JPS62180097A - Surface-treatment of galvanized steel sheet - Google Patents

Surface-treatment of galvanized steel sheet

Info

Publication number
JPS62180097A
JPS62180097A JP2006186A JP2006186A JPS62180097A JP S62180097 A JPS62180097 A JP S62180097A JP 2006186 A JP2006186 A JP 2006186A JP 2006186 A JP2006186 A JP 2006186A JP S62180097 A JPS62180097 A JP S62180097A
Authority
JP
Japan
Prior art keywords
film
zinc
steel sheet
voltage
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006186A
Other languages
Japanese (ja)
Inventor
Tatsuya Kanamaru
金丸 辰也
Motohiro Nakayama
元宏 中山
Shinichi Suzuki
眞一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006186A priority Critical patent/JPS62180097A/en
Publication of JPS62180097A publication Critical patent/JPS62180097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To carry out continuous surface treatment giving superior corrosion resistance by supplying AC to a Zn or Zn alloy plated steel sheet in an electrolytic soln. contg. sexivalent Cr and phosphate ions to form a surface film contg. specified amounts of Cr and P. CONSTITUTION:AC is supplied to a steel sheet plated with Zn or a Zn alloy contg. >=60% Zn in an electrolytic soln. contg. sexivalent Cr and phosphate ions to form a surface film by electrolysis in plural stages. At this time, <=10V voltage and 1-60Hz frequency are used in the first stage and 7-50V voltage and 10-400Hz frequency in the final stage. A surface film consisting of 10-500mg/m<2> Cr and <=1,000mg/m<2> P is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は亜鉛めっき鋼板の表面処理方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for surface treatment of galvanized steel sheets.

〔従来技術〕[Prior art]

亜鉛めっきまたは亜鉛系合金めっき鋼板における連続電
解処理には電解クロメート処理のように一般的に定電流
定電圧電解が用いられる。これは形成皮膜が導電性であ
るため、電流、電圧を変化させる必要がほとんどないた
めである。本発明で目的とするのは抵抗性皮膜の連続的
形成方法である。一方、抵抗の高い皮膜を形成する処理
方法として米国特許3,011,958号があるが、こ
れは部品、パーツ等の処理をバッチ処理で電圧を上げな
がら、定電流処理を行っているが、処理時間が長く連続
処理には向いていない。
Constant current and constant voltage electrolysis, such as electrolytic chromate treatment, is generally used for continuous electrolytic treatment of galvanized or zinc-based alloy coated steel sheets. This is because the formed film is conductive, so there is almost no need to change the current or voltage. The object of the present invention is a method of continuously forming a resistive coating. On the other hand, there is U.S. Patent No. 3,011,958 as a processing method for forming a film with high resistance, but this process uses constant current processing while increasing the voltage in batch processing for parts. Processing time is long and it is not suitable for continuous processing.

また本皮膜形成において上記の一般的な定電流法を用い
1個または、1組の電極で定電流または定電圧電解をお
こなうと、低い電流または電圧では処理時間がかかりす
ぎ連続処理には向いておらず、高い電流または電圧では
形成皮膜が抵抗性のために皮膜形成が行われていないス
トリップの電極入り側の部分に電流集中が起こりピンホ
ールができ品質の良い皮膜が形成されない。
In addition, when forming this film, if constant current or constant voltage electrolysis is performed using one electrode or a set of electrodes using the general constant current method described above, low current or voltage will take too long and is not suitable for continuous treatment. However, at high current or voltage, the formed film is resistive, so current concentration occurs on the electrode entry side of the strip where no film is formed, resulting in pinholes and a high-quality film cannot be formed.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

本発明は、亜鉛または亜鉛系めっき鋼板に表面皮膜を連
続的に短時間で品質良く形成させる連続表面処理方法で
ある。
The present invention is a continuous surface treatment method for continuously forming a surface film on a zinc or zinc-based plated steel sheet in a short time and with good quality.

〔問題点の解決手段〕[Means for solving problems]

本発明は、亜鉛めっきまたは亜鉛を60重量%以上含有
する亜鉛合金めっき鋼板を6価クロムおよびリン酸イオ
ンを含む電解溶液中で交流を印加し、クロム量として1
0〜500 m g / rd t リン量として10
00mg/n(以下からなる表面皮膜を連続的に短時間
で形成せしめることを特徴とする処理方法、及び亜鉛又
は亜鉛を60%以上含有する亜鉛めっき鋼板を6価クロ
ム及びリン酸イオンを含む電解溶液中で交流を印加し、
複数段の電解処理を施し、表面皮膜を形成するに際し、
前段の電圧10V以下2周波数1〜60 Hz 、最終
段電圧7〜50V、周波数10〜400 Hzで処理し
、クロム量として10〜500 m g / rrt 
、リン量として1000 m g / rd以下からな
る表面皮膜を形成することを特徴とする、亜鉛めっき鋼
板の表面処理方法に関するものである。
In the present invention, alternating current is applied to a zinc-plated steel sheet or a zinc alloy-plated steel sheet containing 60% by weight or more of zinc in an electrolytic solution containing hexavalent chromium and phosphate ions, and the amount of chromium is 1.
0-500 mg/rdt 10 as phosphorus amount
00mg/n (a treatment method characterized by continuously forming a surface film consisting of: applying an alternating current in the solution;
When performing multiple stages of electrolytic treatment to form a surface film,
The first stage voltage is 10 V or less, two frequencies are 1 to 60 Hz, the final stage voltage is 7 to 50 V, and the frequency is 10 to 400 Hz, and the amount of chromium is 10 to 500 mg/rrt.
The present invention relates to a surface treatment method for a galvanized steel sheet, which is characterized by forming a surface film having a phosphorus content of 1000 mg/rd or less.

本皮膜を米国特許3,011,958号のように交流5
0または60Hzで定電流処理をおこなう場合の最大の
問題点は処理時間がかかりすぎることであり、連続処理
を行うには処理時間は10秒以内でなければならない。
This coating was applied to AC 5 as described in U.S. Patent No. 3,011,958.
The biggest problem with constant current processing at 0 or 60 Hz is that the processing time is too long; for continuous processing, the processing time must be within 10 seconds.

本発明者の研究によれば、本皮膜形成メカニズムは次の
ように推定し、これより処理時間短縮、皮膜性能向上に
効果のある電解条件の因子として電流密度、電解波形、
周波数、電解電圧、オフセット量、デユーティ−比があ
ることを見出した。電解処理液((N H4) 2Cr
y、  Bog/Q、(NH4)、HPo、  15g
 / Q p N H4F  1 g / Q w C
r O310g /Q、60℃〕中、交流印加による皮
膜形成等価回路は第1図のようになる。
According to the research of the present inventor, the film formation mechanism is estimated as follows, and from this, current density, electrolytic waveform,
It was discovered that there are frequency, electrolytic voltage, offset amount, and duty ratio. Electrolytic treatment solution ((NH4) 2Cr
y, Bog/Q, (NH4), HPo, 15g
/ Q p N H4F 1 g / Q w C
rO310g/Q, 60°C], the equivalent circuit for forming a film by applying alternating current is as shown in FIG.

第1図はめっき層と電解液の界面近傍の様子を等価回路
で示したもので、1はめっき層を、2は電解液を、図の
上部に陽極時の反応等価回路を下部に陰極時の反応等価
回路を示しである。3は亜鉛の溶解反応抵抗、4は水素
発生反応抵抗、5はクロムの還元反応抵抗、6は電気二
重層容量、7は界面のゆらぎにより生ずるワールプルゲ
インピーダンスである。電気二重層容量インピーダンス
、ワールプルゲインピーダンスは周波数の減少とともに
増大する。反応抵抗は周波数と無関係である。
Figure 1 shows an equivalent circuit of the state near the interface between the plating layer and the electrolyte. 1 is the plating layer, 2 is the electrolyte, the upper part of the figure is the equivalent circuit for anode reaction, and the lower part is the cathode reaction. The reaction equivalent circuit is shown below. 3 is the dissolution reaction resistance of zinc, 4 is the hydrogen generation reaction resistance, 5 is the reduction reaction resistance of chromium, 6 is the electric double layer capacity, and 7 is the whirlpool gain pedance caused by the fluctuation of the interface. Electric double layer capacitance impedance and whirlpool gain pedance increase as frequency decreases. Reaction resistance is independent of frequency.

これより皮膜形成を容易に行うには上記等価回路図の反
応抵抗に流れる電流をできる限り大きくし、且つ、界面
のゆらぎにより発生するワールプルゲインピーダンスを
できるだけ小さくすればよい。
In order to easily form a film, the current flowing through the reaction resistor in the above equivalent circuit diagram should be made as large as possible, and the whirlpool gain pedance caused by the fluctuation of the interface should be made as small as possible.

まず電流密度についてはその増加とともに反応抵抗に流
れる電流も増加し、処理時間は短縮されるが、250A
/di以上では局部放電がおこりピンホールが発生し、
適切な皮膜が形成されず、10A/dm未満では処理時
間がかかり得策ではない。電解電圧については皮膜形成
には極間電圧約2vから約50V位の電解が有効である
が、初期電圧が高い電流れる電流が大きくなり、処理時
間は短縮されるが、いきなりIOVより大きな電圧を付
加すると局部放電がおこりピンホールが発生し適切な皮
膜が形成されない。周波数については低周波数程反応抵
抗に流れる電流は大きくなり処理時間は短くなるがIH
z未満ではワールプルゲインピーダンスが大きくなりま
た亜鉛の溶解が活発におこり適切な皮膜が形成されず、
また低周波数枚皮膜の品質、緻密さが低下する。逆に高
周波数では品質、緻密さは向上するが1反応抵抗に流れ
る電流が少なくなり、処理時間がががり103オーダー
以上では得策ではない。また上記周波数範囲では、皮膜
成分のコントロールも可能であり周波数を高くするとク
ロムの還元電流が減少し皮膜中のクロム量が減少しリン
量が増大する。
First, regarding the current density, as the current density increases, the current flowing through the reaction resistor also increases, and the processing time is shortened.
/di or more, local discharge occurs and pinholes occur,
A suitable film will not be formed and if it is less than 10 A/dm, it will take a long time to process, which is not a good idea. Regarding the electrolytic voltage, electrolysis with a voltage between about 2 V and about 50 V is effective for film formation, but if the initial voltage is high, the current flowing will be large and the processing time will be shortened, but it is difficult to suddenly apply a voltage higher than IOV. If it is added, local discharge will occur, pinholes will occur, and an appropriate film will not be formed. Regarding the frequency, the lower the frequency, the larger the current flowing through the reaction resistor and the shorter the processing time, but IH
If it is less than z, the whirlpool gain pedance will be large and zinc will be actively dissolved and an appropriate film will not be formed.
In addition, the quality and density of the low-frequency film decreases. On the other hand, if the frequency is high, the quality and precision will improve, but the current flowing through one reaction resistor will decrease, and the processing time will increase, so it is not a good idea to use higher frequencies than 103 orders of magnitude. Further, within the above frequency range, it is possible to control the film components, and as the frequency is increased, the reduction current of chromium decreases, the amount of chromium in the film decreases, and the amount of phosphorus increases.

電解波形については、三角波、正弦波、矩形波が適用で
きるが同一周波数、平均電流密度では低周波数成分強度
の高い三角波、正弦波、矩形波の順に処理時間は短縮さ
れる。オフセット量、デユーティ−比については士比9
/1以内においては処理時間の短縮効果はあるが、これ
より大きい範囲においてプラスが多い場合は亜鉛の溶解
がおこり皮膜が形成されず、これより大きい範囲におい
てマイナスが多い場合は処理されない。また、オフセッ
ト量、デユーティ−比により皮膜形成成分のコントロー
ルも可能であり負側か多くなるとクロム量が増大する。
Regarding the electrolytic waveform, a triangular wave, a sine wave, and a rectangular wave can be applied, but at the same frequency and average current density, the processing time is shortened in the order of triangular wave, sine wave, and rectangular wave, which have higher low frequency component strength. For the offset amount and duty ratio, see Hibi 9.
If the value is within /1, there is an effect of shortening the treatment time, but if the value is larger than this and there are many positive values, zinc will be dissolved and no film will be formed, and if the value is larger than this value and there are many negative values, no treatment will be performed. Furthermore, it is possible to control the film-forming components by adjusting the offset amount and duty ratio, and as the amount increases on the negative side, the amount of chromium increases.

さらに、皮膜を連続ストリップで形成するには上記の効
果を組合わせただけの一段処理では短時間で充分な皮膜
は形成されない。
Furthermore, in order to form a continuous strip of coating, a single step process that combines the above effects does not provide a sufficient coating in a short time.

なんとなれば、皮膜は抵抗性であるために充分な皮膜形
成には電圧の増加が必要であるからである。
This is because the film is resistive and requires an increase in voltage for sufficient film formation.

そこで上記の効果と多段で電解処理を行う方法によりこ
の点を解決した。
Therefore, this problem was solved by using the above-mentioned effects and a method of performing electrolytic treatment in multiple stages.

その方法はまず周波数については初期に低周波数で電解
を行い、反応抵抗にながれる電流を大きくし皮膜の形成
を速め、皮膜の形成とともに順に周波数を適当に高くし
ワールプルゲインピーダンスによる抵抗を小さくし、そ
の結果皮膜の品質(外観、皮膜の緻密さ)を良くするも
のである。
The method is to first conduct electrolysis at a low frequency initially, increase the current flowing through the reaction resistor to speed up the formation of the film, and as the film forms, increase the frequency appropriately to reduce the resistance due to whirlpool gain pedance. As a result, the quality of the film (appearance, film density) is improved.

また極間電圧は皮膜が抵抗性皮膜の為皮膜の形成にした
がって高めである。
Furthermore, since the film is a resistive film, the interelectrode voltage increases as the film is formed.

第2図に2段以上の電解を連続で行い本皮膜を連続的に
形成する処理の1例を概略図を示す。8は入り側コイル
、9は出側コイル、10は通電ロール、11は電極、1
2から15は電解電源を示し順に3V、5Hz ;5V
、10Hz ;’7v、30Hz ; IOV、50H
zであり、16は電解タンク、17は水洗タンク、18
は乾燥炉である。
FIG. 2 shows a schematic diagram of an example of a process in which two or more stages of electrolysis are carried out continuously to form a film. 8 is an inlet coil, 9 is an outlet coil, 10 is an energizing roll, 11 is an electrode, 1
2 to 15 indicate electrolytic power supplies, in order: 3V, 5Hz; 5V
, 10Hz; '7v, 30Hz; IOV, 50H
z, 16 is an electrolytic tank, 17 is a water washing tank, 18
is a drying oven.

第2図は、ラインスピード60m/minで両面亜鉛め
っき鋼板または亜鉛を60重量%以上含む合金亜鉛めっ
き鋼板を通常の前処理、アルカリ脱脂、水洗、乾燥の後
、クロム酸−りん酸混合電解浴〔組成(NH4)2Cr
0451g/Q+  (NH4)2HP0. 13g/
Q、Cr0.10g/I2.NH4F 1g/Q、浴温
60℃〕を4タンク使用し、ストリップと相対した長さ
20cm。
Figure 2 shows a double-sided galvanized steel sheet or an alloy galvanized steel sheet containing 60% by weight or more of zinc at a line speed of 60 m/min after the usual pretreatment, alkaline degreasing, water washing, and drying in a chromic acid-phosphoric acid mixed electrolytic bath. [Composition (NH4)2Cr
0451g/Q+ (NH4)2HP0. 13g/
Q, Cr0.10g/I2. Four tanks of NH4F 1g/Q, bath temperature 60°C were used, and the length facing the strip was 20cm.

極間2cmの電極を用い印加電流として前段から順に3
 V 5 Hz 、 5 V 10 Hz 、 7 V
 30 Hz 。
Using electrodes with a distance of 2 cm, the applied current was 3 in order from the previous stage.
V 5 Hz, 5 V 10 Hz, 7 V
30Hz.

10 V 50 Hzの交流正弦波で電解し、水洗、乾
燥する方法の概略図である。
It is a schematic diagram of a method of electrolyzing with an AC sine wave of 10 V 50 Hz, washing with water, and drying.

初段において、IOVより大きな電圧を付加すると局部
放電がおこりピンホールが発生し皮膜外観を損なうこと
があり、また周波数がIHz未満では連続処理において
外観むらが発生し易く、60 I−f zより大きいと
皮膜の初期の皮膜が形成されにくいことがある。
In the first stage, if a voltage higher than IOV is applied, local discharge may occur and pinholes may occur, damaging the appearance of the film.Furthermore, if the frequency is less than IHz, unevenness in appearance is likely to occur during continuous processing, and if the voltage is greater than 60 I-f z. and the initial film may be difficult to form.

最終段において7vより小さな電圧では皮膜が充分形成
されないことがあり、50Vより大きな電圧では放電に
より皮膜の破壊がおこる。また周波数10Hz未満では
ワールプルゲインピーダンスが大きくなり放電がおこり
やすく、また連続処理ではむらがおこりやすい。周波数
が400Hz以上では充分に皮膜の形成困難になる。
In the final stage, if the voltage is lower than 7V, the film may not be formed sufficiently, and if the voltage is higher than 50V, the film will be destroyed due to discharge. Further, if the frequency is less than 10 Hz, the whirlpool gain pedance becomes large and discharge tends to occur, and unevenness tends to occur in continuous processing. If the frequency is 400 Hz or higher, it becomes sufficiently difficult to form a film.

波形、オフセット量は皮膜の品質、皮膜中のクロム量コ
ントロール等の必要に応じて適宜上記範囲内で利用する
ことも可能である。また電解周波数、電圧はストリップ
の面積、通板速度、および極間距雛により異なるが上記
範囲内での電解が有効である。なお第2図ではストリッ
プは安全のためにアースしであるが、アースなしでも本
処理は可能である。また、電解設備の点から異なる電解
段数が11段以上となることはライン長、経費の点で得
策ではない。
The waveform and offset amount can be appropriately adjusted within the above range depending on the needs of the quality of the film, control of the amount of chromium in the film, etc. Further, although the electrolysis frequency and voltage vary depending on the area of the strip, the threading speed, and the distance between poles, electrolysis within the above range is effective. In FIG. 2, the strip is grounded for safety, but this process can also be carried out without grounding. Further, from the viewpoint of electrolytic equipment, it is not a good idea to have 11 or more different electrolytic stages from the viewpoint of line length and cost.

また本処理設備をめっきライン直後に設けることも可能
である。さらに第2図では1タンクにつき1電極を1例
として示したが電極を細分化して1タンク内に2電極以
上設けることも可能である。
It is also possible to provide this processing equipment immediately after the plating line. Further, although FIG. 2 shows one electrode per tank as an example, it is also possible to subdivide the electrodes and provide two or more electrodes in one tank.

尚、このような表面皮膜の形成が認められるめっき鋼材
としては亜鉛を60重量%以上含有することが必要であ
る。電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、亜鉛溶
射鋼板、亜鉛蒸着鋼板などめっき方法によらず適用可能
である。
In addition, a plated steel material in which the formation of such a surface film is observed must contain 60% by weight or more of zinc. It can be applied to electrogalvanized steel sheets, hot-dip galvanized steel sheets, zinc sprayed steel sheets, zinc vapor-deposited steel sheets, etc. regardless of the plating method.

また合金化溶融亜鉛めっき鋼板、亜鉛を60重量%以上
含有する表面層をもつ電気合金めっき鋼板、例えば亜鉛
−鉄、亜鉛−ニッケル合金めっき鋼板にも処理できる。
Further, alloyed hot-dip galvanized steel sheets and electrically alloyed steel sheets having a surface layer containing 60% by weight or more of zinc, such as zinc-iron and zinc-nickel alloy-plated steel sheets, can also be treated.

その他の元素、例えばMn、Cr、Sn、Pb、AQ、
Mo+ W、Go。
Other elements such as Mn, Cr, Sn, Pb, AQ,
Mo+ W, Go.

Tin P、Si、Na、Ca、Mg、O,Cなどが含
有されても亜鉛が60重量%以上含有されている限り適
用可能である。
Even if Tin P, Si, Na, Ca, Mg, O, C, etc. are contained, it is applicable as long as zinc is contained in an amount of 60% by weight or more.

また必要ならば酸洗、表面研削などの前処理も適用でき
る。
If necessary, pretreatments such as pickling and surface grinding can also be applied.

皮膜成分においてクロム量がl Q m g / rd
以下では耐食性が充分ではなく 500 m g / 
m以上では経済的に得策ではない。リン量においては、
リンが微量以上存在すると加工時において亜鉛の金型へ
の付着がおこりにくくなり、耐食性も向上するが、10
00 m g / rr?以上ではユーザーでの加工時
における皮膜剥離がおこしやすい、溶接が不可能となる
ことがありめっき鋼板としては適さない、従って100
0 m g / rd以下が好ましい。
The amount of chromium in the film component is l Q m g / rd
Corrosion resistance is not sufficient below 500 mg/
m or more is not economically advisable. Regarding the amount of phosphorus,
If more than a trace amount of phosphorus is present, zinc will be less likely to adhere to the mold during processing and corrosion resistance will improve;
00mg/rr? Above this, the film is likely to peel off during processing by the user, and welding may become impossible, making it unsuitable for use as a plated steel sheet.
It is preferably 0 mg/rd or less.

〔実施例〕〔Example〕

次に本発明の実施例を比較例とともに挙げる。 Next, examples of the present invention will be listed together with comparative examples.

〔発明の効果〕 本発明によれば耐食性が向上し、表面処理鋼板としての
機能を十分発揮することができる。又、皮膜密若性が向
上し、表面処理鋼板の成形性を向上することができる等
の優れた効果をもたらすものである。
[Effects of the Invention] According to the present invention, corrosion resistance is improved and the function as a surface-treated steel sheet can be fully exhibited. Further, it brings about excellent effects such as improved film density and formability of the surface-treated steel sheet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は交流での電解の概略図を、第2図は連続処理の
1例を示す概略図である。 特許出願人  新日本製鐵株式会社 代 理 人   弁理士   古島  寧第1図
FIG. 1 is a schematic diagram of alternating current electrolysis, and FIG. 2 is a schematic diagram showing an example of continuous processing. Patent applicant Nippon Steel Corporation Representative Patent attorney Yasushi Furushima Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛めっきまたは亜鉛を60重量%以上含有する
亜鉛合金めっき鋼板を6価クロムおよびリン酸イオンを
含む電解溶液中で交流を印加し、クロム量として10〜
500mg/m^2、リン量として1000mg/m^
2以下からなる表面皮膜を形成せしめることを特徴とす
る、亜鉛めっき鋼板の表面処理方法。
(1) Alternating current is applied to a zinc-plated or zinc alloy-plated steel sheet containing 60% by weight or more of zinc in an electrolyte solution containing hexavalent chromium and phosphate ions, and the amount of chromium is 10 to 10% by weight.
500mg/m^2, 1000mg/m^ as phosphorus amount
A method for surface treatment of a galvanized steel sheet, characterized by forming a surface film consisting of 2 or less.
(2)亜鉛又は亜鉛を60%以上含有する亜鉛めっき鋼
板を6価クロム及びリン酸イオンを含む電解溶液中で交
流を印加し、複数段の電解処理を施し、表面皮膜を形成
するに際し、前段の電圧10V以下、周波数1〜60H
z、最終段電圧7〜50V、周波数10〜400Hzで
処理し、クロム量として10〜500mg/m^2、リ
ン量として1000mg/m^2以下からなる表面皮膜
を形成することを特徴とする、亜鉛めっき鋼板の表面処
理方法。
(2) When forming a surface film by applying alternating current to zinc or a galvanized steel sheet containing 60% or more of zinc in an electrolytic solution containing hexavalent chromium and phosphate ions and performing multiple stages of electrolytic treatment, voltage 10V or less, frequency 1~60H
z, processed at a final stage voltage of 7 to 50 V and a frequency of 10 to 400 Hz to form a surface film having a chromium content of 10 to 500 mg/m^2 and a phosphorus content of 1000 mg/m^2 or less, Surface treatment method for galvanized steel sheets.
JP2006186A 1986-02-03 1986-02-03 Surface-treatment of galvanized steel sheet Pending JPS62180097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006186A JPS62180097A (en) 1986-02-03 1986-02-03 Surface-treatment of galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006186A JPS62180097A (en) 1986-02-03 1986-02-03 Surface-treatment of galvanized steel sheet

Publications (1)

Publication Number Publication Date
JPS62180097A true JPS62180097A (en) 1987-08-07

Family

ID=12016562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006186A Pending JPS62180097A (en) 1986-02-03 1986-02-03 Surface-treatment of galvanized steel sheet

Country Status (1)

Country Link
JP (1) JPS62180097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2730506A1 (en) * 1995-02-14 1996-08-14 Electro Rech Forming protective coating on zinc (alloy) component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2730506A1 (en) * 1995-02-14 1996-08-14 Electro Rech Forming protective coating on zinc (alloy) component

Similar Documents

Publication Publication Date Title
JPS6121317B2 (en)
JPS6119719B2 (en)
CN1061603C (en) Steel plate plated with zinc and method for preparation of same
US20220275530A1 (en) Method and system for electrolytically coating a steel strip by means of pulse technology
US3959099A (en) Electrolytic method of producing one-side-only coated steel
JPH0124880B2 (en)
JPS6141990B2 (en)
JPS62180097A (en) Surface-treatment of galvanized steel sheet
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
US5344552A (en) Process for electroplating a metal strip
JPS5837192A (en) Post-treatment for non-plated surface of steel plate electroplated with zinc on one side
JPS60200996A (en) Blackened rustproof steel sheet and its manufacture
KR20050075441A (en) Plain or zinc-plated steel plate coated with a zinc or zinc alloy layer comprising a polymer, and method for making same by electroplating
JPH04124295A (en) Production of thick galvanized steel sheet
JPH025839B2 (en)
JPH07166371A (en) Zn-ni based alloy plated steel sheet excellent in corrosion resistance, powdering resistance, low temperature impact peeling resistance, slidability and phosphating property
JPH03294496A (en) Production of galvanized steel sheet having fine appearance
JP3124234B2 (en) Surface-treated steel sheet for welding can excellent in corrosion resistance and adhesion of processed paint, and method for producing the same
JP2528944B2 (en) Method for producing Zn-based alloy electroplated steel sheet excellent in chemical conversion treatability and corrosion resistance
JPH0331797B2 (en)
JPH05339746A (en) Method for chromating zinc electroplated steel sheet excellent in color tone stability
JP3230907B2 (en) Method for producing blackened steel sheet excellent in productivity and blackening
JPH04268096A (en) Formation of chemical conversion film
JPH10158885A (en) Production of phosphated and galvanized steel sheet
JPH06280085A (en) Galvanized aluminum and aluminum alloy excellent in adhesion and production thereof