JPS6218216A - Cylindrical body - Google Patents
Cylindrical bodyInfo
- Publication number
- JPS6218216A JPS6218216A JP15891185A JP15891185A JPS6218216A JP S6218216 A JPS6218216 A JP S6218216A JP 15891185 A JP15891185 A JP 15891185A JP 15891185 A JP15891185 A JP 15891185A JP S6218216 A JPS6218216 A JP S6218216A
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- styrene
- resin
- fiber
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Reinforced Plastic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はシートモールディングコンパウンド(以下8M
Oと略記する。)1−改良する為の補強繊維供給形態に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sheet molding compound (hereinafter referred to as 8M
It is abbreviated as O. )1- Concerning reinforcing fiber supply form for improvement.
周知のように8MOは、不飽和ポリエステル樹脂を充填
剤、着色剤、内部離形剤、硬化剤、増粘剤等と共にガラ
ス繊維とあわせ、ポリエチレンなどのフィルムで両面を
カバーした後、フィルムの上から加圧し、前記混和物を
ガラスm維へ含浸させ、脱泡を行なわせ所定の長さに巻
取った後適当な温度に保存し、熟成して得られろもので
ある。As is well known, 8MO is made by combining unsaturated polyester resin with fillers, colorants, internal mold release agents, hardening agents, thickeners, etc. with glass fibers, covering both sides with a film such as polyethylene, and then coating the film with a film such as polyethylene. It is obtained by applying pressure to impregnate glass m fibers with the mixture, defoaming them, winding them up to a predetermined length, storing them at an appropriate temperature, and aging them.
ここでガラスJi!Mは補強材として用いられるのであ
るが、その流動分散性や成形後の製品の耐衝撃性は必ず
しも満足されるものでなくこれらの点についての改善が
望まれていた。Glass Ji here! M is used as a reinforcing material, but its fluid dispersibility and impact resistance of molded products are not always satisfactory, and improvements in these points have been desired.
SMO製造装置にはガラスローブイングを切断するチジ
ッパーが設置されており、それらは概してゴムローラー
とカッターローラーにガラスヲ挾んで切断し、不飽和ポ
リエステル樹脂液に落下させるようになっている。とこ
ろでポリプロピレン繊維、ビニロン繊維、アラミド繊維
、炭素繊維、金X繊維などはガラス繊維の如く容易に切
断することができず、できてもガラスよりも剛直である
為設備の磨耗を早めたり、生産性を低下したりする。こ
の為専用で扁価な切断装置を必要とし、このような切断
装置を採用することは一般になかなか受は入れ難い。し
からば繊維を予め切断しておき8MC製造装置に供給す
ることも十分前えられろところであるが、ファイバーボ
ールを作ったり、静電気を発生したりして供給斑を起°
したり、供給が不可能になったり、或いは静電気発生に
よりトルエンに引火し爆発事故をも惹起する危険をはら
んでいろ。SMO manufacturing equipment is equipped with a zipper that cuts the glass roving, and these generally have rubber rollers and cutter rollers that sandwich the glass to cut it and drop it into an unsaturated polyester resin liquid. By the way, polypropylene fibers, vinylon fibers, aramid fibers, carbon fibers, gold-X fibers, etc. cannot be cut as easily as glass fibers, and even if they can be cut, they are more rigid than glass, which can lead to faster wear of equipment and lower productivity. decrease. For this reason, a dedicated and low-cost cutting device is required, and it is generally difficult to accept the use of such a cutting device. Therefore, it would be a good idea to cut the fibers in advance and supply them to the 8MC manufacturing equipment well in advance, but this would create fiber balls or generate static electricity, causing uneven supply.
There is a danger that the toluene may ignite due to static electricity generation, or that it may become impossible to supply the toluene and cause an explosion.
本発明者等はこのような点に鑑み、SMOを構成する不
飽和ポリエステル樹脂の架橋剤がスチレンであることに
着目[7た。即ち繊維を結びつけろバインダーをスチレ
ンに可溶性のものを用いれば、樹脂混合物と合さること
により、その樹脂混合物中のスチレンによりバインダー
が溶かされ、a″mは結合を解かれて個々に分離できろ
ことに着目したものである。また8MC製造装置の巾は
色々あるが、約1rrL巾の装置が多い。このような巾
広の装置に繊維を斑少なく定量供給することはSMOの
生産能率からも製品々質管理上からもきわめて重要であ
る。ガラスロービングの供給法に便乗シた方式がとれれ
ばコスト的にも有利である。このような点から供給スチ
レン含有繊維を柱状物にしておぎ、装置中に適当な間隔
をおいて仕込めば繊維は斑少なく供給さn、樹脂液との
混合により、−m均一化されろわけである。In view of these points, the present inventors focused on the fact that the crosslinking agent of the unsaturated polyester resin constituting SMO is styrene [7]. In other words, if the binder used to bind the fibers is soluble in styrene, when combined with the resin mixture, the binder will be dissolved by the styrene in the resin mixture, and a''m will be unbound and separated into individual fibers. In addition, although there are various widths of 8MC manufacturing equipment, most equipment is approximately 1rrL wide.It is important to supply fibers in a constant quantity with less unevenness to such wide equipment from the viewpoint of SMO production efficiency. This is extremely important from the viewpoint of product quality control.If a method that takes advantage of the glass roving supply method is adopted, it would be advantageous in terms of cost.From this point of view, the supplied styrene-containing fibers are made into columns, and the equipment If the fibers are placed in the container at appropriate intervals, the fibers can be supplied with little irregularity, and by mixing with the resin liquid, the fibers can be made uniform.
本発明は、繊度が0.1〜1000デニール、繊維長が
0.1〜120Wnである繊維をスチレン可溶性樹脂0
.1〜20重填%をバインダーとして用いて固定した見
掛は比71jo、x〜3.0のSMC用連続柱状物であ
る。In the present invention, fibers having a fineness of 0.1 to 1000 deniers and a fiber length of 0.1 to 120 Wn are used with a styrene-soluble resin.
.. The appearance of a continuous columnar material for SMC with a ratio of 71jo and x~3.0 is fixed using 1 to 20% by weight as a binder.
繊維はポリプロピレン繊維、ポリエチレン繊維。The fibers are polypropylene fibers and polyethylene fibers.
ビニロンa維、アクリル繊維、ポリエステル繊維、ポリ
アミド繊維、カイノール繊維、炭素m維などの合成繊維
、レイヨン、ポリノジック、アセテートなどの半合成繊
維、木綿、麻、羊毛などの天然繊維、そしてアルミ、鉄
、しんちゅう、銅、ステンレス等の金xi維、窒化硅素
、炭化ホウ素、アルミナ等のウィスカー、セラミック、
ガラス、ロックウールの如き鉱物la維などがある。Synthetic fibers such as vinylon a fiber, acrylic fiber, polyester fiber, polyamide fiber, kynor fiber, carbon m fiber, semi-synthetic fibers such as rayon, polynosic, acetate, natural fibers such as cotton, linen, wool, aluminum, iron, Brass, copper, gold fibers such as stainless steel, whiskers such as silicon nitride, boron carbide, alumina, ceramics,
Examples include glass and mineral laminated fibers such as rock wool.
連続柱状物の形状の代表例を第1図に示す。断面形状は
円形であっても矩形であっても、その他の異形であって
もよく、また中心部が空洞化していても良い。要は安定
に供給でき、供給斑の少ない形状を8MC製造装置の実
情に合せて決定すれば良い。連続柱状物は8M(3装置
のカッタ一部名連続して供給された後−カッターにより
所定寸法に粉砕切断されるのであるが、その太さは補強
繊維の不飽和ポリエステル樹脂への添加率、或いは仕込
本数により決められるものである。また連続柱状物製造
時ラテックスを使用するか、樹脂を使用するか、発泡剤
を入れて発泡させることによりスチレン溶解速度全速め
るなど、バインダーの使い方により見掛は比重は大きく
かわることはまぬがれない。A typical example of the shape of a continuous columnar object is shown in FIG. The cross-sectional shape may be circular, rectangular, or other irregular shape, and the center may be hollow. The point is that a shape that can be stably supplied and has few irregularities in supply should be determined in accordance with the actual situation of the 8MC manufacturing apparatus. The continuous columnar material is pulverized and cut into a predetermined size by a cutter of 8M (after being fed to three cutters in succession), and its thickness depends on the ratio of reinforcing fibers added to the unsaturated polyester resin. Alternatively, it is determined by the number of pieces to be prepared.Also, when manufacturing continuous columnar objects, the apparent appearance can be changed depending on how the binder is used, such as whether latex or resin is used, or the rate of styrene dissolution is fully accelerated by adding a foaming agent and foaming. It is inevitable that the specific gravity will change significantly.
本発明において、連続柱状物をつくる際のバインダーと
なるスチレン可溶性樹脂とはポリスチレンラテックス、
スチレン−アクリル酸エステル共重合ラテックス、スチ
レン−ブタジェン共重合ラテックスなどのラテックス類
、−膜成形用ポリスチロールペレット(例えば出光スチ
ロールHF−10、NF−20、E’L’−60、L’
l’−70など)及びスチレン溶解速度を速める為に用
いるスチロールペレットを発泡させる発泡剤も含まれる
。要は8MC製造装置への供給時は連続柱状物であり、
ガラスチョッパーで繊維を切断することなくスチレン可
溶性樹脂が粉砕切断されることが重要なポイントであり
、あまりに耐衝撃性の強いポリスチロール樹脂や粉砕切
断のしにくい皮膜強度の強いラテックスは避けた方が好
ましい。しかし耐衝撃性のある樹脂も発泡剤で発泡させ
発泡スチロール樹脂の中に&I維を包み込むようにして
表面積を大きくし、樹脂部分の切断を容易にすると共に
スチレン可溶性を高めることもできるので、スチレン可
溶性樹脂であればその形状、性状、メーカーなどの制約
は受けない。またこの樹脂はm維連続柱状物の硬さ及び
8MOシート成形時の通過詩間により選定すれば良いが
8MO製造工程におけろ分散性の点でスチレン含有量の
多いラテックス、ぺレットの使用が好ましい。またこの
樹脂の繊維柱状物中でのり合量は、繊維柱状物が安定供
給できるだけの強力、カッターでの粉砕切断性、8MC
シートへの分散混和性、及びSMC品質などから総合的
に検討し決めなければならないが、一般的には0.1〜
20重量%、繊維が、80〜99.9重世%となるよう
酢合するのが良い。In the present invention, the styrene-soluble resin that serves as a binder when making continuous columnar objects is polystyrene latex,
-Latices such as styrene-acrylate copolymer latex, styrene-butadiene copolymer latex, -Polystyrene pellets for film forming (e.g. Idemitsu Styrol HF-10, NF-20, E'L'-60, L'
l'-70) and blowing agents that foam styrene pellets used to speed up styrene dissolution. The point is that when supplied to the 8MC manufacturing equipment, it is a continuous columnar object,
It is important that the styrene-soluble resin is crushed and cut without cutting the fibers with the glass chopper, and it is better to avoid polystyrene resin that has too high impact resistance and latex that has a strong film that is difficult to crush and cut. preferable. However, impact-resistant resin can also be foamed with a foaming agent to enclose the &I fibers in the expanded styrene resin, increasing the surface area, making it easier to cut the resin part, and increasing the styrene solubility. If it is a resin, there are no restrictions on its shape, properties, manufacturer, etc. In addition, this resin can be selected depending on the hardness of the m-fiber continuous columnar material and the passage distance during molding of the 8MO sheet, but in the 8MO manufacturing process, from the viewpoint of dispersibility, it is recommended to use latex or pellets with a high styrene content. preferable. In addition, the amount of this resin in the fibrous columnar material is strong enough to stably supply the fibrous columnar material, crushing and cutting ability with a cutter, and 8MC.
It must be decided based on a comprehensive consideration of dispersion miscibility into the sheet, SMC quality, etc., but in general it is 0.1~
It is preferable to combine vinegar so that the fiber content is 80 to 99.9 weight percent.
繊維の太さは0.1〜1000デニールのものが使用可
能であるが1〜50デニールが好、適である。The thickness of the fibers can be from 0.1 to 1000 deniers, but preferably from 1 to 50 deniers.
細1いともつ几で分散が不良になりやすく、太いと目伺
壇の多い柱状物にしないと連続柱状物が得にく く な
る。If the diameter is too thin, dispersion tends to be poor, and if it is too thick, it will be difficult to obtain a continuous columnar structure unless it is made into a columnar structure with many holes.
繊維長は繊維の太さにより変るが0.1〜120団、よ
り好ましくは2〜50naである。繊維長が短いと分散
は良好になるが製品の補強効果を減する。The fiber length varies depending on the thickness of the fiber, but is 0.1 to 120 na, more preferably 2 to 50 na. Shorter fiber lengths provide better dispersion but reduce the reinforcing effect of the product.
また繊維長が長くなると補強効果は増大するが、繊維同
志がからみあい流動性が低下し、繊維の分散が不良とな
る。Furthermore, as the fiber length increases, the reinforcing effect increases, but the fibers become entangled with each other, resulting in decreased fluidity and poor fiber dispersion.
繊維柱状物の製造法としては、予め所定の長さに切断し
た繊IOtラテックス又はポリスチレンチップとニーダ
−又はエクストルーダーに仕込み先端にあるグイより押
出し、乾燥、固化して繊維柱状物を得ろ。この際ボビン
に巻取っておくと8Mc製造時のFa維柱状物の定量供
給が行なわれやすい。A method for producing a fibrous columnar material is to put fiber IOt latex or polystyrene chips cut into predetermined lengths into a kneader or extruder, extrude through the gou at the tip, dry and solidify to obtain a fibrous columnar material. At this time, if the material is wound around a bobbin, the Fa fibrous material can be easily supplied in a constant quantity during the production of 8Mc.
ボビン巻取時の最初の端部を約10〜4oCrn出して
おぎ、次に繋くボビンの表層部端部と結んでおくと繊維
柱状物は連続的に供給することができ能率低下を起さず
に生産を続けることができる。When winding up a bobbin, the first end of the bobbin is stretched out by approximately 10 to 4 degrees Crn and tied to the end of the surface layer of the next bobbin to be connected, so that the fiber columnar material can be continuously fed and efficiency decreases. production can continue without any problems.
本発明の柱状物はS随Cで特徴ある性能を発揮しうる繊
維を、S賃C内に定量的に供給するだめのスチレン可溶
性樹脂で柱状に成形したものである。かかる柱状物は、
通常のSMC製造装置のガラスロービング用チョッパー
に供給するだけで小さな繊維集合塊に粉砕され、SMC
へ均一に分散する。該集合塊は繊維間を結合している樹
脂がSMC中のスチレンにより溶解し繊維がSMC内で
均一に分散し、SMC性能を大巾に向上せしめるもので
ある。しかも従来法によるSMC製造装置を大巾に改造
することな〈実施できろようにしたものであり、その実
用上の効果は大きい。The columnar article of the present invention is made by molding fibers capable of exhibiting characteristic performance in the S-C into a column shape using a styrene-soluble resin that is quantitatively supplied into the S-C. Such columnar objects are
Just by feeding it to the chopper for glass roving in regular SMC production equipment, it is crushed into small fiber aggregates and SMC
evenly distributed. In the aggregate, the resin that binds the fibers is dissolved by the styrene in the SMC, and the fibers are uniformly dispersed within the SMC, greatly improving the performance of the SMC. In addition, this method can be implemented without major modification of conventional SMC manufacturing equipment, and its practical effects are significant.
実施例1
単糸デニール6.0デニールのビニロン繊維(クラレ製
の商品名1239 1200d/200f )を用い、
繊維長24m+に切断したものを、固形分10%のスチ
レンラテックス(日本ゼオン■製、商品名N1pol
LX415A )溶液に分散させる。分散液を先端に直
径10mmの円形ノズルを有する送液能力のあるニーダ
−にCけ給する。ノズルより吐出するビニロン繊維のラ
テックス液を吐出速度と同速で移動する金網に受け、次
で搾液ローラーで弱く液切り金した後125〜150℃
の熱風乾燥機で乾燥し、楕円状の連続するビニロン繊維
柱状物を得九繊維柱状物の形状はかなりばらついていた
が、大体、最大直径1.48調、最小直径0.41rr
!M、柱状物デニール平均1800デニール、見掛は比
重0.28であった。Example 1 Using vinylon fiber with a single yarn denier of 6.0 denier (product name 1239 1200d/200f manufactured by Kuraray),
Styrene latex with a solid content of 10% (manufactured by Nippon Zeon ■, product name N1pol) was cut into fibers with a length of 24 m+.
LX415A) solution. The dispersion liquid is fed into a kneader having a circular nozzle with a diameter of 10 mm at the tip and capable of feeding liquid. The vinylon fiber latex liquid discharged from the nozzle is received by a wire mesh that moves at the same speed as the discharge speed, and after being gently drained with a liquid squeezing roller, the liquid is heated to 125 to 150°C.
After drying in a hot air dryer, continuous elliptical vinylon fiber columns were obtained.The shapes of the nine fiber columns varied considerably, but in general, the maximum diameter was 1.48mm and the minimum diameter was 0.41rr.
! M, the average denier of the pillars was 1800 denier, and the apparent specific gravity was 0.28.
繊維柱状物のラテックス含有率は抽出法により求めると
2.37%であった。The latex content of the fibrous columns was determined to be 2.37% by an extraction method.
かくして得られたビニロン繊維柱状物は、約25門に切
断し7%スチレン含有不飽和ポリエステル樹脂に含浸さ
せ、若干昆和するとバインダー成分であるラテックスは
溶解し、繊維は樹脂液中に分散した。The vinylon fiber pillars thus obtained were cut into about 25 pieces and impregnated with an unsaturated polyester resin containing 7% styrene, and when slightly combed, the latex as a binder component was dissolved and the fibers were dispersed in the resin liquid.
実施例2
単糸デニール6drのビニロン繊維を用い繊維長3mに
切断した。−万スチロールペレット(出光石油化学株式
会社製、NF−20、粒度3.Omφ×3.0順)を準
備し、直径21/2インチ、L/D = 16.6、圧
縮比4.0の押出機にてポリスチロールとビニロン繊維
を30対70で混合し、押出機先端温度220℃とし、
ポリスチロールは溶融してビニロン繊維は非溶融状態で
押出し、空冷した。押出ダイのノズルは1.0朋φでス
テンレス製のものを用いた。Example 2 A vinylon fiber with a single yarn denier of 6 dr was cut into a fiber length of 3 m. - Prepare 10,000 styrene pellets (manufactured by Idemitsu Petrochemical Co., Ltd., NF-20, particle size 3.0mφ x 3.0 order), with a diameter of 21/2 inches, L/D = 16.6, and a compression ratio of 4.0. Mix polystyrene and vinylon fibers in a ratio of 30:70 in an extruder, and set the extruder tip temperature to 220°C.
The polystyrene was melted and the vinylon fibers were extruded in an unmolten state and cooled in air. The nozzle of the extrusion die was made of stainless steel and had a diameter of 1.0 mm.
得られた繊維柱状物は円柱状で直径約x、zmφみかけ
比重0.68、柱状物デニール6900デニールであっ
た。The obtained fibrous pillars were cylindrical, had a diameter of approximately x, an apparent specific gravity of 0.68, and a denier of 6900 deniers.
かくして得られたビニロン繊維柱状物はチョッパーにて
比較的容易に切断され、7%スチレン含有不飽和ポリエ
ステル樹脂に常温で含浸させ、混和すると混和時間10
秒〜5分でバインダー成分であるポリスチレンは溶解し
、Fa維は樹脂液中に分散した。The vinylon fiber pillars thus obtained are relatively easily cut with a chopper, impregnated with 7% styrene-containing unsaturated polyester resin at room temperature, and mixed for 10 minutes.
The polystyrene as a binder component was dissolved in seconds to 5 minutes, and the Fa fibers were dispersed in the resin liquid.
ビニロン繊維のカット長全3m、6間、12聰。Vinylon fiber cut length total 3m, 6 lengths, 12 lengths.
24m、50mと変更して押出機で繊維柱状物をつくる
場合、V&維長127MI迄は押出機に供給でさたが、
24朋、50rE!nはホッパーから供給することがで
きなかった。但しこれは押出機の大きさやホッパー形状
を工夫すれば改善可能と考えらnる。When changing to 24m and 50m to make a fiber columnar material with an extruder, up to V&Waicho 127MI could be fed to the extruder,
24th, 50rE! n could not be fed from the hopper. However, it is thought that this can be improved by changing the size of the extruder and the shape of the hopper.
実施例3
単糸デニール6dのビニロン樹、維を用い繊維長3++
mに切断した。スチロールベレット(出光石油化学株製
NF−20、粒度30mmφX 30 rran )と
発泡剤アゾジカルボンアミド(大塚化学製セルマイクC
)fe準備し、直径21/2インチ、I、/D = 1
6.6、圧縮比40の押出機にて(ビニロン繊維)=(
スチロールペレット):(発泡剤)=92ニア、5:0
.5の割合で混合し、押出機先端湯度200°Cのもと
に発泡押出しし、空冷した。押出ダイのノズルは5rr
anφでステンレス製のものを用いた。Example 3 Using vinylon wood and fiber with a single yarn denier of 6d, the fiber length was 3++
It was cut into m. Styrene pellets (NF-20 manufactured by Idemitsu Petrochemical Co., Ltd., particle size 30 mmφX 30 rran) and foaming agent azodicarbonamide (Celmic C manufactured by Otsuka Chemical
) fe prepared, diameter 21/2 inches, I, /D = 1
6.6, in an extruder with a compression ratio of 40 (vinylon fiber) = (
Styrene pellets): (Blowing agent) = 92 near, 5:0
.. The mixture was foamed and extruded at a temperature of 200°C at the tip of an extruder, and cooled in air. The extrusion die nozzle is 5rr
An φ made of stainless steel was used.
得られた繊維柱状物は円柱状で、発泡スチロールの中に
繊維が浮いている如き構造物で、直径約5.4圓φ、み
かけ比重0.14、柱状物デニール28900デニール
であり、トラバース巾1フインチ、ボビン径143Tg
nφの巻取機にて巻取った。The obtained fiber columnar material was cylindrical and had a structure similar to that of fibers floating in styrofoam, with a diameter of approximately 5.4 mm, an apparent specific gravity of 0.14, a columnar denier of 28,900 deniers, and a traverse width of 1. Finch, bobbin diameter 143Tg
It was wound up using an nφ winding machine.
かくして得られたビニロン繊維柱状物は、実施例2のも
のに比べ、はるかに容易に切断し、且つ7%スチレン含
有不飽和ポリエステル樹脂に常温で含浸させると瞬時に
体積収縮を起し、混和時間2分以内でバインダー成分で
あるポリスチレンは溶解し、a維は樹脂液中に分散した
。The thus obtained vinylon fiber columnar material was much easier to cut than that of Example 2, and when impregnated with 7% styrene-containing unsaturated polyester resin at room temperature, volumetric shrinkage occurred instantly, and the mixing time was reduced. Within 2 minutes, the binder component polystyrene was dissolved and the a-fibers were dispersed in the resin liquid.
実施例4
金属繊維で黄銅50ミクロン×3m(株式会社神戸鋳鉄
所製)をポリスチレンと発泡剤の配合率Q 80 :
19.5 : 0.5の割合で混合し、押出機の先端温
度200℃のもとに発泡押出しし空冷により金属繊維柱
状物を得た。押出ダイのノズル孔径は3閣φである。Example 4 Brass 50 micron x 3 m (manufactured by Kobe Cast Iron Works Co., Ltd.) was made of metal fiber with a blending ratio of polystyrene and a foaming agent Q 80:
They were mixed at a ratio of 19.5:0.5, foamed and extruded at an extruder tip temperature of 200°C, and air-cooled to obtain a metal fiber column. The nozzle hole diameter of the extrusion die is φ.
得られた柱状物は直径約3.8閣、みかけ比重2.3で
あり、トラバース巾1フインチの巻取機で巻取った。The obtained columnar material had a diameter of about 3.8 mm and an apparent specific gravity of 2.3, and was wound up using a winding machine with a traverse width of 1 inch.
かくして得られた金属m雄性状物は7%含有不飽和ポリ
エステル樹脂に含浸混和すると、混和時間10秒〜5分
でバインダー成分であるポリスチレンは溶解し、繊維は
樹脂液中に分散した。When the metal m-male substance thus obtained was impregnated and mixed in an unsaturated polyester resin containing 7%, the polystyrene as a binder component was dissolved and the fibers were dispersed in the resin liquid within a mixing time of 10 seconds to 5 minutes.
本発明の柱状物の一例を第1図および第2図に示す。図
中1は繊維に示し、2はバインダー、3はバインダー紙
金示す。An example of the columnar object of the present invention is shown in FIGS. 1 and 2. In the figure, 1 indicates the fiber, 2 the binder, and 3 the binder paper metal.
Claims (3)
1〜50mmである繊維を、スチレン可溶性の樹脂0.
1〜40重量%をバインダーとして用いて固定した見掛
け比重0.1〜3.0のシートモールデイングコンパウ
ンド用柱状物。(1) Fineness is 0.1 to 1000 denier, fiber length is 0.
Fibers with a diameter of 1 to 50 mm are coated with a styrene-soluble resin of 0.0 mm.
A columnar material for a sheet molding compound having an apparent specific gravity of 0.1 to 3.0 fixed using 1 to 40% by weight as a binder.
維、金属繊維、ウィスカーのいづれか1種又は2種以上
の組合わせよりなる特許請求の範囲第1項記載の柱状物
。(2) The columnar article according to claim 1, wherein the fibers are made of any one or a combination of two or more of natural fibers, semi-synthetic fibers, synthetic fibers, carbon fibers, metal fibers, and whiskers.
樹脂が、スチレン含有ラテックス、ポリスチレン樹脂、
塩ビ酢ビ共重合物である特許請求の範囲第1項、第2項
に記載の柱状物。(3) The styrene-soluble resin used as a binder for the columnar material may be styrene-containing latex, polystyrene resin,
The columnar material according to claims 1 and 2, which is a vinyl chloride-vinyl acetate copolymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15891185A JPS6218216A (en) | 1985-07-17 | 1985-07-17 | Cylindrical body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15891185A JPS6218216A (en) | 1985-07-17 | 1985-07-17 | Cylindrical body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6218216A true JPS6218216A (en) | 1987-01-27 |
Family
ID=15682037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15891185A Pending JPS6218216A (en) | 1985-07-17 | 1985-07-17 | Cylindrical body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6218216A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7211530B2 (en) | 2003-09-24 | 2007-05-01 | Owens-Corning Fiberglas Technology, Inc. | Fibrous veil for Class A sheet molding compound applications |
-
1985
- 1985-07-17 JP JP15891185A patent/JPS6218216A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7211530B2 (en) | 2003-09-24 | 2007-05-01 | Owens-Corning Fiberglas Technology, Inc. | Fibrous veil for Class A sheet molding compound applications |
US7498279B2 (en) | 2003-09-24 | 2009-03-03 | Owens Corning Intellectual Capital, Llc | Fibrous veil for class A sheet molding compound applications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5268050A (en) | Process for using an extruder die assembly for the production of fiber reinforced thermoplastic pellets, tapes and similar products | |
US2483406A (en) | Process and apparatus for producing fibrous materials | |
US2357392A (en) | Process for producing fibrous products | |
CA1052966A (en) | Radial extrusion and stretching of foam to form fibrous networks | |
US3615995A (en) | Method for producing a melt blown roving | |
US3050427A (en) | Fibrous glass product and method of manufacture | |
US5145626A (en) | Process for the continuous manufacture of thermomoldable thermoplastic composite materials | |
US3634564A (en) | Process for the manufacture of fibrillated foamed films | |
US2991168A (en) | Fibrous solid propellants in sheet form | |
US3717541A (en) | Non-woven fabric-like member | |
RU2005131731A (en) | NONWOVEN MAT, METHOD FOR ITS MANUFACTURE AND FIBER COMPOSITE | |
US20080305705A1 (en) | Reinforcing material with bulked fibres | |
CA2238250A1 (en) | Chopped carbon fibers and a production process thereof | |
US3969472A (en) | Method of manufacturing a foam fibrillated fibrous web from an isotactic polypropylene, polystyrene and α-methylstrene blend | |
JPS60206868A (en) | Production of packing resin for carpet | |
US4028452A (en) | Additives to improve wettability of synthetic paper pulp | |
JPS6218216A (en) | Cylindrical body | |
US2806248A (en) | Apparatus for making a threadlike member | |
US4062915A (en) | Stereo reticulated polymeric lace-like structure and process for making the same | |
US4188448A (en) | Stereo reticulated polymeric lace-like structure and process for making the same | |
JP2623282B2 (en) | Molding material | |
US5618373A (en) | Apparatus for forming extruded filament mat material | |
JPH0246056B2 (en) | ||
US3589960A (en) | Method of making non-twisted cordage | |
GB1108303A (en) | Porous abrasive and process for producing the same |