JPS62180730A - Device for separating metallic isotope - Google Patents

Device for separating metallic isotope

Info

Publication number
JPS62180730A
JPS62180730A JP2175786A JP2175786A JPS62180730A JP S62180730 A JPS62180730 A JP S62180730A JP 2175786 A JP2175786 A JP 2175786A JP 2175786 A JP2175786 A JP 2175786A JP S62180730 A JPS62180730 A JP S62180730A
Authority
JP
Japan
Prior art keywords
liq
groove
metal
recovery plate
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2175786A
Other languages
Japanese (ja)
Inventor
Ritsuo Hashimoto
律男 橋本
Shigeru Takahara
茂 高原
Younosuke Hoshi
要之介 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2175786A priority Critical patent/JPS62180730A/en
Publication of JPS62180730A publication Critical patent/JPS62180730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To surely recover a liq. in a recovery vessel by forming plural grooves of specified structure on the surface of a recovery plate, and preventing the detachment and falling of liq. droplets from the surface of the recovery plate. CONSTITUTION:Metal vapor is condensed in the form of a liq. or a solid on the recovery plate. Plural grooves 9 simultaneously satisfying the equations I, II, and III regarding the groove depth h(m), the surface tension sigma(kgf/m) of the liq. metal at the working temp., the inclination phi( deg.) of the inclined face of the groove, and the specific weight gamma(kgf/m<3>) of the liq. metal at the working temp. are formed on the surface of the recovery plate 7 for condensing or coagulating metal vapor in the form of a liq. or a solid. Consequently, liq. droplets are not irregularly agglomerated and grown on the recovery plate 7, the detachment and falling of liq. droplets from the surface of the recovery plate 7 are controlled, the liq. flows along the groove 9, and hence the liq. can be surely recovered in the recovery vessel 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザによるウラン濃縮装置のウラン回収板
等、レーザによる同位体分離装置の同位体回収板に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an isotope recovery plate for a laser-based isotope separation device, such as a uranium recovery plate for a laser-based uranium enrichment device.

〔従来の技術〕[Conventional technology]

第2図にレーザによるウラン濃縮装置の概要を示す。 Figure 2 shows an overview of a laser-based uranium enrichment device.

真空チャンバ1内のルツボ2の中の原料ウラン3は電子
ビーム4によって加熱され、蒸発して金属蒸気流5にな
る。この金属蒸気流は、製品回収板群6の間を通過する
ときに特定の波長のレーザ光線を照射され、特定の同位
体のみが電離される。電離されて発生した特定の同位体
のイオンはこの領域に付加された電磁場により偏向され
製品回収板6に捕集され、一方、電離されなかった原子
流は廃品回収板7に捕集される。
Raw material uranium 3 in a crucible 2 in a vacuum chamber 1 is heated by an electron beam 4 and evaporated into a metal vapor stream 5. This metal vapor flow is irradiated with a laser beam of a specific wavelength when passing between the product collection plate group 6, and only specific isotopes are ionized. Ions of a specific isotope generated by ionization are deflected by the electromagnetic field applied to this region and collected on the product collection plate 6, while non-ionized atomic flows are collected on the waste product collection plate 7.

この両回収板を捕集される金属の融点以上に保持してお
くと、金属は回収板面上に凝縮して液体状態で回収板上
を流れ1回収容器8(廃品回収板の場合)の中に回収さ
れる。
When both collection plates are held at a temperature higher than the melting point of the metal to be collected, the metal condenses on the collection plate surface and flows over the collection plate in a liquid state into the collection container 1 and the collection container 8 (in the case of a waste collection plate). collected inside.

従来のも、のはこの回収板の表面が平滑面であり、蝮? 〔発明が解決しようとする問題点〕 従来装置においては、上記のごとく、金属の凝縮面が平
滑面なため、凝縮した液が不規則に滴状に凝集、成長す
る。廃品回収板及び製品回収板の一部は下向き面のため
、成長した滴が回収板面から離脱、落下して、回収器8
等で回収できないことがある。
In the conventional model, the surface of this collection plate is smooth, so it is easy to use. [Problems to be Solved by the Invention] In the conventional apparatus, as described above, since the metal condensation surface is smooth, the condensed liquid coagulates and grows irregularly in the form of drops. Since some of the waste collection board and product collection board face downward, the growing droplets detach from the collection board surface, fall, and fall into the collection container 8.
etc., it may not be possible to collect it.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はかかる間唄点を解決するために、金属蒸気を液
体あるいは固体状態で、凝縮あるいは凝結させる回収板
において、溝深さhC,、〕、溝斜面傾斜角ダ〔度〕、
使用温度における液体金属の表面張力σ〔#17.. 
) 、使用温度における液足する溝を複数本上記回収板
表面に形成してなることを特徴とする金属同位体分離装
置を供するものである。
In order to solve this problem, the present invention provides a collection plate that condenses or condenses metal vapor in a liquid or solid state, with a groove depth hC, , , groove slope inclination angle d [degrees],
Surface tension σ of liquid metal at operating temperature [#17. ..
), provides a metal isotope separation device characterized in that a plurality of grooves are formed on the surface of the collection plate to allow liquid to flow at the operating temperature.

〔作用〕[Effect]

本発明においてはかかる構成により、回収板上に凝縮し
た液は溝に沿って流れ、1本の溝の中での滴の凝集はあ
っても、他の溝との干渉はないため、不規則で局所的な
液滴を凝集、合体成長、落下の心配が少ない。
In the present invention, with such a configuration, the liquid condensed on the collection plate flows along the grooves, and even if droplets aggregate in one groove, there is no interference with other grooves, so the liquid condensed on the collection plate flows irregularly. There is less worry about local droplets agglomerating, coalescing, and falling.

〔実施例〕 1□18に*5@8JJ。イ9oユtイ0、お7ケ持さ
れる液の力学的バランスを説明すると。
[Example] 1□18 *5@8JJ. Let me explain the mechanical balance of the liquid that is maintained.

2σcosψ= W             +11
という式に関し、 (但し、ψ= 180’−〇−(90°−φ)(2)W
:液の重量(溝に沿う単位長さ)〔#//m〕σ:液の
表面張力 Ckgf/、、〕 φ:溝斜面の傾斜角 〔度〕 θ :液と面の接触角 〔度〕 ψ:接触部液面接線と動方向との角度 〔度〕              )同式で右辺が左
辺より大きくなると液滴が落下するので、落下しない範
囲で溝寸法を選定すればよい。
2σcosψ= W +11
Regarding the formula, (where ψ= 180'-〇-(90°-φ) (2) W
: Weight of the liquid (unit length along the groove) [#//m] σ: Surface tension of the liquid Ckgf/,,] φ: Inclination angle of the groove slope [degrees] θ: Contact angle between the liquid and the surface [degrees] ψ: Angle between the liquid surface line of the contact area and the direction of movement [degrees]) In the same equation, if the right side is larger than the left side, droplets will fall, so the groove dimensions should be selected within a range that will not cause them to fall.

ウラン金属を捕集する回収板表面の溝9形状の例を示せ
ば、 であり1、 W=−・r である。
An example of the shape of the groove 9 on the surface of the recovery plate for collecting uranium metal is as follows: 1, W=-·r.

(1)、(2)式より、、 “=亙=・?・8°10−″ ・ ri’ 、 r* = 2’x16−”mが得られる。From equations (1) and (2), “=亙=・?・8°10−″・ ri', r*=2'x16-"m is obtained.

  □ 廃品回収板表面溝9の方向例を説明すると、第3図に示
すよ侯に溝9を回□収板70重カに対する傾き方向に沿
わせて、液を下端に導き、回収容器8内に流入させる。
□ To explain an example of the direction of the grooves 9 on the surface of the waste collection plate, as shown in FIG. to flow into.

回収板を回収対象となる金属の融点以下にして、一旦固
体状態で補集し、後に別途加熱液化して流下回収させる
場合にも□溝9は有効で、最終的に液状で流下させる方
向に沿って溝9を形成させればよい。
The □ groove 9 is also effective when the collection plate is lowered to below the melting point of the metal to be collected to collect it in a solid state, and then separately heat it to liquefy it and collect it flowing down. A groove 9 may be formed along the line.

溝巾を:溝9の長手方向に変化させテーパー状にし、溝
長手方向の表面張力に差をつけて、積極的に一方の方向
に流下させる駆動力を付与することも、特に回収板が水
平面に近く重力効果が期待できない場合に有効である。
It is also possible to change the groove width in the longitudinal direction of the groove 9 to make it tapered, to make a difference in the surface tension in the longitudinal direction of the groove, and to apply a driving force that actively causes the flow to flow down in one direction, especially when the collection plate is on a horizontal surface. This is effective when gravitational effects cannot be expected near .

〔発明の効果〕〔Effect of the invention〕

本発明は以下の効果を奏する (1)溝構造により回収板上での液滴の不規則な凝集、
成長がなく、回収板表面からの液滴の離脱落下がない。
The present invention has the following effects: (1) Irregular agglomeration of droplets on the collection plate due to the groove structure;
There is no growth, and there is no separation or fall of droplets from the collection plate surface.

(2)溝に沿って液が流れるため、確実に回収容器へ液
を回収できる。
(2) Since the liquid flows along the groove, the liquid can be reliably collected into the collection container.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例としての溝の断面形状の説明図
、第2図はウラン濃縮装置の概要を示す、第3図は本発
明の実施例としての溝の方向を示す図である。 7・・・回収板、8・・・回収容器、9・・溝。 第1図
Fig. 1 is an explanatory diagram of the cross-sectional shape of a groove as an embodiment of the present invention, Fig. 2 shows an outline of a uranium enrichment device, and Fig. 3 is a diagram showing the direction of a groove as an embodiment of the present invention. . 7... Collection plate, 8... Collection container, 9... Groove. Figure 1

Claims (1)

【特許請求の範囲】 金属蒸気を液体あるいは固体状態で、凝縮あるいは凝結
させる回収板において、溝深さh〔m〕、溝斜面傾斜角
φ〔度〕、使用温度における液体金属の表面張力a〔k
gf/m〕、使用温度における液体金属の比重量r〔k
gf/m^3〕に関し、30°≦φ≦60°、0.7h
_0≦h<1.3h_0、h_0=√{(4a)/[√
(2)πr]}の式を同時に満足する溝を複数本上記回
収板表面に形成してなることを特徴とする金属同位体分
離装置。
[Claims] In a recovery plate that condenses or condenses metal vapor in a liquid or solid state, the groove depth h [m], the groove slope inclination angle φ [degrees], and the surface tension of the liquid metal at the operating temperature a [ k
gf/m], the specific weight of the liquid metal at the operating temperature r[k
gf/m^3], 30°≦φ≦60°, 0.7h
_0≦h<1.3h_0, h_0=√{(4a)/[√
(2) A metal isotope separation device characterized in that a plurality of grooves that simultaneously satisfy the following equation are formed on the surface of the collection plate.
JP2175786A 1986-02-03 1986-02-03 Device for separating metallic isotope Pending JPS62180730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2175786A JPS62180730A (en) 1986-02-03 1986-02-03 Device for separating metallic isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2175786A JPS62180730A (en) 1986-02-03 1986-02-03 Device for separating metallic isotope

Publications (1)

Publication Number Publication Date
JPS62180730A true JPS62180730A (en) 1987-08-08

Family

ID=12063929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2175786A Pending JPS62180730A (en) 1986-02-03 1986-02-03 Device for separating metallic isotope

Country Status (1)

Country Link
JP (1) JPS62180730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383979A (en) * 2022-01-21 2022-04-22 四川大学 Method for measuring surface tension coefficient of liquid by liquid drop method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383979A (en) * 2022-01-21 2022-04-22 四川大学 Method for measuring surface tension coefficient of liquid by liquid drop method

Similar Documents

Publication Publication Date Title
Nogi et al. Role of interfacial phenomena in deoxidation process of molten iron
JP3857589B2 (en) High-purity metal purification method and purification apparatus
Munitz et al. Supercooling effects in Cu-10 Wt Pct Co alloys solidified at different cooling rates
US2621121A (en) Production of titanium metal
US9970076B2 (en) Method of apparatus for condensing metal vapours using a nozzle and a molten collector
CA1130985A (en) Silicon purification method
JPS62180730A (en) Device for separating metallic isotope
Singh et al. Chemistry of eutectic and monotectic; phenanthrene-succinonitrile system
Zavjalov et al. Synthesis of copper nanopowders using electron-beam evaporation at atmospheric pressure of inert gas
CA1199475A (en) Recovery of phosphorus from sludge
EP0050324B1 (en) Method and apparatus for producing high purity silicon from flames of alkalimetal and silicon halide
US4839904A (en) Apparatus for the melting of metals
DE2716082C2 (en) Process for the thermal treatment of solids
Ho et al. Heterogeneous nucleation of solidification of Si in Al Si
US3266557A (en) Apparatus and method for treating phosphoric acids and the like
US5192359A (en) Recovery of aluminum from furnace dross
EP1335993B1 (en) Recovery of purified volatile metal such as lithium from mixed metal vapours
Shangguan et al. In situ observation of interactions between gaseous inclusions and an advancing solid/liquid interface
JPS62129131A (en) Apparatus for separating metal isotope
US4780296A (en) Process for producing phosphorus
GB2259564B (en) Metal processing or recovery
KR20230087182A (en) Salt separation system and thereof method
JPS5812205B2 (en) Boric acid separation and recovery method
SU718224A1 (en) Method of granulating metallic melts
JPH0415009B2 (en)