JPS62182807A - Interpolation unit for numerical controller - Google Patents
Interpolation unit for numerical controllerInfo
- Publication number
- JPS62182807A JPS62182807A JP2298786A JP2298786A JPS62182807A JP S62182807 A JPS62182807 A JP S62182807A JP 2298786 A JP2298786 A JP 2298786A JP 2298786 A JP2298786 A JP 2298786A JP S62182807 A JPS62182807 A JP S62182807A
- Authority
- JP
- Japan
- Prior art keywords
- parts
- plane
- curve
- section
- curve tracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004364 calculation method Methods 0.000 claims description 17
- 238000003754 machining Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000013598 vector Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
Landscapes
- Numerical Control (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は数値制御装置の補間器に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an interpolator for a numerical control device.
数値制御装置においては、サーボ系が所望の軌跡を描く
ために補間器を有している。補間器は、第4図に示すよ
うに、指令速度信号aが入力される速度演算部lと指令
曲線信号すが入力される曲線追跡部2とから成り、曲線
追跡部2の出力がサーボ系への指令となる。速度演算部
1は、サーボ系の速度が指令通りになるように、曲線追
跡部2の演算速度を決定し、曲線追跡部2は、サーボ系
の軌跡が指令された曲線たとえば直線や円になるように
、曲線の追跡を行なう。In a numerical control device, a servo system has an interpolator to draw a desired trajectory. As shown in FIG. 4, the interpolator consists of a speed calculation section l to which a command speed signal a is input and a curve tracking section 2 to which a command curve signal is input. It becomes a command to. The speed calculation section 1 determines the calculation speed of the curve tracing section 2 so that the speed of the servo system follows the command, and the curve tracing section 2 determines the calculation speed of the servo system so that the trajectory of the servo system follows the commanded curve, such as a straight line or a circle. , trace the curve.
曲線追跡部2のアルゴリズムは、DDA方式。The algorithm of the curve tracing section 2 is the DDA method.
代数演算方式、最小偏差方式等様々な方式が考案、発表
されている。Various methods such as algebraic calculation method and minimum deviation method have been devised and announced.
数値制御装置が適用される分野が拡大し、また、数値制
御装置によって加工されるワークの形状が広汎になるに
つれ、補間機能に対するニーズもより大きくなってきて
いる。As the fields to which numerical control devices are applied expand and the shapes of workpieces processed by numerical control devices become more diverse, the need for interpolation functions also increases.
たとえば、ワイヤカット放電加工機では、テーバ加工と
呼ばれる加工方法が行なわれるが、これは、第5図に示
すように、ワイヤ3を指令された角度だけ鉛直線から傾
けながらワーク4の加工を行なうものである。数値制御
装置はワイヤ3の両端を固定しているXY平面およびU
V平面上で各々軌跡を制御する必要がある。ところが、
プログラムで指令されるのは、プログラム面と呼ばれる
平面上の軌跡であり、プログラム面で所望の軌跡を得よ
うとすれば、XY平面、UV平面の軌跡は複雑な動きを
示さなければならない。この様子を第6図に示す。第6
図では、プログラム面の軌跡5は円と直線で構成されて
いるが、XY平面の軌跡6およびUV平面の軌跡7は円
または直線になっていない。なお、この図で、サブプロ
グラム面はテーパ角度をつけるための仮想的な面で、そ
の軌跡8は通常プログラム面の軌跡5をオフセットして
作られる。For example, a wire-cut electrical discharge machine uses a machining method called Taber machining, in which a workpiece 4 is machined while the wire 3 is tilted from the vertical line by a commanded angle, as shown in Fig. 5. It is something. The numerical control device fixes both ends of the wire 3 in the XY plane and the U
It is necessary to control each trajectory on the V plane. However,
What is commanded by the program is a trajectory on a plane called a program plane, and if a desired trajectory is to be obtained on the program plane, the trajectory on the XY plane and UV plane must exhibit complex movements. This situation is shown in FIG. 6th
In the figure, the locus 5 on the program plane is composed of circles and straight lines, but the locus 6 on the XY plane and the locus 7 on the UV plane are neither circles nor straight lines. In this figure, the subprogram plane is a virtual plane for creating a taper angle, and its locus 8 is created by offsetting the locus 5 of the normal program plane.
また第7図に示すような上下異形状のワーク9をエンド
ミル10を存するミリング機械で加工しようとすると、
各断面(第7図(b)に1断面を示す)は非常に複雑な
曲線になる。Furthermore, when attempting to process a workpiece 9 with a vertically irregular shape as shown in FIG. 7 using a milling machine that includes an end mill 10,
Each cross section (one cross section is shown in FIG. 7(b)) is a very complicated curve.
一般の数値制御装置の補間器は直線および円弧の補間機
能を備えている。また楕円や放物線等の2次曲線の補間
機能を備えている補間器もある。The interpolator of a general numerical control device has linear and circular interpolation functions. There are also interpolators that have the function of interpolating quadratic curves such as ellipses and parabolas.
しかし、上述の例のような場合、所望の軌跡は簡単な数
式表現ができないため、その追跡のためには、自動プロ
グラミング装置又は数値制御装置内部の自動プログラミ
ング機能により、所望の軌跡を直線分割し、補間器には
細かい直線の指令を与える必要があった。しかし、この
場合、高価な自動プログラミング装置の導入が必要とな
ったり、数値制御装置内部の主データ処理部の負担が重
くなったりして、その結果、性能を落とす要因になって
いた。However, in cases such as the above example, the desired trajectory cannot be expressed simply mathematically, so in order to track it, the desired trajectory must be divided into straight lines using an automatic programming device or an automatic programming function inside a numerical control device. , it was necessary to give detailed straight line instructions to the interpolator. However, in this case, it is necessary to introduce an expensive automatic programming device, and the load on the main data processing section inside the numerical control device becomes heavy, resulting in a decrease in performance.
C問題点を解決するための手段〕
このような問題点を解決するために本発明は、複数の曲
線追跡部と、各々の曲線追跡部の出力を結合する1つ又
は複数の結合演算部とを設けるようにしたものである。Means for Solving Problem C] In order to solve such problems, the present invention provides a plurality of curve tracing units, and one or more combination calculation units that combine the outputs of the respective curve tracing units. It was designed to provide a.
本発明においては、結合演算部の出力がサーボ系への指
令となる。In the present invention, the output of the coupling calculation section becomes a command to the servo system.
本発明に係わる数値制御装置の補間器の一実施例を第1
図に示す。第1図において、速度演算部11と曲線追跡
部12.13は従来のそれと同じものであるが、曲線追
跡部を複数有すること並びに曲線追跡部12.13の出
カー?−5旦が結合演算部14.15へ導かれ結合演算
部14.15の出力がサーボ系への指令X、 Uとな
っていることが、従来と異なるところである。P、Q、
X、Uの次元は必要とする空間の次元による。A first embodiment of an interpolator of a numerical control device according to the present invention is described below.
As shown in the figure. In FIG. 1, the speed calculating section 11 and the curve tracing section 12.13 are the same as those of the conventional one, but there are a plurality of curve tracing sections and the output curve of the curve tracing section 12.13 is different. This differs from the conventional method in that the output signal -5 is guided to the connection calculation section 14.15, and the output of the connection calculation section 14.15 is the commands X and U to the servo system. P, Q,
The dimensions of X and U depend on the dimensions of the required space.
次に、本実施例により、ワイヤカット放電加工機のテー
パ加工を実現する場合について説明する。Next, a case will be described in which taper machining of a wire-cut electrical discharge machine is realized using this embodiment.
P、Q、X、旦をそれぞれ2次元のベクトルとする。特
に、
X”’(y) ・・・・(1)
旦=()・・・・(2)
ν
であり、各々XY平面、UV平面のベクトルである。旦
、旦を各々プログラム面、サブプログラム面のベクトル
とする。第2図において、且はプロダラム面16上にお
いて指令として与えられた曲線を追跡し、旦はサブプロ
グラム面17上の曲線を追跡する。只の追跡する軌跡1
8は、プログラム面の軌跡19をテーパ角θに相応する
分だけオフセットして得られる。Let P, Q, X, and Dan be two-dimensional vectors. In particular, Let it be a vector on the program plane.In Fig. 2, trace the curve given as a command on the program plane 16, and first trace the curve on the subprogram plane 17.Only trace 1
8 is obtained by offsetting the locus 19 on the program plane by an amount corresponding to the taper angle θ.
今、第3図において、ある時点で、旦および旦が所望の
曲線を追跡するために、Δ−?−1Δ旦だけ移動したと
する。この時、結合演算部14.15では、
ΔX=K 1・ΔP十に2・AQ・・・・(3)ΔU=
に3 ・Δ−P+に4 ・AQ−・ ・ ・(4)なる
演算を行なう。ここで、
K1= (hl/h2)+1・・・・(5)K2=−h
l/h2 ・・・・(6)K3=−h3/h2
・・・・(7)K4= (h3/h2)+1・・
・・(8)である。上式は、第3図から
(Δ又−Δ旦)/hl=(Δ旦−Δ旦)/h2=(Δ旦
−Δ旦)/h3・・・・(9)の関係があることは明ら
かであるから、この式を解いて得られる。Now, in FIG. 3, at a certain point, Δ-? Suppose that it moves by -1Δ days. At this time, in the combination calculation unit 14.15, ΔX=K 1・ΔP+2・AQ (3) ΔU=
The following calculation is performed: 3 ・Δ−P+ 4 ・AQ− ・ ・ (4). Here, K1= (hl/h2)+1...(5)K2=-h
l/h2...(6) K3=-h3/h2
...(7)K4= (h3/h2)+1...
...(8). From Figure 3, the above equation shows that there is a relationship of (Δ or - Δdan)/hl = (Δdan - Δdan)/h2 = (Δdan - Δdan)/h3... (9) Since it is obvious, it can be obtained by solving this equation.
以上のようにして、入、旦がそれぞれXY平面20、U
V平面21で移動すれば、所望のテーパ加工が得られる
。As described above, entry and exit are respectively on the XY plane 20 and U
By moving on the V plane 21, desired taper processing can be obtained.
なお、機械の構造上、UV平面21はXY平而面0上の
移動座標となることが多い。この時は、U’=U−X・
・・・00)
より、(71,(8)式の代わりに、
K3=に4= (hl+h2+h3)/h2−0.−0
0とすればよい。Note that, due to the structure of the machine, the UV plane 21 is often a moving coordinate on the XY plane 0. At this time, U'=U-X・
...00) From (71, instead of formula (8), K3=4= (hl+h2+h3)/h2-0.-0
It may be set to 0.
同様の考え方で、第7図の上下異形状の場合も、一方の
曲線追跡部で直線(正方形)を追跡し、他方の曲線追跡
部で円を追跡すればよいことは明白である。Based on the same idea, it is clear that in the case of the vertically irregular shape shown in FIG. 7, one curve tracing section may be used to trace a straight line (square), and the other curve tracing section may be used to trace a circle.
なお、第1図においては曲線追跡部および結合演算部が
各々2個備えられているが、本発明はこの個数に限定さ
れるものではない。In addition, in FIG. 1, two curve tracking units and two connection calculation units are provided, but the present invention is not limited to this number.
以上説明したように本発明は、複数の曲線追跡部と、各
々の曲線追跡部の出力を結合する1つ又は複数の結合演
算部とを設けることにより、所望の軌跡を容易に得るこ
とができ、従来の数値制御装置では不可能であった様々
な軌跡の追跡が補間器の中だけで可能となり、ワイヤカ
ット放電加工のみならず、多(の複雑な自由度を持つ機
械での新しい加工方法又は複雑な曲線に対しての新しい
プログラミング方法が展開されることが可能となり、そ
の効果は絶大なものがある。As explained above, the present invention allows a desired trajectory to be easily obtained by providing a plurality of curve tracing units and one or more combination calculation units that combine the outputs of the respective curve tracing units. , tracking of various trajectories that was impossible with conventional numerical control devices is now possible only within the interpolator, allowing new machining methods not only for wire-cut electric discharge machining but also for machines with multiple (complicated degrees of freedom). Alternatively, it becomes possible to develop new programming methods for complex curves, and the effects are enormous.
第1図は本発明に係わる数値制御装置の補間器の一実施
例を示す系統図、第2図、第3図は本装置によるテーバ
加工の例を説明するための説明図、第4図は従来の数値
制御装置の補間器を示す系統図、第5図、第6図はワイ
ヤカット放電加工機のテーバ加工を説明するための説明
図、第7図(a)は上下異形状のものの加工を説明する
ための説明図、第7図(b)は第7図(alのB −B
線断面図である。
11・・・・速度演算部、12.13・・・・曲線追跡
部、14.15・・・・結合演算部。FIG. 1 is a system diagram showing an example of an interpolator of a numerical control device according to the present invention, FIGS. 2 and 3 are explanatory diagrams for explaining an example of Taber machining by this device, and FIG. A system diagram showing the interpolator of a conventional numerical control device, Figures 5 and 6 are explanatory diagrams to explain Taber machining with a wire-cut electric discharge machine, and Figure 7 (a) shows machining of an object with a vertically irregular shape. 7(b) is an explanatory diagram for explaining the
FIG. 11... Speed calculation section, 12.13... Curve tracking section, 14.15... Connection calculation section.
Claims (1)
る1つ又は複数の結合演算部とを備え、結合演算部の出
力をサーボ系への指令とすることを特徴とする数値制御
装置の補間器。A numerical control device comprising a plurality of curve tracing sections and one or more combination calculation sections that combine the outputs of the respective curve tracing sections, and the output of the combination calculation section is used as a command to a servo system. interpolator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2298786A JPS62182807A (en) | 1986-02-06 | 1986-02-06 | Interpolation unit for numerical controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2298786A JPS62182807A (en) | 1986-02-06 | 1986-02-06 | Interpolation unit for numerical controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62182807A true JPS62182807A (en) | 1987-08-11 |
Family
ID=12097892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2298786A Pending JPS62182807A (en) | 1986-02-06 | 1986-02-06 | Interpolation unit for numerical controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62182807A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57169814A (en) * | 1981-04-10 | 1982-10-19 | Fanuc Ltd | Forming method of curved surface |
JPS60173680A (en) * | 1984-02-20 | 1985-09-07 | Hitachi Ltd | Curved surface forming system |
-
1986
- 1986-02-06 JP JP2298786A patent/JPS62182807A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57169814A (en) * | 1981-04-10 | 1982-10-19 | Fanuc Ltd | Forming method of curved surface |
JPS60173680A (en) * | 1984-02-20 | 1985-09-07 | Hitachi Ltd | Curved surface forming system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1869531B1 (en) | Method of tolerance-based trajectory planning | |
US4887222A (en) | Method for controlling operation of industrial robot | |
Lin | Real-time surface interpolator for 3-D parametric surface machining on 3-axis machine tools | |
US5815401A (en) | Free-form curve interpolation method and apparatus | |
WO2017110236A1 (en) | Tool path modification device and tool path modification method | |
Rahaman et al. | A new approach to contour error control in high speed machining | |
Xiao et al. | Space corner smoothing of CNC machine tools through developing 3D general clothoid | |
WO1982003474A1 (en) | Digital control machining method | |
KR101538729B1 (en) | Tool path generation method and tool path generation device | |
JP3037881B2 (en) | Numerical control unit | |
CN107942942B (en) | Inclined coordinate system establishing method applied to intersected inclined planes of machine tool equipment | |
Wang et al. | A real-time interpolation strategy for transition tool path with C 2 and G 2 continuity | |
JPS62182807A (en) | Interpolation unit for numerical controller | |
US4521721A (en) | Numerical control method | |
JPH012107A (en) | Involute interpolation method | |
JPH06122025A (en) | Followup method for work bending in press brake robot system | |
EP4069471A1 (en) | Method of controlling industrial actuator, control system and actuator system | |
Chang | 3D-to-2D Mapping of Cutter Paths in NC Programming of Complex Engineering Parts | |
Ren et al. | Sharp corner transitional trajectory planning based on arc splines in glass edge grinding | |
Tajima et al. | Smooth cornering strategy for high speed CNC machine tools with confined contour error | |
JPS62235606A (en) | Nc data originating method for composite curved surface | |
JPS5822413A (en) | Numeric control working method | |
JPH03253913A (en) | Nc device | |
JP2779796B2 (en) | Numerical control unit | |
EP0559906A1 (en) | Method of defining sectional coordinate system of free curve plane |