JPS62181810A - Boring condition inspector - Google Patents

Boring condition inspector

Info

Publication number
JPS62181810A
JPS62181810A JP61021983A JP2198386A JPS62181810A JP S62181810 A JPS62181810 A JP S62181810A JP 61021983 A JP61021983 A JP 61021983A JP 2198386 A JP2198386 A JP 2198386A JP S62181810 A JPS62181810 A JP S62181810A
Authority
JP
Japan
Prior art keywords
ray
section
drill
breakage
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61021983A
Other languages
Japanese (ja)
Inventor
Kenji Sato
謙二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61021983A priority Critical patent/JPS62181810A/en
Publication of JPS62181810A publication Critical patent/JPS62181810A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/248Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods
    • B23Q17/249Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods using image analysis, e.g. for radar, infrared or array camera images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B49/00Measuring or gauging equipment on boring machines for positioning or guiding the drill; Devices for indicating failure of drills during boring; Centering devices for holes to be bored
    • B23B49/001Devices for detecting or indicating failure of drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/099Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring features of the machined workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Drilling And Boring (AREA)

Abstract

PURPOSE:To enable the direct monitoring of bored condition by irradiating X-ray onto a work having through-holes bored therethrough and producing a visible optical image on a fluorescent board then deciding the breaking condition of tool on the basis of said optical image. CONSTITUTION:Through-holes 2 are bored from the upper face 5 of a substrate 3 by means of a drill 1. A portion 7 for irradiating X-ray is positioned at an nit area in the through-hole section. X-ray 6 is passed through the substrate 3 then received at a section 10 for X-ray inspection comprising a fluorescent board 9 thereafter collected 11 and sent to a photographing section 12. On the basis of an image signal S1 fed from the photographing section 12, a section 14 for deciding the breaking will perform comparison with a normal pattern through a pattern matching method and decide the breaking of tool for subsequent replacement thereof by the operator.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ドリルなどの折損を自動釣に検出することの
できる孔明状況検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a drilling condition inspection device that can automatically detect breakage of a drill or the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電子機器の軽量小形化にともなって、それに用いられる
回路基板が扁密度化している。この高密度回路基板では
、当然実装される回路素子も小形化しており、必然的に
それらを装着する取付は孔など、プリント基板に形成さ
れる各種孔も小径化する。すなわち、従来直径9.8m
mであったものが。
As electronic devices become lighter and smaller, the circuit boards used therein are becoming more compact. Naturally, in this high-density circuit board, the circuit elements to be mounted are also downsized, and various holes formed on the printed circuit board, such as holes for mounting them, are also inevitably downsized. In other words, the conventional diameter was 9.8m.
What was m.

0.3 m 、 0.1 txmになっている。0.3 m, 0.1 txm.

通常、このプリント基板の孔あけは、ドリルを用いた自
動孔あけ加工機でおこなわれ、ドリルの折損が検出され
た場合、ただちに孔あけ加工を停止するようになってい
る。このドリルの折損を検出する検出器としては、従来
より、何)、折損による切削トルクの変化で検出するも
の、(ロ)、たとえばドリルを取り付ける主軸ヘッド部
にAEセンサを装着し、このAEセンサから出力するイ
言号から検出するもの、(ハ)、投光ヘッドから放出さ
れる光ビームを光ファイバを通してドリルに照射し、受
光ヘッドに入射する光量から光学的にドリルの折損を検
出するものなど、各宿のものがある。
Normally, this printed circuit board is drilled using an automatic drilling machine that uses a drill, and if a breakage of the drill is detected, the drilling process is immediately stopped. Conventionally, there are two types of detectors for detecting breakage of a drill: (1) one that detects changes in cutting torque due to breakage; (2) For example, an AE sensor is attached to the spindle head on which the drill is attached, and the AE sensor (c) A method that irradiates the drill with the light beam emitted from the projecting head through an optical fiber, and optically detects the breakage of the drill from the amount of light incident on the light receiving head. There are some for each inn.

しかしこれら従来の検出器は、直径0.8mmのドリル
の折損を検出するのが限界であって、それ以下のトリル
の折損を確実に検出することができない。
However, these conventional detectors have a limit of detecting a breakage of a drill with a diameter of 0.8 mm, and cannot reliably detect a breakage of a drill smaller than that.

すなわち、切削トルクの変化やパセンサから出力される
信号から検出するものは、ドリルの直径が小さくなると
、それにつれて切削トルクやAE信号自体が小さくなり
、 S/N比が低下して検出できなくなる。また光学的
に検出するものは、光フアイバ先端から放射される光が
約60’の角度で拡散するため、ドリルの直径が小さく
なると、ドリルの有無にかかわらずその先端から放射さ
れた光が受光ヘッドに入射し、ドリルの折損が検出でき
なくなる。
In other words, as the diameter of the drill decreases, the cutting torque and AE signal themselves become smaller, and the S/N ratio decreases, making it impossible to detect what is detected from changes in cutting torque and signals output from the path sensor. In addition, for optical detection, the light emitted from the tip of the optical fiber is diffused at an angle of about 60', so if the diameter of the drill becomes small, the light emitted from the tip will be received regardless of whether there is a drill or not. It enters the head, making it impossible to detect drill breakage.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情を勘案してなされたもので。 The present invention has been made in consideration of the above circumstances.

小径ドリルによる穿孔状態の良否を自動的かつ正確に検
出することのできる孔明状況検査装置を提供することを
目的とする。
It is an object of the present invention to provide a drilling condition inspection device that can automatically and accurately detect the quality of drilling by a small-diameter drill.

〔発明の概要〕[Summary of the invention]

透孔が穿設された被加工物にX線を照射してその透過X
線画像を螢光板上にて可視光像として得るとともに、こ
のX線画像に基づいて上記透孔を加工する工具の折損状
態を判定するよう匿したものである。
A workpiece with a through hole is irradiated with X-rays and the transmitted X
A line image is obtained as a visible light image on a fluorescent plate, and the broken state of the tool for machining the through hole is determined based on this X-ray image.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例を図面を参照して詳述する。 An embodiment of the present invention will be described below in detail with reference to the drawings.

第1図は、この実施例の孔明状況検査装置に関する。こ
の装置は、ドリル(1)により所定位]〃に透孔(2)
・・・が孔明される基板(3)の端縁部を保持して位置
決めする保持部(4)と、この保持部(4)により保持
された基板(3)の一方の主面(5)側に配設されX線
(6)を主面(5)にほぼ直交させて照射するX線照射
部(7)と、基板(3)の他方の主面(8)側に配設さ
れ基板(3)を透過したX線(6)を受光して受光量に
対応した強度を有する可視光として発光させる螢光板(
9)を主要部とするXi検知部(lO)と、螢光板(9
)をはさんで基板(3)の反対側に設けられ螢光板(9
)にて把捉されたX線画像を受光して所定位置に集光す
る集光光学系住υと、この集光光学系住υにより集光さ
れたX線画像を受光して画像信号に変換する例えばIT
Vカメラ、 CCDカメラ等の撮像部αりと、この撮像
部αりから出力された画像信号を入力して一時的に記憶
する画像メモリ部α東と、この画像メモリ部崗からの画
像信号に基づきドリル(1)の折損の有無を判定する例
えばマイクロコンピュータなどからなる折損判定部α4
と、この折損判定部a荀による判定結果および撮像部0
にて撮像されたX線画像を映像表示する例えばブラウン
管などの表示部(15とからなっている。しかして、折
損判定部α荀及び保持部(4)は、ドリル(1)を保持
して駆動するNCボール盤(toを数値制御するNC部
(I7)に接続されている。そうして。
FIG. 1 relates to the permeation status inspection device of this embodiment. This device has a through hole (2) in a predetermined position with a drill (1).
A holding part (4) that holds and positions the edge of the substrate (3) to be drilled, and one main surface (5) of the substrate (3) held by this holding part (4). An X-ray irradiation section (7) is arranged on the side of the substrate (3) and irradiates the X-rays (6) almost orthogonally to the main surface (5), and an X-ray irradiation section (7) is arranged on the other main surface (8) side of the substrate (3). (3) A fluorescent plate (
9) as the main part, and a fluorescent plate (9).
) on the opposite side of the substrate (3).
), which receives the X-ray image and focuses it on a predetermined position, and receives the X-ray image focused by this focusing optical system and converts it into an image signal. For example, IT
An image pickup unit such as a V camera or a CCD camera, an image memory unit that inputs and temporarily stores the image signal output from the image pickup unit, and an image signal output from the image memory unit A breakage determination unit α4, which includes, for example, a microcomputer, determines whether or not the drill (1) is broken based on the
, the determination result by the breakage determination unit a and the imaging unit 0
The display unit (15), such as a cathode ray tube, displays the X-ray image taken by the drill. It is connected to the NC section (I7) that numerically controls the driving NC drilling machine (to.

折損判定部Oaにては、複数段階にわたって順次行われ
る各折損検査ごとの複数の正常パターン(第2図参照)
が格納されている。これら正常パターンの切換操作は、
 N0部(I7)からの切換信号SCにより行われるよ
うになっている。また、X線(6)の基板(5)への照
射領域は1例えば、基板(6)のto分の1というよう
に一部のみである。そのため、一つの照射領域の検査が
終了すると、保持部(4)により、次の照射領域がX線
照射部(刀の直下となるように位置決めされる。
In the breakage determination section Oa, multiple normal patterns are determined for each breakage inspection performed sequentially over multiple stages (see Figure 2).
is stored. These normal pattern switching operations are as follows:
This is done by a switching signal SC from the N0 section (I7). Further, the irradiation area of the substrate (5) with the X-rays (6) is only a part, for example, 1/to of the substrate (6). Therefore, when the inspection of one irradiation area is completed, the holding part (4) positions the next irradiation area so that it is directly below the X-ray irradiation part (sword).

つぎに、上記構成の孔明状況検査装置の作動について述
べる。
Next, the operation of the clarity status inspection device having the above configuration will be described.

まず、NC部←での制御信号SCによりボール盤(16
)及び保持部(4)が作動し、ドリル(1)により基板
(3)の穿孔が前記照射領域を一単位として連続して行
われ。
First, the drilling machine (16
) and the holding part (4) are operated, and the drill (1) continuously perforates the substrate (3) using the irradiation area as one unit.

透孔(2)・・・が穿設される。ついで、この単位領域
の穿孔作業が完了すると、この穿孔が完了した単位領域
がX線照射部(7)の直下位置に、保持部(4)により
6位置決めされる。つぎに、X線照射部(7)からX線
(6)が基板(3)の主面(5)に照射される。すると
、X線(6)は、基板(3,1を透過し、螢光板(9)
上lごてX線画像として受光される(第3図参照)。こ
のとき。
A through hole (2)... is bored. Then, when the drilling operation of this unit area is completed, the unit area where the drilling has been completed is positioned directly below the X-ray irradiation unit (7) by the holding unit (4). Next, the main surface (5) of the substrate (3) is irradiated with X-rays (6) from the X-ray irradiation section (7). Then, the X-ray (6) passes through the substrate (3, 1) and passes through the fluorescent plate (9).
The light is received as an X-ray image (see Figure 3). At this time.

基板(3)に対応するX線強度は、透孔(2)・・・を
通過したX線強度よりもはるかに微弱となる。したがっ
て、第3図に示すように、透孔(2)・・・に対応する
部分α〜・・・のみが明るく輝やく。このようなX線画
像は、来光光学系αυを介して撮像部αカにて撮像され
The X-ray intensity corresponding to the substrate (3) is much weaker than the X-ray intensity that has passed through the through holes (2). Therefore, as shown in FIG. 3, only the portions α to . . . corresponding to the through holes (2) . . . shine brightly. Such an X-ray image is captured by the imaging unit α through the optical system αυ.

X線画像を示す画像信号SIが画像メモリ部(13に出
力される。ついで、この画像メモリ部(13)からは。
An image signal SI indicating an X-ray image is output to the image memory section (13).Then, from this image memory section (13).

第3図に示すX線画像を示す画像信号SKが折損判定部
(14)に出力される。しかして、この折損判定部α滲
にては、バメーンマッチング法などにより、第3図に示
す幽該単位領域のX線画像と、42図に示す正常パター
ンとの比較処理が行われる。その結果1両者間に不一致
が発見された場合、つまり。
An image signal SK representing the X-ray image shown in FIG. 3 is output to the breakage determining section (14). In the breakage determination section α, a comparison process is performed between the X-ray image of the broken unit area shown in FIG. 3 and the normal pattern shown in FIG. 42 using a beam matching method or the like. As a result, if a discrepancy is found between the two, that is.

透孔(2)・・・穿設予定部位に対応する部位に明るく
発光する部分(13・・・がない場合は、「ドリル(1
)が折損」と判定し、折損判定部α4からN0部α7ノ
に折損検出信号SDが出力され、 NCCポール翰によ
り穿孔作業が中断され、ドリル(1)の交換を行う。し
かし、X線画像と正常パターンとの間に不一致が発見さ
れない場合は、「ドリル(1)は正常」と判定し、 N
C穿孔加工を継続させ、以下、各単位領域ごとに同様の
操作を繰返す。
Through hole (2)...If there is no brightly emitting part (13...) in the area corresponding to the planned drilling area, please
) is determined to be broken, a breakage detection signal SD is output from the breakage determination section α4 to the N0 section α7, the drilling operation is interrupted by the NCC pole handle, and the drill (1) is replaced. However, if no discrepancy is found between the X-ray image and the normal pattern, it is determined that "drill (1) is normal" and N
C. The perforation process is continued, and the same operation is repeated for each unit area.

以上のように、この実施例の工具折損検出装置は、X線
により透孔(2)・・・の穿孔状態を直接監視するよう
にしているので、検査精度が向上する。とくに、可視光
では検出困難な直径が0.8鵡以下の透孔でも、確笑に
チェック可能であり、ドリル折損検出精度が塙まる。さ
らζこ、透孔(2)・・・の状態を直接監視することが
可能であるので、ドリル折損のみならず、ドリルの摩耗
状態横歪も行うことができる利点をもっている。
As described above, since the tool breakage detection device of this embodiment directly monitors the drilling state of the through holes (2) using X-rays, the inspection accuracy is improved. In particular, even holes with a diameter of 0.8 mm or less, which are difficult to detect with visible light, can be checked with certainty, improving the accuracy of drill breakage detection. Furthermore, since it is possible to directly monitor the condition of the through holes (2), it has the advantage that it is possible to check not only drill breakage, but also the wear state and lateral distortion of the drill.

なお、上記実施例は、ドリルの折損を例示しているが、
リーマ、タップ等、他の穿孔工具)こら適用できる。の
みならず、板材の穿孔プレス加工におけるポンチの折損
検出にも本発明を適用できる。
In addition, although the above example illustrates the breakage of the drill,
Other drilling tools such as reamers, taps, etc.) can also be used. In addition, the present invention can also be applied to detection of breakage of a punch during punch press processing of plate materials.

〔発明の効果〕〔Effect of the invention〕

本発明の孔明状況検査装置は、X線により穿孔状態を直
接監視するようにしているので、工具折損の検出精度が
向上するとともに、自動化に適合しやすく、検査能率向
上にもつながる。とくに。
Since the drilling condition inspection device of the present invention directly monitors the drilling condition using X-rays, it improves the detection accuracy of tool breakage, is easily adaptable to automation, and leads to improved inspection efficiency. especially.

例えば内径が0.8mg以下の微小孔穿孔用の工具折損
検出において格別の効果を奏する。また、折損検出のほ
かに、孔径の管理工具の摩耗状態の監視が可能となる利
点を有している。
For example, it is particularly effective in detecting tool breakage for drilling micro holes with an inner diameter of 0.8 mg or less. In addition to detecting breakage, the present invention has the advantage that it is possible to monitor the wear state of the hole diameter management tool.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の孔明状況検査装置の構成図
、第2図は正常パターンを示す図、第3図はX線画像を
示す図である。 (1)ニトリル、      (2) :透 孔。 (3)二基板(被加工物) 、  (7) : X線照
射部。 αo):X#、!検知部、    α2:撮像部。 αa:折損判定部。 代理人 弁理士  則 近 憲 佑 同     竹 花 喜久男 第1図 第2図    第3図
FIG. 1 is a block diagram of a perforation condition inspection apparatus according to an embodiment of the present invention, FIG. 2 is a diagram showing a normal pattern, and FIG. 3 is a diagram showing an X-ray image. (1) Nitrile, (2): Through hole. (3) Two substrates (workpieces), (7): X-ray irradiation section. αo):X#,! Detection section, α2: Imaging section. αa: Breakage determination section. Agent Patent Attorney Noriyuki Chika Yudo Kikuo Takehana Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 透孔の孔明加工が施された被加工物に上記透孔のほぼ軸
方向にX線を照射するX線照射部と、上記被加工物をは
さんで上記X線照射部の反対側に設けられ上記透孔を経
由してきたX線を可視画像に変換するX線検知部と、こ
のX線検知部にて得られた可視画像を一定位置に集光す
る集光光学系と、この集光光学系により集光された可視
画像を撮像して画像信号に変換する撮像部と、上記撮像
部から出力された画像信号に基づき上記穿孔加工を行う
工具の折損を判定する折損判定部とを具備することを特
徴とする孔明状況検査装置。
an X-ray irradiation unit that irradiates a workpiece having a through-hole drilled with X-rays in substantially the axial direction of the through-hole; and an X-ray irradiation unit provided on the opposite side of the X-ray irradiation unit across the workpiece. an X-ray detection unit that converts the X-rays that have passed through the through-hole into a visible image; a condensing optical system that condenses the visible image obtained by the X-ray detection unit at a fixed position; It includes an imaging unit that captures a visible image focused by an optical system and converts it into an image signal, and a breakage determination unit that determines whether the tool for performing the drilling process is broken based on the image signal output from the imaging unit. A confucius status inspection device characterized by:
JP61021983A 1986-02-05 1986-02-05 Boring condition inspector Pending JPS62181810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61021983A JPS62181810A (en) 1986-02-05 1986-02-05 Boring condition inspector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61021983A JPS62181810A (en) 1986-02-05 1986-02-05 Boring condition inspector

Publications (1)

Publication Number Publication Date
JPS62181810A true JPS62181810A (en) 1987-08-10

Family

ID=12070259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61021983A Pending JPS62181810A (en) 1986-02-05 1986-02-05 Boring condition inspector

Country Status (1)

Country Link
JP (1) JPS62181810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066606A3 (en) * 2003-01-24 2005-03-24 Jarvis Facilities Ltd Work site monitoring
KR102133149B1 (en) * 2020-03-23 2020-07-13 신달식 Apparatus for cutting surface of plate of plate heat exchanger frame and Method for cutting the plate
US20210053169A1 (en) * 2019-08-20 2021-02-25 vhf camfacture Aktiengesellschaft Method for Automated Positioning of a Blank in a Processing Machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066606A3 (en) * 2003-01-24 2005-03-24 Jarvis Facilities Ltd Work site monitoring
GB2415037A (en) * 2003-01-24 2005-12-14 Jarvis Rail Ltd Work site monitoring
GB2415037B (en) * 2003-01-24 2007-01-03 Jarvis Rail Ltd Work site monitoring
US20210053169A1 (en) * 2019-08-20 2021-02-25 vhf camfacture Aktiengesellschaft Method for Automated Positioning of a Blank in a Processing Machine
US11679464B2 (en) * 2019-08-20 2023-06-20 vhf camfacture Aktiengesellschaft Method for automated positioning of a blank in a processing machine
US11911862B2 (en) 2019-08-20 2024-02-27 vhf camfacture Aktiengesellschaft Method for automated positioning of a blank in a processing machine
KR102133149B1 (en) * 2020-03-23 2020-07-13 신달식 Apparatus for cutting surface of plate of plate heat exchanger frame and Method for cutting the plate

Similar Documents

Publication Publication Date Title
JP3460678B2 (en) Laser processing method and processing apparatus
JP2008200694A (en) Method for machining wafer, and laser beam machining apparatus
EP1890835A1 (en) Laser machine tool with laser machining nozzle alignment for orienting the laser beam to the laser machining nozzle hole
US3912925A (en) Method and apparatus for machining workpieces
US20070256298A1 (en) Boring device for boring via holes for connecting contact regions of multilayer printed circuit boards
JP5021957B2 (en) Tool inspection system
JPH10312979A (en) Method for detecting cutting state of wafer
JP5048978B2 (en) Laser processing equipment
JPS62181810A (en) Boring condition inspector
KR20010015372A (en) Laser inspection apparatus
JP2915025B2 (en) Inspection methods
JP2766759B2 (en) Drilling equipment for fiber spinneret
JP7399461B2 (en) Machining condition inspection device and press processing system
JPS62193747A (en) Tool breakage detecting means
US6862089B2 (en) Methods for managing examination of foreign matters in through holes
JPS6294209A (en) Tool breakage detector
JPS62124809A (en) Detecting device for breakage of drill
JPH05169355A (en) Tool malfunction detector
TWI821580B (en) Laser processing method and laser processing device
JP5465983B2 (en) Printed circuit board drilling machine
JP7180960B2 (en) Board drilling device and board drilling method
JP5350699B2 (en) Cutting monitoring device for cutting equipment
JP6219665B2 (en) Laser processing equipment
JPS62120905A (en) Drill break detecting device
JPH02190239A (en) Drill abnormality detecting device for borer for printed wiring board