JPS6218320Y2 - - Google Patents

Info

Publication number
JPS6218320Y2
JPS6218320Y2 JP1981104846U JP10484681U JPS6218320Y2 JP S6218320 Y2 JPS6218320 Y2 JP S6218320Y2 JP 1981104846 U JP1981104846 U JP 1981104846U JP 10484681 U JP10484681 U JP 10484681U JP S6218320 Y2 JPS6218320 Y2 JP S6218320Y2
Authority
JP
Japan
Prior art keywords
water
air
honeycomb core
water tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981104846U
Other languages
Japanese (ja)
Other versions
JPS5810896U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981104846U priority Critical patent/JPS5810896U/en
Publication of JPS5810896U publication Critical patent/JPS5810896U/en
Application granted granted Critical
Publication of JPS6218320Y2 publication Critical patent/JPS6218320Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

【考案の詳細な説明】 この考案は、処理水槽に流入した汚水を微生物
によつて効率よく処理することを目的とした汚水
浄化装置に関するものである。
[Detailed Description of the Invention] This invention relates to a sewage purification device that aims to efficiently treat sewage that has flowed into a treatment water tank using microorganisms.

従来工場排水又は人蓄の下水を微生物処理しよ
うとしてハニカムコアを用いたものが知られてい
るが、公知の装置はハニカムコアを単に微生物床
として使用し、その各セル内に汚水を流動させる
方式、又は連続的に空気を吹込み、気泡と汚水と
を流動させる方式などが知られており、特に後者
は殆ど実験段階であつて、都市下水のような大量
の汚水を処理することについては、未だ決定的良
策はないものとされている。
Conventional devices using honeycomb cores have been known to treat factory wastewater or artificially stored sewage with microorganisms, but the known device uses the honeycomb cores simply as a microbial bed and allows wastewater to flow through each cell of the honeycomb cores. , or a method of continuously blowing air to make bubbles and sewage flow are known, but the latter method in particular is mostly at an experimental stage, and is not suitable for treating large amounts of sewage such as urban sewage. It is said that there is still no definitive good solution.

然るにこの考案は、水槽内へハニカムコアを充
填すると共に、ハニカムコア内へ間欠空気揚水筒
を縦設することによつて、間欠的に補給する空気
と共にハニカムコアのセル内に定常流が生じるの
を防止し、ハニカムコアのセル内の目詰り防止と
効率の向上を図り、かつランニングコストの低減
を図るなど、大量汚水の連続処理にきわめて有効
な装置を提供したのである。
However, in this idea, by filling the honeycomb core into the water tank and installing an intermittent air pump vertically inside the honeycomb core, a steady flow is created in the cells of the honeycomb core along with the intermittent supply of air. By preventing clogging in the cells of the honeycomb core, improving efficiency, and reducing running costs, we have provided an extremely effective device for the continuous treatment of large amounts of wastewater.

即ちこの考案を第1図および第2図の実施例に
ついて説明する。水槽1の中央部に隔壁2を設け
て水槽1a,1bを構成し、該各水槽1a,1b
内へハニカムコア3,3aを夫々充填する。この
場合に、ハニカムコア3,3aの量は、汚水の流
動を円滑にすることと、各水槽内における滞留時
間との関係で異なるが、容積において1/2及至3/5
位が好適である。また水没深さについては揚水圧
力によつても異なるが、ハニカムコアの上面の水
面下20cm〜100cm位とするのが一般的である。
That is, this invention will be explained with reference to the embodiments shown in FIGS. 1 and 2. A partition wall 2 is provided in the center of the aquarium 1 to constitute aquariums 1a and 1b, and each aquarium 1a and 1b
Honeycomb cores 3 and 3a are respectively filled inside. In this case, the amount of honeycomb cores 3, 3a varies depending on smooth flow of wastewater and residence time in each tank, but the volume ranges from 1/2 to 3/5.
The preferred position is Although the submersion depth varies depending on the pumping pressure, it is generally about 20 cm to 100 cm below the water surface of the upper surface of the honeycomb core.

前記ハニカムコア3,3aの中央部には揚水筒
4,4aが夫々貫通縦設され、揚水筒4,4aの
下端部には夫々空気室5,5aが設けられ、各空
気室5,5aには給気管6,6aが連結され、給
気管6,6aは給気本管7に連結されている。給
気本管7は圧縮機(図示していない)の吐出管に
連結してある。図中8は給水管、9は排水管、1
1は隔壁上へ設けた通水溝である。
Water pumping tubes 4, 4a are vertically installed through the central portions of the honeycomb cores 3, 3a, respectively, and air chambers 5, 5a are provided at the lower ends of the water pumping tubes 4, 4a, respectively. The air supply pipes 6 and 6a are connected to each other, and the air supply pipes 6 and 6a are connected to an air supply main pipe 7. The air supply main 7 is connected to a discharge pipe of a compressor (not shown). In the figure, 8 is a water supply pipe, 9 is a drain pipe, 1
1 is a water passage groove provided on the partition wall.

前記実施例において、給水管8から矢示12の
ように処理すべき汚水を供給すると共に、給気本
管7から矢示13のように加圧空気を供給すれ
ば、加圧空気は給気管6,6aを経て第5図に矢
示14のように空気室5,5a内へ供給される。
そこで、空気は空気室5の上部空間に溜り、遂次
水を押し出して水位が下降するが、空気室内の水
位が鎖線15まで下降すると、空気室内の内外室
16,17に溜つた空気は、矢示18,19のよ
うに揚水筒4内を鎖線20のように一団となり、
かつ揚水筒内に摺接して上昇する。前記空気団の
上昇につれて空気室の下方の水および空気室外の
水は矢示21,22のように、直接又は吸入管2
3,23aを経て吸入され、揚水筒4,4aの上
端より、空気と共に矢示24のように放出拡散さ
れる。然して空気室内の空気が全部排出される
と、空気室の内外には水が充満するので、給気管
6,6aにより供給される加圧空気は、再び空気
室に溜り始める。この場合においても、水は吸入
管23より吸入され、揚水筒内を上昇するので、
揚水筒内の水は流速を変えて絶えず流動すること
になる。
In the above embodiment, if wastewater to be treated is supplied from the water supply pipe 8 as shown by the arrow 12, and pressurized air is supplied from the air supply main pipe 7 as shown by the arrow 13, the pressurized air flows through the air supply pipe. 6, 6a, and is supplied into the air chambers 5, 5a as indicated by the arrow 14 in FIG.
Therefore, the air accumulates in the upper space of the air chamber 5 and gradually pushes out the water, causing the water level to fall. However, when the water level in the air chamber falls to the chain line 15, the air accumulated in the inner and outer chambers 16 and 17 of the air chamber becomes As shown by the arrows 18 and 19, the inside of the pumping cylinder 4 becomes a group as shown by the chain line 20,
And it slides into the water pumping cylinder and rises. As the air mass rises, the water below the air chamber and the water outside the air chamber flow directly or through the suction pipe 2, as shown by arrows 21 and 22.
3, 23a, and is emitted and diffused along with air from the upper ends of the water pumps 4, 4a as shown by the arrow 24. When all the air in the air chamber is exhausted, the inside and outside of the air chamber are filled with water, so the pressurized air supplied by the air supply pipes 6, 6a begins to accumulate in the air chamber again. Even in this case, water is sucked in through the suction pipe 23 and rises inside the water pump, so that
The water in the pumping cylinder changes its flow rate and constantly flows.

即ち揚水筒内へ空気が拝出され、揚水筒の下部
で空気が砲弾型(第5図中鎖線)に一団となつて
上昇し始めると、揚水筒内の上昇流速は急激に大
きくなり、空気団が揚水筒端から放出されると、
流速は低減する。例えば第6図図示のように、空
気の放出間隔をt秒とした時に、流速は同図中実
線図示のような連続曲線を画いて変化するが、空
気の放出間隔がt0秒以上になると、各空気団毎に
山型曲線を画き、不連続となる。
In other words, when air is discharged into the pumping tube and the air starts to rise in a bullet shape (dashed line in Figure 5) at the bottom of the pumping tube, the upward flow velocity inside the pumping tube increases rapidly, and the air When the group is released from the end of the pumping tube,
The flow rate is reduced. For example, as shown in Figure 6, when the air release interval is t seconds, the flow velocity changes in a continuous curve as shown by the solid line in the figure, but when the air release interval becomes t0 seconds or more, , a mountain-shaped curve is drawn for each air mass, and it becomes discontinuous.

このようにして不連続になれば、間欠揚水とい
えるけれども、前記のように連続曲線の場合に
は、間欠的に最高流速に達する揚水となる。
If the flow becomes discontinuous in this way, it can be said to be intermittent pumping, but in the case of a continuous curve as described above, the pumping will reach the maximum flow velocity intermittently.

何れにしても、空気の放出は間欠的であり、従
来の散気管による小気泡揚水とは異なる揚水状態
を示す。
In any case, the release of air is intermittent, and the pumping condition is different from that of small bubble pumping using conventional aeration pipes.

エネルギー経済および連続可変速流水を得る為
には、揚水筒内の上昇水が停止しない間隔(第6
図中t秒)で空気を放出するようにした方がよ
い。
In order to obtain energy economy and continuously variable speed water flow, it is necessary to keep the rising water in the pumping cylinder at intervals (6th
It is better to release the air at t seconds in the figure).

従つて、水槽1a,1b内の汚水はハニカムを
介して循環し、ハニカムのセル内壁に付着した微
生物により有効に浄化される。前記における加圧
空気は水の流動エネルギーを与えると共に、酸素
を供給し、好気性菌の繁殖を助長するのである。
Therefore, the waste water in the water tanks 1a, 1b is circulated through the honeycomb and is effectively purified by the microorganisms attached to the inner walls of the cells of the honeycomb. The pressurized air in the above not only provides water flow energy but also supplies oxygen and promotes the growth of aerobic bacteria.

図中25、25aはドレイン口、26はドレイ
ン管である。
In the figure, 25 and 25a are drain ports, and 26 is a drain pipe.

前記実施例においては、各水槽に揚水筒を一本
宛設けたが、第1図中鎖線図示27のように二本
追加し、三本設置することもできる。また汚水は
第1図中矢示12のように水槽1aへ流入し、処
理された後、矢示29のように水槽1bへ移さ
れ、更に処理されて矢示30のように放出される
ので、連続処理が可能である。次に第3図および
第4図に示す実施例は、水槽を1a,1b,1c
と三槽併設すると共に、各槽内へ隔壁31,31
a,31bを介してオーバーフロー槽32,32
a,32bを設け、オーバーフロー槽32と水槽
1bおよびオーバーフロー槽32aと水槽1cと
は夫々連通孔33,33aで連通させてある。前
記の他に揚水筒4,4a,4b、空気室5,5
a,5b、ハニカムコア3,3a,3b、吸入管
23,23a,23b、ドレイン口25、25
a,25bなど第1図の実施例より一組多く設置
されている。従つて処理も三箇所で連続して行わ
れることになり、水槽1内の滞留時間を多くとる
ことができる。
In the above embodiment, each water tank is provided with one water pump, but it is also possible to install two or three water pumps as shown by the chain line 27 in FIG. In addition, the wastewater flows into the water tank 1a as shown by arrow 12 in FIG. Continuous processing is possible. Next, in the embodiment shown in FIGS. 3 and 4, water tanks 1a, 1b, 1c are
In addition to installing three tanks, there are partition walls 31, 31 into each tank.
Overflow tanks 32, 32 via a, 31b
a and 32b are provided, and the overflow tank 32 and the water tank 1b and the overflow tank 32a and the water tank 1c are communicated through communication holes 33 and 33a, respectively. In addition to the above, water pumps 4, 4a, 4b, air chambers 5, 5
a, 5b, honeycomb core 3, 3a, 3b, suction pipe 23, 23a, 23b, drain port 25, 25
A, 25b, etc. are installed one more set than in the embodiment shown in FIG. Therefore, the treatment is performed continuously at three locations, and the residence time in the water tank 1 can be increased.

なお、第3図の実施例はオーバーフロー槽3
2,32a,32bを設けたので、各槽における
上澄水が次槽へ移行することになり、浄化効率を
良好にすることができる。即ちこの考案によれ
ば、水槽内へハニカムコアを上下通水可能に充填
し、ハニカムコア内へ揚水筒を縦設し、一側へ給
水管を設置し、他側へ排水管を設置したので、水
槽内へ流入する汚水を連続的に能率よく微生物処
理し得る効果がある。更に揚水筒内を空気が間欠
的に上昇するので水速が変動し、従つてハニカム
コア内を流下する流速も変動することになり、セ
ル内の定常流を防止して全セル内を有効に流動さ
せることができる。また、第2図中34,34a
のようにハニカムコア内へ横孔を設ければ、ハニ
カムコアのセル内の均一使用を可能にすることが
できる。
The embodiment shown in FIG. 3 is based on the overflow tank 3.
2, 32a, and 32b are provided, the supernatant water in each tank is transferred to the next tank, and the purification efficiency can be improved. In other words, according to this invention, a honeycomb core is filled into the water tank so that water can flow up and down, a water pump is installed vertically inside the honeycomb core, a water supply pipe is installed on one side, and a drain pipe is installed on the other side. This has the effect of allowing continuous and efficient microbial treatment of wastewater flowing into the aquarium. Furthermore, as the air rises intermittently inside the pumping cylinder, the water speed fluctuates, and therefore the flow speed flowing down inside the honeycomb core also fluctuates, preventing steady flow inside the cells and making all the cells more effective. It can be made to flow. Also, 34, 34a in Figure 2
By providing horizontal holes in the honeycomb core as shown in the figure, it is possible to use the cells of the honeycomb core uniformly.

また、揚水筒の下端へ内外筒を遊嵌して空気室
を構成したので、サイフオンの原理を利用し、水
が開閉弁の役割を果たすことになる。従つて構造
が簡単なものにも拘らず、空気を間欠的に送り出
す作用が確実で、故障のおそれもなく、かつ送気
量によつて間欠間隔を制御できるなどの利点があ
り、長期無補修で連続運転を強いられる汚水処理
の駆動源として極めて優れている。
In addition, since the air chamber was constructed by loosely fitting the inner and outer cylinders into the lower end of the water-lifting cylinder, the water acts as an on-off valve using the siphon principle. Therefore, despite its simple structure, it has the advantage of being reliable in its ability to send out air intermittently, without the risk of failure, and in that the intermittent interval can be controlled by the amount of air being sent, so it can be repaired for a long period of time. It is extremely suitable as a driving source for wastewater treatment, which requires continuous operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の実施例の一部を省略した平
面図、第2図は同じく断面図、第3図は同じく他
の実施例の一部を省略した平面図、第4図は同じ
く断面図、第5図は空気室の断面拡大図、第6図
は揚水筒内の水速変化を示すグラフである。 1……水槽、3,3a,3b……ハニカムコ
ア、4,4a,4b……揚水筒、5,5a,5b
……空気室、6,6a……給気管、7……給気本
管、8……給水管、9……排水管、11……通水
溝。
Fig. 1 is a partially omitted plan view of an embodiment of this invention, Fig. 2 is a sectional view, Fig. 3 is a partially omitted plan view of another embodiment, and Fig. 4 is a sectional view. 5 is an enlarged cross-sectional view of the air chamber, and FIG. 6 is a graph showing changes in water velocity in the water pumping cylinder. 1... Water tank, 3, 3a, 3b... Honeycomb core, 4, 4a, 4b... Water pump, 5, 5a, 5b
... Air chamber, 6, 6a ... Air supply pipe, 7 ... Air supply main pipe, 8 ... Water supply pipe, 9 ... Drain pipe, 11 ... Water channel.

Claims (1)

【実用新案登録請求の範囲】 1 水槽内へハニカムコアを上下通水可能に充填
し、前記ハニカムコアの内部へ揚水筒を縦設
し、該揚水筒の下部外側へ、有底の内室と有頂
の外室とを順次所定間隔を保つて遊嵌し、前記
内室と外室とは、内室の上部で連通させると共
に、前記外室の一側へ給気管を連結して、定量
空気を間欠的に送り出すようにした空気室を設
け、前記外室に給気管を連結し、前記水槽の一
側へ給水管を設置し、他側へ排水管を設置して
なる汚水浄化装置。 2 ハニカムコアは水槽内の水面下になるように
中間部へ充填され、処理水内へ埋没されるよう
にした実用新案登録請求の範囲第1項記載の汚
水浄化装置。 3 水槽は複数個連設され、各水槽の給水管と排
水管とは対角状に連設した実用新案登録請求の
範囲第1項記載の汚水浄化装置。 4 揚水筒は同一水槽内へ一個又は複数個設置し
た実用新案登録請求の範囲第1項記載の汚水浄
化装置。
[Scope of Claim for Utility Model Registration] 1. A honeycomb core is filled into a water tank so that water can pass vertically, a water pump is installed vertically inside the honeycomb core, and a bottomed inner chamber is provided to the outside of the bottom of the water tank. The crested outer chamber is loosely fitted one after another at a predetermined interval, and the inner chamber and the outer chamber are communicated with each other at the upper part of the inner chamber, and an air supply pipe is connected to one side of the outer chamber. A sewage purification device comprising an air chamber in which air is sent out intermittently, an air supply pipe connected to the outer chamber, a water supply pipe installed on one side of the water tank, and a drain pipe installed on the other side. 2. The sewage purification device according to claim 1, wherein the honeycomb core is filled in the middle part of the water tank so as to be below the water surface, and is buried in the treated water. 3. The sewage purification device according to claim 1, wherein a plurality of water tanks are arranged in series, and the water supply pipe and drain pipe of each tank are arranged diagonally in series. 4. The sewage purification device according to claim 1, wherein one or more water pumps are installed in the same water tank.
JP1981104846U 1981-07-15 1981-07-15 Sewage purification equipment Granted JPS5810896U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981104846U JPS5810896U (en) 1981-07-15 1981-07-15 Sewage purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981104846U JPS5810896U (en) 1981-07-15 1981-07-15 Sewage purification equipment

Publications (2)

Publication Number Publication Date
JPS5810896U JPS5810896U (en) 1983-01-24
JPS6218320Y2 true JPS6218320Y2 (en) 1987-05-11

Family

ID=29899411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981104846U Granted JPS5810896U (en) 1981-07-15 1981-07-15 Sewage purification equipment

Country Status (1)

Country Link
JP (1) JPS5810896U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012192A (en) * 1983-06-30 1985-01-22 Waseda Giken Kk Method and apparatus for removing excessive organism of biological oxidation apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623673A (en) * 1979-07-31 1981-03-06 Takeshi Hayata Air cooling device by utilizing heat

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651992Y2 (en) * 1975-11-29 1981-12-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623673A (en) * 1979-07-31 1981-03-06 Takeshi Hayata Air cooling device by utilizing heat

Also Published As

Publication number Publication date
JPS5810896U (en) 1983-01-24

Similar Documents

Publication Publication Date Title
RU97116465A (en) PLANT FOR BIOCHEMICAL CLEANING OF HIGHLY CONCENTRATED WASTE WATERS
LT4316B (en) Method and apparatus for sewage water treatment
CN105502657A (en) Device and method for treating high-concentration ammonia-nitrogen wastewater in aeration-anaerobic circulation mode
RU2422380C1 (en) Method of individual treatment of effluents and compact device to this end
JP2020508215A (en) Low pressure reversible airlift mixing system for use with a membrane aeration type biofilm reactor
CN104291519B (en) Integrated life sewage treatment plant
JPS6218320Y2 (en)
JPS63315195A (en) Partial water purification method in continuous water area
RU2448912C2 (en) Effluents biochemical treatment plant
CN212387919U (en) Container with stepped artificial wetland for treating dispersible domestic sewage
RU2698694C1 (en) Method for aerobic biological treatment of waste water with suspended active sludge with hydro-automatic mode of recirculation rate control depending on single volumes of non-uniformly supplied waste water of private houses and special night mode of denitrification and device for its implementation
CN205035151U (en) Automatic water purification formula aquarium
FI90230B (en) Wastewater or small treatment plant consisting of several clearing basins
RU2736187C1 (en) Method and device for cleaning domestic waste water
CN203346179U (en) Oxygen-increasing device, self-flow oxygen-increasing biological filter, self-flow oxygen-enriching ecological bed and sewage treatment system
RU212941U1 (en) Waste water treatment plant
JPS63394Y2 (en)
CN220887269U (en) Energy-saving sewage treatment device
RU181421U1 (en) A device for the treatment of domestic and wastewater
CN207294288U (en) A kind of sewage-treatment plant
CN104211196A (en) Oxygen-increasing device, self-flow oxygen-increasing biological filter pool, self-flow oxygen-increasing ecological bed and sewage treatment system
RU184029U1 (en) A device for the treatment of domestic and wastewater
RU119738U1 (en) SEWAGE TREATMENT DEVICE
KR200188801Y1 (en) A scum treatment structure for a septic tank
JPS5839836Y2 (en) septic tank