JPS62180258A - Humidity detecting circuit - Google Patents

Humidity detecting circuit

Info

Publication number
JPS62180258A
JPS62180258A JP61023556A JP2355686A JPS62180258A JP S62180258 A JPS62180258 A JP S62180258A JP 61023556 A JP61023556 A JP 61023556A JP 2355686 A JP2355686 A JP 2355686A JP S62180258 A JPS62180258 A JP S62180258A
Authority
JP
Japan
Prior art keywords
temperature
resistance
operational amplifier
sensitive resistor
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61023556A
Other languages
Japanese (ja)
Other versions
JPH0531939B2 (en
Inventor
Yuji Ando
有司 安藤
Yuichi Mori
裕一 森
Yuichi Tawara
祐一 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61023556A priority Critical patent/JPS62180258A/en
Priority to DE3751125T priority patent/DE3751125T2/en
Priority to EP87101319A priority patent/EP0232817B1/en
Priority to NZ219136A priority patent/NZ219136A/en
Priority to CA000528880A priority patent/CA1287986C/en
Priority to KR878700873A priority patent/KR890004076B1/en
Priority to AU68287/87A priority patent/AU574947B2/en
Priority to US07/010,794 priority patent/US4768378A/en
Publication of JPS62180258A publication Critical patent/JPS62180258A/en
Publication of JPH0531939B2 publication Critical patent/JPH0531939B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electric Ovens (AREA)

Abstract

PURPOSE:To detect humidity without combining two constant current sources with each other by allowing the 1st temperature sensitive resistance for humidity detect to heat itself with a constant current and inputting its voltage to the 2nd temperature sensitive resistance, a resistance, and an operational amplifier which are connected in series. CONSTITUTION:A current from a constant current source I is inputted to the 1st temperature sensitive resistance H for humidity detection, which heats itself. The voltage across the resistance H is inputted to the inverted amplification input terminal of the operational amplifier OP through the resistance RC connected to the resistance N. Further, the amplifier OP is provided with a feedback resistance Rf for amplification. At this time, an output Vout is constant in a dry state because of a heat conduction coefficient hm is constant, but the hm increases owing to the generation of vapor as cooking progresses and the absolute value of the output Vout decreases. For the purpose, the circuit of the resistance N - amplifier OP is provided to eliminate the need to equalize temperature coefficients alphaH and alphaN of the resistances H and N, and humidity is detected only by adjusting the resistance RC, thereby detecting the finish of cooking in a microwave oven, etc.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、電子レンジ等の調理器において、その調理の
仕上りを湿度により検知するための湿度検知回路に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a humidity detection circuit for detecting the completion of cooking using humidity in a cooking device such as a microwave oven.

〈従来技術〉 従来の湿度検知回路は、例えば、第6図のごとく構成し
ている。すなわち、金属被膜を利用して、温度により抵
抗値が正の温度係数をもって直線変化する第一感温抵抗
Hと第二感温抵抗Nとを用い、一方の第一感温抵抗Hに
大電流定電流回路IHにより自己加熱しながら出力電圧
VHを取り出す0もう一方の第二感温抵抗Nは微小定電
流回路INにより周囲温度に比例した電圧VNを取り出
す。
<Prior Art> A conventional humidity detection circuit is configured as shown in FIG. 6, for example. That is, by using a metal film, a first temperature-sensitive resistor H and a second temperature-sensitive resistor N whose resistance value changes linearly with temperature with a positive temperature coefficient are used, and a large current is applied to one of the first temperature-sensitive resistors H. The other second temperature-sensitive resistor N takes out an output voltage VH while self-heating by a constant current circuit IH, and takes out a voltage VN proportional to the ambient temperature by a minute constant current circuit IN.

乾燥状態で両者の電圧差がVN−VHが零になるよう定
電流値を設定すると、差電圧は周囲温度にかかわらず零
になる。電子レンジの調理の進行により空気中に水蒸気
が含まれると、150℃〜200℃に自己加熱した第一
感温抵抗Hは水蒸気により熱が吸収されて温度が低下し
、第一感温抵抗H側の電圧が低下する0第二感温抵抗N
側の出力電圧VNは変化しないので、結果として、VN
−VHが零でなくなる。この電圧を演算増幅器OP3に
よりRf/R9倍増幅して湿度の有無を検出する。演算
増幅器OPI、演算増幅器OP2は出力電圧VN 、 
VT(を演算増幅器OP3に云えるための電圧フォロワ
ーである。
If the constant current value is set so that the voltage difference between the two is zero (VN-VH) in a dry state, the differential voltage will be zero regardless of the ambient temperature. When water vapor is included in the air due to the progress of cooking in a microwave oven, the first temperature-sensitive resistor H, which has self-heated to 150°C to 200°C, absorbs heat from the water vapor and its temperature decreases, and the first temperature-sensitive resistor H The voltage on the side decreases when the second temperature-sensitive resistor N
Since the side output voltage VN does not change, as a result, VN
-VH is no longer zero. This voltage is amplified nine times by Rf/R by an operational amplifier OP3 to detect the presence or absence of humidity. Operational amplifier OPI and operational amplifier OP2 output voltage VN,
This is a voltage follower to tell the operational amplifier OP3.

第−感温抵抗HJ第二感温抵抗Nの0℃における抵抗値
をそれぞれRH,RN、温度係数をαH1αN、温度t
H,tNにおける抵抗値をrH,rNとすると次式が成
立する。
The resistance values at 0°C of the first temperature-sensitive resistor HJ and second temperature-sensitive resistor N are RH and RN, the temperature coefficient is αH1αN, and the temperature t
If the resistance values at H and tN are rH and rN, the following equation holds true.

rH=RH(1+αH−tH)    ・−−−−−■
rN=RN(1+αN・tN)    ・・−■一方、
自己加熱による温度上昇(tH−iN)は、第一感温抵
抗Hの消費電力と直線関係にある。tNは周囲温度に等
しいため、 rH・IH”=hm(LH−tN)S  −■ただし、
hm:熱伝達係数 S:第一感温抵抗Hの表面積 0式と0式より となり、乾燥状態でhmが一定の時には、■式の前項は
定数となるから、自己加熱側の第一感温抵抗Hば0℃で
抵抗値が RH となり、温度係数αHの感温抵抗と等価になる。
rH=RH(1+αH-tH) ・------■
rN=RN(1+αN・tN)...-■On the other hand,
The temperature rise (tH-iN) due to self-heating has a linear relationship with the power consumption of the first temperature-sensitive resistor H. Since tN is equal to the ambient temperature, rH・IH”=hm(LH−tN)S −■ However,
hm: Heat transfer coefficient S: Surface area of first temperature sensing resistor H From equations 0 and 0, when hm is constant in a dry state, the previous term of equation (■) becomes a constant, so the first temperature sensing resistor on the self-heating side If the resistance H is 0°C, the resistance value becomes RH, which is equivalent to a temperature-sensitive resistance with a temperature coefficient αH.

ここで、第6図の演算増幅器OF+、演算増幅器OF2
の出力電圧はそれぞれ VN=rN弓N=RN・IN(I+αN−tN)  ・
・・・・@となる。演算増幅器OP3の出力Voutは
であるが、今αH=αN1 になるようINとIHを設定して常数設定すると、■式
のVoutは乾燥状態下でhmは一定であるので常KO
になる。■式を書きなおすと次式になる。
Here, the operational amplifier OF+ and the operational amplifier OF2 in FIG.
The output voltage of each is VN = rN bow N = RN・IN(I+αN−tN) ・
...becomes @. The output Vout of the operational amplifier OP3 is, but if we set IN and IH so that αH = αN1 and set a constant, Vout in equation (2) is always KO since hm is constant under dry conditions.
become. ■Rewriting the equation gives the following equation.

乾燥状態ではhmが一定であるが、調理が経過して調理
物から水蒸気が出始めると、hmが増大するので、Vo
utが0から急激に増大し、湿度検知ができる。Vou
tの時間的変化の様子を第7図に示す。
In a dry state, hm is constant, but as the cooking progresses and steam begins to come out from the food, hm increases, so Vo
ut increases rapidly from 0, and humidity can be detected. Vou
FIG. 7 shows how t changes over time.

しかし、第6図の従来湿度検知回路では、定電流源がI
HとINの2個と、演算増幅器が演算増幅器OF+、演
算増幅器OP2、演算増幅器OP3と、回路素子を多数
(3個)必要とする上、■式の条件を満たすため2個の
定電流源のIHとIN相互を合わせこむのが非常に困難
であった。
However, in the conventional humidity detection circuit shown in Fig. 6, the constant current source is
H and IN, operational amplifiers OF+, operational amplifier OP2, operational amplifier OP3, and a large number (3) of circuit elements are required.In addition, two constant current sources are required to satisfy the condition of formula (■). It was extremely difficult to match the IH and IN.

〈目 的〉 そこで、本発明は、2個の定電流源相互を合わせこまな
くても良い湿度検知回路の提供を目的としている。
<Purpose> Therefore, an object of the present invention is to provide a humidity detection circuit that does not require matching two constant current sources.

〈実施例〉 本発明による電子レンジの調理の仕上りを湿度により検
知する湿度検知回路の原理を第1.2図により説明する
<Embodiment> The principle of a humidity detection circuit for detecting the finish of cooking in a microwave oven according to the present invention based on humidity will be explained with reference to FIG. 1.2.

第1図で、定電流源1oにより第一感温抵抗H≦ を自己加熱する点は第一図と同じであるが、本発明では
、第二感温抵抗Nを第一感温抵抗Hの出力と演算増幅器
OPの反転入力に挿入している点が異なっている。
In Fig. 1, the point that the first temperature-sensitive resistor H≦ is self-heated by the constant current source 1o is the same as in Fig. 1, but in the present invention, the second temperature-sensitive resistor N is The difference is that it is inserted between the output and the inverting input of the operational amplifier OP.

すなわち、本発明は、湿度を検出するために自己加熱す
る第一感温抵抗Hと、周囲温度検出用の第二感温抵抗N
と、定電流源Ioと、演算増幅器OPと、該演算増幅器
OP用帰還抵抗Rfとを具備し、前記第一感温抵抗Hを
定電流源1oにより自己加熱し、さらに第一感温抵抗H
の端子電圧を第二感温抵抗Nを通して演算増幅器OPの
反転側入力端子に入力するよう構成し念ものである。こ
のため、本発明では、従来湿度検知回路と比べて部品点
数をきわめて少なくできる。
That is, the present invention includes a first temperature-sensitive resistor H that self-heats to detect humidity, and a second temperature-sensitive resistor N for detecting ambient temperature.
, a constant current source Io, an operational amplifier OP, and a feedback resistor Rf for the operational amplifier OP, the first temperature sensitive resistor H is self-heated by the constant current source 1o, and the first temperature sensitive resistor H
It is assumed that the terminal voltage is inputted to the inverting input terminal of the operational amplifier OP through the second temperature-sensitive resistor N. Therefore, in the present invention, the number of components can be significantly reduced compared to conventional humidity detection circuits.

第1図でrH<<rN とすると、自己加熱側の第一感
温抵抗Hの両端電圧VHは■式と同様にとなる。演算増
幅器OPの利得は、r H<< r N  としている
ため Rf    Rf rH+rN    rN であるから、αH=αNに選定すると、出力VOutは
F と導出される。
In FIG. 1, if rH<<rN, the voltage VH across the first temperature-sensitive resistor H on the self-heating side will be the same as in equation (2). Since the gain of the operational amplifier OP is Rf Rf rH+rN rN since r H<< r N , if αH=αN is selected, the output VOut is derived as F .

乾燥状態では、hm(熱伝達係数)ii′一定のため、
出力Vout tri負の一定値になる。調理が経過し
発生した水蒸気によりhmが増大すると、Voutの絶
対値が小さくなり、第2図のような出力の時間経過を得
ることができる。
In the dry state, since hm (heat transfer coefficient) ii' is constant,
The output Vout tri becomes a constant negative value. As hm increases due to steam generated as cooking progresses, the absolute value of Vout becomes smaller, making it possible to obtain the output over time as shown in FIG.

第3図は、本発明による実施例である。第1図では演算
増幅器OPの電源に正負の両型源が必要とし念が、第3
図では正電源のみで済ませられるように簡略化している
FIG. 3 is an embodiment according to the present invention. In Figure 1, both positive and negative type sources are required for the power supply of the operational amplifier OP.
The diagram is simplified so that only the positive power supply is required.

第3図で演算増幅器OPI、トランジスタQ、抵抗R5
および基準電源Vrefにより定電流回路を構成し、第
一感温抵抗Hに定電流1 o=V r e f/RSを
供給している。トランジスタQは演算増幅器OPIの出
力電流増幅用である。第二感温抵抗Nは第1図々同様に
周囲温度検出用の感温抵抗である。演算増幅器OP2は
信号の増幅用である。第3図の出力電圧Voutは、α
H=αNの時Vout= ・・・0 と導出される。まず、調理の初期状態で、Voutを一
定値になるよう、演算増幅器OP2の負端子に接続され
ている抵抗RBを調節しておく0調理が進行して調理物
の水蒸気によりhmが増大すると、[相]式の1項目が
減少する。その結果Voutが急激に増大し、第4図の
ような時間特性になる。
In Figure 3, operational amplifier OPI, transistor Q, and resistor R5
A constant current circuit is configured by the reference power supply Vref and a constant current 1 o=V r e f /RS is supplied to the first temperature sensitive resistor H. Transistor Q is for amplifying the output current of operational amplifier OPI. The second temperature-sensitive resistor N is a temperature-sensitive resistor for detecting the ambient temperature as in FIG. Operational amplifier OP2 is for signal amplification. The output voltage Vout in FIG. 3 is α
When H=αN, Vout=...0 is derived. First, in the initial state of cooking, adjust the resistor RB connected to the negative terminal of the operational amplifier OP2 so that Vout remains at a constant value.As cooking progresses and hm increases due to the steam of the food, [Phase] One item in the equation decreases. As a result, Vout increases rapidly, resulting in a time characteristic as shown in FIG.

上記第1図の原理のものにおいてはαH=αNと選定し
なければならず、αH=αNと選定すると七は感温抵抗
の性能上困難である。
According to the principle shown in FIG. 1, it is necessary to select αH=αN, and if αH=αN is selected, it is difficult in view of the performance of the temperature-sensitive resistor.

そこで本発明の湿度検知回路の他の実施例においては、
(tH=αNの関係を成立させる必要がなくても湿度の
検知が行なえるようにしたものである。
Therefore, in another embodiment of the humidity detection circuit of the present invention,
(This allows humidity to be detected without the need to establish the relationship tH=αN.

本発明の湿度検知回路の他の実施例を第5図により説明
する。
Another embodiment of the humidity detection circuit of the present invention will be described with reference to FIG.

上記第1図と異なる所は第一感温抵抗Hの両端電圧vH
t−第二感温抵抗N及び直列に接続された抵抗Rcを通
じて演算増幅器OFの反転側入力端子に接続している所
にある。
The difference from the above figure 1 is that the voltage across the first temperature-sensitive resistor H is vH.
t- is connected to the inverting side input terminal of the operational amplifier OF through the second temperature sensitive resistor N and the resistor Rc connected in series.

すなわち、湿度を検知する為に自己加熱する第一感温抵
抗H七周囲温度検出用の第二感温抵抗Nと、定電流源1
oと、演算増幅器OPと該演算増幅器用帰還抵抗Rfと
第二感温抵抗Nと直列に接続する抵抗Rcとを具備し、
前記第一感温抵抗Hを定電流源1oにより自己加熱し、
さらに第一感温抵抗Hの端子電圧を第二感温抵抗N及び
第二感温抵抗Nに直列に接続された抵抗Rcを通して演
算増幅器OPの反転側入力端子に入力するよう構成した
ものである。
That is, a first temperature-sensitive resistor H that heats itself to detect humidity, a second temperature-sensitive resistor N for detecting ambient temperature, and a constant current source 1.
o, an operational amplifier OP, a feedback resistor Rf for the operational amplifier, and a resistor Rc connected in series with the second temperature-sensitive resistor N,
The first temperature-sensitive resistor H is self-heated by a constant current source 1o,
Further, the terminal voltage of the first temperature-sensitive resistor H is inputted to the inverting side input terminal of the operational amplifier OP through the second temperature-sensitive resistor N and a resistor Rc connected in series with the second temperature-sensitive resistor N. .

この回路によりαHとrNを等しくすることなく湿度検
知回路を構成することができる。
With this circuit, a humidity detection circuit can be constructed without making αH and rN equal.

第5図による演算増幅器の利得は Rf Vout :           □VH−(rN+
Rc ) と導出される。
The gain of the operational amplifier according to FIG. 5 is Rf Vout: □VH-(rN+
Rc) is derived.

となる様にRcを選定してやると 出力Voutは 但しCは定数と導出される。If we select Rc so that The output Vout is However, C is derived as a constant.

乾燥状態でばhmは一定の為、出力Voutは一定値で
あり、調理が経過し発生した水蒸気により11mが増大
するとVoutの絶対値が小さくなり第2図のような出
力の時間経過を得ることができる。
In a dry state, since hm is constant, the output Vout is a constant value, and as 11m increases due to the steam generated as cooking progresses, the absolute value of Vout decreases, and the output over time as shown in Figure 2 can be obtained. I can do it.

〈効 果〉 本発明の湿度検知回路は上記のような構成であるから、
第一感温抵抗、第二感温抵抗のそれぞれの湿度係数αH
2αNを合わせることなく、直列に接続する抵抗を調整
するのみで電子レンジ等の調理の仕上りを湿度により検
知することができ、食品の自動加熱に構成効果が大きい
<Effects> Since the humidity detection circuit of the present invention has the above configuration,
Humidity coefficient αH of the first temperature-sensitive resistor and the second temperature-sensitive resistor
The finish of cooking in a microwave oven or the like can be detected based on humidity by simply adjusting the resistor connected in series without adjusting 2αN, which has a great structural effect in automatic heating of food.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による湿度検知回路を用いた電子レンジ
の仕上り検知用電子回路の原理図、第2図は本発明によ
る仕上り検知回路の出力電圧の時間特性の概略を表わす
線図、第3図は第1図の本発明湿度検知回路の実施例を
示す電子回路図、第4図は第3図の出力電圧の時間特性
の概略を表わ1!さ す線図、第5図は本発明による湿度検知回路を用いた電
子レンジの仕上り検知用電子回路の他の原理図、第6図
は従来湿度検知回路を用いた電子レンジの仕上り検知用
電子回路図、第7図はその出力電圧の時間特性の概略を
表わす線図であるOH:第一感温抵抗、■0:定電流源
、N:第二感温抵抗、OP:演算増幅器、Rf:帰還抵
抗、RC:抵抗 代理人 弁理士 杉 山 毅 至(他1名)Vout 第2 図 Vout 第4 図
FIG. 1 is a principle diagram of an electronic circuit for detecting finished product in a microwave oven using a humidity detecting circuit according to the present invention, FIG. This figure is an electronic circuit diagram showing an embodiment of the humidity detection circuit of the present invention shown in FIG. 1, and FIG. 4 shows an outline of the time characteristics of the output voltage shown in FIG. 3. Fig. 5 is another principle diagram of an electronic circuit for detecting the finish of a microwave oven using the humidity detection circuit according to the present invention, and Fig. 6 is an electronic circuit for detecting the finish of a microwave oven using a conventional humidity detection circuit. 7 is a diagram schematically showing the time characteristics of the output voltage. OH: first temperature-sensitive resistor, ■0: constant current source, N: second temperature-sensitive resistor, OP: operational amplifier, Rf: Return resistance, RC: Resistance agent Patent attorney Takeshi Sugiyama (and 1 other person) Vout Figure 2 Vout Figure 4

Claims (1)

【特許請求の範囲】[Claims] 湿度を検出するために自己加熱する第一感温抵抗と、周
囲温度検出用の第二感温抵抗と、定電流源と、演算増幅
器と、該演算増幅器用帰還抵抗と第二感温抵抗に直列に
挿入する抵抗とを具備し、前記第一感温抵抗を定電流源
により自己加熱し、さらに第一感温抵抗の端子電圧を第
二感温抵抗及び第二感温抵抗に直列に接続された抵抗を
通して演算増幅器の反転側入力端子に入力するよう構成
したことを特徴とする湿度検知回路。
A first temperature-sensitive resistor that heats itself to detect humidity, a second temperature-sensitive resistor for detecting ambient temperature, a constant current source, an operational amplifier, a feedback resistor for the operational amplifier, and a second temperature-sensitive resistor. and a resistor inserted in series, the first temperature sensitive resistor is self-heated by a constant current source, and the terminal voltage of the first temperature sensitive resistor is connected in series to the second temperature sensitive resistor and the second temperature sensitive resistor. A humidity detection circuit characterized in that the humidity detection circuit is configured to input to an inverting side input terminal of an operational amplifier through a resistor.
JP61023556A 1986-02-04 1986-02-04 Humidity detecting circuit Granted JPS62180258A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP61023556A JPS62180258A (en) 1986-02-04 1986-02-04 Humidity detecting circuit
DE3751125T DE3751125T2 (en) 1986-02-04 1987-01-30 Moisture measuring circuit.
EP87101319A EP0232817B1 (en) 1986-02-04 1987-01-30 Humidity detecting circuit
NZ219136A NZ219136A (en) 1986-02-04 1987-02-02 Humidity detector circuit
CA000528880A CA1287986C (en) 1986-02-04 1987-02-03 Humidity detecting circuit
KR878700873A KR890004076B1 (en) 1986-02-04 1987-02-04 Humidity detecting circuit
AU68287/87A AU574947B2 (en) 1986-02-04 1987-02-04 Humidity detection
US07/010,794 US4768378A (en) 1986-02-04 1987-02-04 Humidity detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61023556A JPS62180258A (en) 1986-02-04 1986-02-04 Humidity detecting circuit

Publications (2)

Publication Number Publication Date
JPS62180258A true JPS62180258A (en) 1987-08-07
JPH0531939B2 JPH0531939B2 (en) 1993-05-13

Family

ID=12113777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61023556A Granted JPS62180258A (en) 1986-02-04 1986-02-04 Humidity detecting circuit

Country Status (1)

Country Link
JP (1) JPS62180258A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809589A (en) * 2012-07-25 2012-12-05 华东师范大学 Air humidity measurement method with low power consumption
CN103558251A (en) * 2013-10-30 2014-02-05 成都市宏山科技有限公司 High-precision relative humidity detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809589A (en) * 2012-07-25 2012-12-05 华东师范大学 Air humidity measurement method with low power consumption
CN103558251A (en) * 2013-10-30 2014-02-05 成都市宏山科技有限公司 High-precision relative humidity detection device

Also Published As

Publication number Publication date
JPH0531939B2 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
US4109196A (en) Resistance measuring circuit
US5181420A (en) Hot wire air flow meter
KR950019643A (en) Exothermic Resistance Air Flow Meter
US2777640A (en) Temperature control circuit
JPS63142216A (en) Circuit device for sensor
JPH05501759A (en) Linearization of the output of the detection bridge circuit
JPS62180258A (en) Humidity detecting circuit
JPS6488218A (en) Heat ray type air flowmeter
JPH0432617Y2 (en)
JPH052186B2 (en)
US3204191A (en) Transistor amplifier including gain control and temperature sensitive means
JPH0233991B2 (en)
JPS60104265A (en) Rms converter
JP3166565B2 (en) Infrared detection circuit
JPS6116605A (en) Variable gain amplifying circuit
JP2002303552A (en) Measuring method using heat compensation of thermopile and device for conducting method
JP2690980B2 (en) Thermal air flow meter
JPS5922497Y2 (en) light detection circuit
JPS5814617Y2 (en) Cooling temperature control circuit for small cooler
JP2003014547A (en) Temperature difference detection apparatus
JPS6443726A (en) Air flowmeter
JPS5826363Y2 (en) Thermocouple room temperature compensation circuit
JPH0751618Y2 (en) Heater control circuit
JPS5848597Y2 (en) Reference junction compensation circuit
JPS609909Y2 (en) Differential heat sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees