリンダー上に電子写真用光受
容部材を形成した。又、第18図と同型の装置を用い、
同一仕様のシリンダー上に電荷注入阻止層のみを形成さ
せたサンプルを別個に用意した。光受容部材(以後ドラ
ムと表現)の方は、電子写真装置にセットして、種々の
条件のもとに、初期の帯電能、残留電位、ゴースト等の
電子写真特性をチェックし、また、150万枚実機酎久
後の帯電能低下、感度劣化、画像欠陥の増加を調べた。<Example 2> Using the manufacturing apparatus shown in FIG. 18, an electrophotographic light-receiving member was formed on a mirror-finished aluminum cylinder according to the manufacturing conditions shown in Table 5. Also, using the same type of device as in Figure 18,
A separate sample was prepared in which only a charge injection blocking layer was formed on a cylinder with the same specifications. The light-receiving member (hereinafter referred to as a drum) was set in an electrophotographic device and checked for electrophotographic characteristics such as initial chargeability, residual potential, and ghost under various conditions. We investigated the decrease in charging ability, deterioration in sensitivity, and increase in image defects after printing on a 10,000-sheet machine.
さらに、35°C285%の高温、高温雰囲気中でのド
ラムの画像流れについても評価した。そして、評価の終
了したドラムは、画像部の上・中・下に相当する部分を
切り出してサンプルとし、SIMSを利用して表面層中
に含まれる水素の定量分析に供し、又、表面層中におけ
るシリコン原子(Si)、炭素原子(C)、水素原子(
H)の層厚方向での成分プロファイルを調べた。さらに
、電荷注入阻止層における層厚方向でのホウ素(B)、
酸素(0)の成分プロファイルを調べた。又、電荷注入
阻止層のみのサンプルの方は、同要領で切り出し後、X
線回折装置にて回折角27°付近の5t(111)に対
応する回折パターンを求め、結晶性の有無を調べた。上
記の評価結果及び表面層中の水素含有量の最大値、又、
電荷注入阻止層の結晶性の有無を総合して第6表に示す
。さらに、上記表面層中の当該元素の成分プロファイル
を第図に、上記電荷注入阻止層中の当該元素の成分プロ
ファイルを第 図にそれぞれ示す。Furthermore, image blurring on the drum was also evaluated at a high temperature of 35° C. 285% in a high temperature atmosphere. After the evaluation has been completed, the drum is cut out from the top, middle, and bottom of the image area as a sample, and is subjected to quantitative analysis of hydrogen contained in the surface layer using SIMS. Silicon atom (Si), carbon atom (C), hydrogen atom (
The component profile of H) in the layer thickness direction was investigated. Furthermore, boron (B) in the layer thickness direction in the charge injection blocking layer,
The component profile of oxygen (0) was investigated. In addition, for samples with only a charge injection blocking layer, after cutting out in the same manner,
A diffraction pattern corresponding to 5t(111) at a diffraction angle of around 27° was determined using a line diffraction device, and the presence or absence of crystallinity was examined. The above evaluation results and the maximum value of hydrogen content in the surface layer, and
Table 6 summarizes the presence or absence of crystallinity of the charge injection blocking layer. Furthermore, the component profile of the element in the surface layer is shown in FIG. 1, and the component profile of the element in the charge injection blocking layer is shown in FIG.
第6表に見られる様に、特に、初期帯電能、残留電位、
ゴースト、画像流れ、及び画像欠陥、画像欠陥の増加、
さらに母線方向光感度ムラ、感度劣化の多様な項目につ
いて著しい優位性が認められた。As seen in Table 6, in particular, the initial chargeability, residual potential,
ghosting, image deletion, and image defects; increase in image defects;
Furthermore, remarkable superiority was recognized in various items such as light sensitivity unevenness in the generatrix direction and sensitivity deterioration.
〈実施例3(比較例2)〉
表面層の作製条件を第7表に示す数種の条件に変え、そ
れ以外は実施例1と同様の条件にて複数のドラムを形成
し、同様の評価に供した。<Example 3 (Comparative Example 2)> The production conditions of the surface layer were changed to several conditions shown in Table 7, and a plurality of drums were formed under the same conditions as in Example 1, and the same evaluation was performed. Served.
そして、評価の終了したドラムを、実施例1と同様の方
法で切り出してサンプルとし、同様の分析にかけた0以
上の結果を第8表に示す。Then, the drums for which evaluation had been completed were cut out as samples in the same manner as in Example 1, and subjected to similar analysis, and the results of 0 or more are shown in Table 8.
〈実施例4〉
光導電層の作製条件を第9表に示す数種の条件に変え、
それ以外は実施例1と同様の条件にて複数のドラムを用
意した。これらのドラムを実施例1と同様の評価にかけ
た結果、第10表に示すような結果を得た。<Example 4> The conditions for producing the photoconductive layer were changed to several conditions shown in Table 9,
A plurality of drums were prepared under the same conditions as in Example 1 except for the above. These drums were subjected to the same evaluation as in Example 1, and the results shown in Table 10 were obtained.
〈実施例5〉
電荷注入阻止層の作製条件を第11表に示す数種の条件
に変え、それ以外は実施例1と同様の条件にて複数のド
ラム及び電荷注入阻止層のみを形成させたサンプルを用
意した。これらのドラム及び分析用サンプルを実施例1
と同様の評価・分析にかけた結果、第12表に示すよう
な結果を得た:
〈実施例6〉
電荷注入阻止層の作製条件を第13表に示す数種の条件
に変え、それ以外は実施例1と同様の条件にて複数のド
ラム及び電荷注入阻止層のみを形成させたサンプルを用
意した。これらのドラム及び分析用サンプルを実施例1
と同様の評価にかけた結果、第14表に示すような結果
を得た。<Example 5> Only the plurality of drums and the charge injection blocking layer were formed under the same conditions as in Example 1, except that the conditions for producing the charge injection blocking layer were changed to several conditions shown in Table 11. I prepared a sample. These drums and samples for analysis were prepared in Example 1.
As a result of evaluation and analysis similar to that shown in Table 12, results were obtained as shown in Table 12: <Example 6> The preparation conditions of the charge injection blocking layer were changed to several conditions shown in Table 13, and the other conditions were A sample was prepared in which only a plurality of drums and a charge injection blocking layer were formed under the same conditions as in Example 1. These drums and samples for analysis were prepared in Example 1.
As a result of the same evaluation as above, the results shown in Table 14 were obtained.
〈実施例7〉
基体シリンダー上に第15表に示す数種の作製条件のも
とで、密着層を形成し、さらにその上に実施例1と同様
の作製条件のもとで光受容部材を形成した。これと別に
密着層のみを形成させたサンプルを用意した。光受容部
材の方は、実施例1と同様の評価にかけ、又、サンプル
の方は一部を切り出し、X線回折装置にて回折角27°
付近の5i(ill)に対応する回折パターンを求め結
晶性の有無を調べた。以上の結果を第16表に示す。<Example 7> An adhesive layer was formed on the base cylinder under several manufacturing conditions shown in Table 15, and a light-receiving member was further formed on the adhesive layer under the same manufacturing conditions as in Example 1. Formed. Separately, a sample was prepared in which only an adhesive layer was formed. The light-receiving member was subjected to the same evaluation as in Example 1, and a part of the sample was cut out and measured at a diffraction angle of 27° using an X-ray diffraction device.
A diffraction pattern corresponding to nearby 5i(ill) was obtained to examine the presence or absence of crystallinity. The above results are shown in Table 16.
〈実施例8〉
基体シリンダー上に第17表に示す数種の作製条件のも
とで、密着層を形成し、さらにその上に実施例1と同様
の作製条件のもとで光受容部材を形成した。これと別に
密着層のみを形成させたサンプルを用意した。光受容部
材の方は、実施例1と同様の評価にかけ、又、サンプル
の方は一部を切り出し、X線回折装置にて回折角27°
付近の5i(111)に対応する回折パターンを求め結
晶性の有無を調べただ。以上の結果を第18表に示す。<Example 8> An adhesive layer was formed on the base cylinder under several manufacturing conditions shown in Table 17, and a light-receiving member was further formed on the adhesive layer under the same manufacturing conditions as in Example 1. Formed. Separately, a sample was prepared in which only an adhesive layer was formed. The light-receiving member was subjected to the same evaluation as in Example 1, and a part of the sample was cut out and measured at a diffraction angle of 27° using an X-ray diffraction device.
A diffraction pattern corresponding to nearby 5i(111) was obtained to examine the presence or absence of crystallinity. The above results are shown in Table 18.
〈実施例9〉
鏡面加工を施したシリンダーを更に様々な角度を持つ剣
バイトによる旋盤加工に供し、第19図のような断面形
状で第19表の様な種々の断面パターンを持つシリンダ
ーを複数本用意した。該シリンダーを順次、第18図の
製造装置にセットし、実施例1と同様の作製条件のもと
にドラム作製に供した。作製されたドラムは780nm
の波長を有する半導体レーザーを光源としたデジタル露
光機能の電子写真装置により、種々の評価を行ない、第
20表の結果を得た。<Example 9> The mirror-finished cylinder was further subjected to lathe processing using a sword bit with various angles, and a plurality of cylinders with cross-sectional shapes as shown in Fig. 19 and various cross-sectional patterns as shown in Table 19 were obtained. I have prepared a book. The cylinders were sequentially set in the manufacturing apparatus shown in FIG. 18 and subjected to drum manufacturing under the same manufacturing conditions as in Example 1. The produced drum has a wavelength of 780 nm.
Various evaluations were carried out using an electrophotographic device with a digital exposure function using a semiconductor laser having a wavelength of 1 as a light source, and the results shown in Table 20 were obtained.
〈実施例10>
鏡面加工を施したシリンダーの表面を、弓1続き多数の
ベアリング剛球の落下のもと番こさらしてシリンダー表
面に無数の打痕を生ぜしめる、所謂表面ディンプル化処
理を施し、第20図のような断面形状で、第21表の様
な種々の断面パターンを持つシリンダーを複数本用意し
た。<Example 10> The surface of the mirror-finished cylinder was subjected to a so-called surface dimple treatment, in which the surface of the cylinder was exposed to the fall of a large number of hard bearing balls in a row, resulting in countless dents on the cylinder surface. A plurality of cylinders having a cross-sectional shape as shown in FIG. 20 and various cross-sectional patterns as shown in Table 21 were prepared.
該シリンダーを順次第18図の製造装置に七゛ン卜し、
実施例1と同様の作製条件の六番こド゛ラム作製に供し
た。作製されたドラムt±、780nmの波長を有する
半導体レーザーを光源としたデジタル露光機能の電子写
真装置側こより種々の評価を行ない、第22表の結果を
得た。The cylinders are sequentially placed into the manufacturing apparatus shown in Fig. 18, and
A No. 6 drum was manufactured under the same manufacturing conditions as in Example 1. Various evaluations were performed on the manufactured drum t± from an electrophotographic apparatus with a digital exposure function using a semiconductor laser having a wavelength of 780 nm as a light source, and the results shown in Table 22 were obtained.
本発明の光受容部材は、A−5i(H,X)で構成され
た光導電層を有する′電子写真用光受容部材の層構成を
前述のごとき特定の層構成としたことにより、A−3i
(H,X)で構成された従来の電子写真用光受容部材に
おける諸問題を全て解決することができ、特に極めて優
れた耐湿性、連続繰返し使用特性、電気的耐圧性、使用
環境特性および耐久性等を有するものである。又、残留
電位の影響が全くなく、その電気的特性が安定しており
、それを用いて得られる画像は、濃度が高く、ハーフト
ーンが鮮明に出る等、すぐれた極めて秀でたものとなる
。The light receiving member of the present invention has a photoconductive layer composed of A-5i(H,X) and has a specific layer structure as described above. 3i
It can solve all the problems with conventional electrophotographic light-receiving members composed of (H, It is something that has gender, etc. In addition, there is no influence of residual potential and its electrical characteristics are stable, and the images obtained using it are extremely excellent, with high density and clear halftones. .
特に本発明における電子写真用光受容部材において、電
荷注入阻止層を設けたことにより、比較的広範囲の波長
の光に感度を有する、比較的低抵抗な光導電層を用いる
ことが可能になった。しかも前述のごとき特定の層構成
としたことにより光照射及び熱的に励起された多数の電
荷が光導電層だけでなく電荷注入阻止層や表面層中にお
いても充分に速く掃き出されるため。In particular, in the electrophotographic light-receiving member of the present invention, by providing a charge injection blocking layer, it has become possible to use a relatively low-resistance photoconductive layer that is sensitive to light in a relatively wide range of wavelengths. . Furthermore, by adopting the specific layer structure as described above, a large number of charges that are irradiated with light and thermally excited are swept out sufficiently quickly not only in the photoconductive layer but also in the charge injection blocking layer and the surface layer.
いかなる露光条件のもとでも残留電位やコーストか全く
生じない、且つM−像度の高い高品質な画像を安定して
繰り返し得ることかできる。It is possible to stably and repeatedly obtain high-quality images with high M-image resolution and no residual potential or coasting under any exposure conditions.
第1−1図及び第1−2図は夫々、lt全発明電子写真
用光受容部材の層構成を説明する為の模式的層構成図、
第2図乃至第6図は各々、電荷注入阻止層を構成する第
■族原子又は第V族原子の分布状態を説明するだめの説
明図、第7図乃至第13図は各々電荷注入阻止層を構成
する酸素原子及び窒素原子の分布状態を説明するための
説明図、第14図乃至第16図は支持体表面の凹凸形状
及び該凹凸形状を作製する方法を説明するための模式図
、第17図は本発明の電子写真用光受容部材の別の例を
示す模式的層構成図、第18図は本発明の電子写真用光
受容部材の光受容層を形成するための装置の一例でグロ
ー放電法による製造装置の模式的説明図である。第19
図乃至第22図は表面層に含有される炭素原子及び水素
原子の分布の説明図、第23図、第24図は支持体の形
状を示す模式図、第25図及び第26図は、層中の各分
子の分布を示す分布図である。
第1図について
100・・・光受容層、 lot・・・支持体、10
2・・・電荷注入阻止層、
103・・・光導電層、 104・・・表面層、10
5・・・自由表面。
第15.16図について
1501.1601・・・支持体、
150.2.1602・・・支持体表面、1503.1
603・・・剛体真珠、
1504.1604・・・球状痕跡窪み。
第17図について
1700・・・光受容層、
170工・・・支持体、
1702・・・電荷注入阻止層、
1703・・・光導電層、
1704・・・表面層、
1705・・・自由表面、
第18図について、
1101・・・反応室、
1102〜1106・・・ガスボンベ、1107〜11
11・・・マスフロコントローラ、1112〜1116
・・・流入バルブ、1117〜1121・・・流出バル
ブ、1122〜1126・・・バルブ、
1127〜1131・・・圧力調整器、1132.11
33・・・補助バルブ、1134・・・メインバルブ、
1135・・・リークバルブ、
1136・・・真空計、
1137・・・基体シリンダー、
1138・・・加熱ヒーター、
1139・・・モーター、
1140・・・高周波電源。1-1 and 1-2 are schematic layer configuration diagrams for explaining the layer configuration of the all-invention electrophotographic light-receiving member, respectively;
FIGS. 2 to 6 are explanatory diagrams for explaining the distribution state of group II atoms or group V atoms constituting the charge injection blocking layer, and FIGS. 7 to 13 are respectively illustrations of the charge injection blocking layer. 14 to 16 are schematic diagrams for explaining the uneven shape of the surface of the support and the method for producing the uneven shape. FIG. 17 is a schematic layer configuration diagram showing another example of the electrophotographic light-receiving member of the present invention, and FIG. 18 is an example of an apparatus for forming the light-receiving layer of the electrophotographic light-receiving member of the present invention. FIG. 2 is a schematic explanatory diagram of a manufacturing apparatus using a glow discharge method. 19th
Figures 22 to 22 are explanatory diagrams of the distribution of carbon atoms and hydrogen atoms contained in the surface layer, Figures 23 and 24 are schematic diagrams showing the shape of the support, and Figures 25 and 26 are illustrations of the distribution of carbon atoms and hydrogen atoms contained in the surface layer. FIG. 2 is a distribution diagram showing the distribution of each molecule inside. Regarding FIG. 1 100...Photoreceptive layer, lot...Support, 10
2... Charge injection blocking layer, 103... Photoconductive layer, 104... Surface layer, 10
5...Free surface. Regarding Figure 15.16 1501.1601...Support, 150.2.1602...Support surface, 1503.1
603...Rigid pearl, 1504.1604...Spherical trace depression. Regarding FIG. 17, 1700... Photoreceptive layer, 170... Support, 1702... Charge injection blocking layer, 1703... Photoconductive layer, 1704... Surface layer, 1705... Free surface , Regarding FIG. 18, 1101...Reaction chamber, 1102-1106... Gas cylinder, 1107-11
11... Mass flow controller, 1112 to 1116
... Inflow valve, 1117-1121 ... Outflow valve, 1122-1126 ... Valve, 1127-1131 ... Pressure regulator, 1132.11
33... Auxiliary valve, 1134... Main valve, 1135... Leak valve, 1136... Vacuum gauge, 1137... Base cylinder, 1138... Heater, 1139... Motor, 1140... ...High frequency power supply.
Claims (12)
る多結晶材料で構成され、伝導性を制御する物質を含有
する電荷注入阻止層と、シリコン原子を母体とし、少な
くとも水素原子、およびハロゲン原子の少なくともいず
れか一方を構成要素として含む非晶質材料で構成され、
光導電性を示す光導電層と、シリコン原子と炭素原子と
水素原子とを構成要素として含む非晶質材料で構成され
ている表面層と、を有する光受容層とを有し、前記表面
層が、少なくとも前記光導電層との界面において光学的
バンドギャップの整合性が得られるような形に構成要素
の層厚方向の濃度分布を変化させてあり、かつ水素原子
の該表面層内最大濃度が41〜70原子%であるこ特徴
とする電子写真用光受容部材。(1) a support; on the support, a charge injection blocking layer made of a polycrystalline material containing silicon atoms as a matrix and containing a substance that controls conductivity; and an amorphous material containing at least one of halogen atoms as a constituent element,
a photoreceptive layer having a photoconductive layer exhibiting photoconductivity and a surface layer made of an amorphous material containing silicon atoms, carbon atoms, and hydrogen atoms as constituent elements; However, the concentration distribution of the constituent elements in the layer thickness direction is changed in such a manner that optical band gap consistency is obtained at least at the interface with the photoconductive layer, and the maximum concentration of hydrogen atoms in the surface layer is changed. A light-receiving member for electrophotography, characterized in that the amount of is 41 to 70 atom %.
支持体側に内在していることを特徴とする特許請求の範
囲第1項に記載の電子写真用光受容部材。(2) The electrophotographic light-receiving member according to claim 1, wherein the distribution region of the constituent elements of the surface layer is present on the support side of the surface layer.
全域にわたっていることを特徴とする特許請求の範囲第
1項に記載の電子写真用光受容部材。(3) The light-receiving member for electrophotography according to claim 1, wherein the distribution region of the constituent elements of the surface layer covers the entire area of the surface layer.
方向に向って多く分布する分布状態で炭素原子を含有し
ている特許請求の範囲第2項及び第3項に記載の電子写
真用光受容部材。(4) The electrophotographic light according to Claims 2 and 3, wherein the surface layer contains carbon atoms in a distribution state in which carbon atoms are distributed more toward the surface side in the distribution region of the constituent elements. Receptive member.
方向に向って多く分布する分布状態で水素原子を含有し
ている特許請求の範囲第1項及び第4項に記載の電子写
真用光受容部材。(5) The electrophotographic light according to Claims 1 and 4, wherein the surface layer contains hydrogen atoms in a distribution state in which more hydrogen atoms are distributed toward the surface side in the distribution region of the constituent elements. Receptive member.
請求の範囲第1項に記載の電子写真用光受容部材。(6) The electrophotographic light-receiving member according to claim 1, wherein the surface layer contains halogen atoms.
の中の少なくとも1種類を含有する特許請求の範囲第1
項乃至第6項に記載の電子写真用光受容部材。(7) Claim 1, wherein the photoconductive layer contains at least one of carbon atoms, oxygen atoms, and nitrogen atoms.
The electrophotographic light-receiving member according to items 6 to 6.
含有している特許請求の範囲第1項に記載の電子写真用
光受容部材。(8) The electrophotographic light-receiving member according to claim 1, wherein the charge injection blocking layer contains oxygen atoms and/or nitrogen atoms.
態で伝導性を制御する物質を含有している特許請求の範
囲第1項及び第8項に記載の電子写真用光受容部材。(9) The electrophotographic light-receiving member according to Claims 1 and 8, wherein the charge injection blocking layer contains a substance that controls conductivity in a distribution state in which the charge injection blocking layer is mostly distributed on the support side.
状態で酸素原子又は/及び窒素原子を含有している特許
請求の範囲第8項乃至第9項に記載の電子写真用光受容
部材。(10) The electrophotographic light-receiving member according to any one of claims 8 to 9, wherein the charge injection blocking layer contains oxygen atoms and/or nitrogen atoms in a distribution state in which many of them are distributed on the support side.
び窒素原子が支持体側に内在している特許請求の範囲第
8項乃至第10項に記載の電子写真用光受容部材。(11) The electrophotographic light-receiving member according to any one of claims 8 to 10, wherein the oxygen atoms and/or nitrogen atoms contained in the charge injection blocking layer are present on the support side.
子を母体とし、酸素原子と窒素原子の少なくとも一方を
含有する非晶質材料又は多結晶材料で構成された密着層
を有することを特徴とする特許請求の範囲第1項乃至第
11項に記載の電子写真用光受容部材。(12) An adhesion layer made of an amorphous material or a polycrystalline material containing at least one of an oxygen atom and a nitrogen atom and having silicon atoms as a matrix is provided between the support and the charge injection blocking layer. A light-receiving member for electrophotography according to claims 1 to 11.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61026465A JPH0713745B2 (en) | 1986-02-07 | 1986-02-07 | Photoreceptive member for electrophotography |
ES87300999T ES2022322B3 (en) | 1986-02-05 | 1987-02-04 | LIGHT RECEIVING MEMBER FOR ELECTROPHOTOGRAPHY |
EP87300999A EP0241111B1 (en) | 1986-02-05 | 1987-02-04 | Light-receiving member for electrophotography |
US07/011,507 US4786574A (en) | 1986-02-05 | 1987-02-05 | Layered amorphous silicon containing photoconductive element having surface layer with specified optical band gap |
CN87102296A CN1012593B (en) | 1986-02-05 | 1987-02-05 | Light receiving member for electro-photography |
AU68532/87A AU605133B2 (en) | 1986-02-05 | 1987-02-05 | Light-receiving member for electrophotography |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61026465A JPH0713745B2 (en) | 1986-02-07 | 1986-02-07 | Photoreceptive member for electrophotography |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62183469A true JPS62183469A (en) | 1987-08-11 |
JPH0713745B2 JPH0713745B2 (en) | 1995-02-15 |
Family
ID=12194266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61026465A Expired - Fee Related JPH0713745B2 (en) | 1986-02-05 | 1986-02-07 | Photoreceptive member for electrophotography |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0713745B2 (en) |
-
1986
- 1986-02-07 JP JP61026465A patent/JPH0713745B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0713745B2 (en) | 1995-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62168161A (en) | Light receiving member for electrophotography | |
JPH0719068B2 (en) | Photoreceptive member for electrophotography | |
JPS62183469A (en) | Electrophotographic light receiving member | |
JPS62192751A (en) | Light receptive member for electrophotography | |
JPS62205361A (en) | Light receiving member for electrophotography and its production | |
JPS62223762A (en) | Light receiving member for electrophotography and its production | |
JPS62189474A (en) | Light receiving member for electrophotography | |
JPS62195671A (en) | Photoreceptive member for electrophotography | |
JPS62182751A (en) | Electrophotographic light receptive member | |
JPS62204264A (en) | Light receiving member for electrophotography | |
JPS62183468A (en) | Electrophotographic light receiving member | |
JPS62203162A (en) | Light receiving member for electrophotography | |
JPS62187357A (en) | Light receiving material for electrophotography | |
JPS62198869A (en) | Light receiving member for electrophotography | |
JPS62187858A (en) | Light receiving material for electrophotography | |
JPS62195672A (en) | Photoreceptive member for electrophotography | |
JPS62186269A (en) | Light receptive member for electrophotography | |
JPS632068A (en) | Electrophotographic photoreceptive member | |
JPS63201663A (en) | Electrophotographic photoreceptive member | |
JPS62195673A (en) | Photoreceptive member for electrophotography | |
JPS63118162A (en) | Photoreceptive member for electrophotography | |
JPS62258467A (en) | Photoreceptive member having improved image forming function | |
JPS63124053A (en) | Photoreceptive member for electrophotography | |
JPS63204264A (en) | Electrophotographic photoreceptive member | |
JPS62182750A (en) | Electrophotographic light receptive member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |