JPS62179689A - Apparatus for nuclear reactor core - Google Patents

Apparatus for nuclear reactor core

Info

Publication number
JPS62179689A
JPS62179689A JP61020120A JP2012086A JPS62179689A JP S62179689 A JPS62179689 A JP S62179689A JP 61020120 A JP61020120 A JP 61020120A JP 2012086 A JP2012086 A JP 2012086A JP S62179689 A JPS62179689 A JP S62179689A
Authority
JP
Japan
Prior art keywords
reactor core
nickel
nuclear reactor
cobalt
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61020120A
Other languages
Japanese (ja)
Inventor
国谷 治郎
吉田 寿美
正岡 功
隆 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61020120A priority Critical patent/JPS62179689A/en
Publication of JPS62179689A publication Critical patent/JPS62179689A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子炉炉内にあって高温水に接する機器におい
て、溶出したニッケルが放射化されて生ずるコバルト5
8の生成量を減少せしめるためにニッケルを含有せず1
2wt%以上のクロムを主要構成元素として含有するフ
ェライト系ステンレス鋼より構成される原子炉炉心機器
に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to cobalt-5, which is generated when eluted nickel is activated in equipment that is in a nuclear reactor and comes into contact with high-temperature water.
1 does not contain nickel to reduce the amount of 8 produced.
The present invention relates to nuclear reactor core equipment made of ferritic stainless steel containing 2 wt% or more of chromium as a main constituent element.

〔従来の技術〕[Conventional technology]

従来の原子炉炉心機器には耐食性に優れた各種のオース
テナイト系ステンレス鋼が使用されている。
Various austenitic stainless steels with excellent corrosion resistance are used in conventional nuclear reactor core equipment.

〇一般に多く用いられている5US304鋼の化学組成
を一例として挙げると第1表の如くである。
〇An example of the chemical composition of 5US304 steel, which is commonly used, is shown in Table 1.

0この中でニッケルはオーステナイトの安定化元素であ
り、オーステナイト系ステンレス鋼の基本元素として例
えば5US304鋼では大略6wt%〜15wt%程度
が含有されているのが通例である。
0 Among these, nickel is a stabilizing element of austenite, and as a basic element of austenitic stainless steel, for example, 5US304 steel typically contains approximately 6 wt% to 15 wt%.

これらの合金から構成される機器においては、高温水な
どの原子炉冷却材との接液部がその冷却材によって腐食
し1合金の構成元素の一部が冷却材中へ溶出して腐食生
成物などの中に蓄積されることがある。
In equipment made of these alloys, parts that come into contact with reactor coolant such as high-temperature water are corroded by the coolant, and some of the constituent elements of the alloy are leached into the coolant, producing corrosion products. It may be accumulated in etc.

これらの腐食生成物が原子炉炉心を通過すると熱中性子
によって照射を受け、腐食生成物中に含まれているコバ
ルトやニッケルは放射性のコバルト60及びコバルト5
8にそれぞれ変換される。
When these corrosion products pass through the reactor core, they are irradiated with thermal neutrons, and the cobalt and nickel contained in the corrosion products are converted into radioactive cobalt-60 and cobalt-5.
8 respectively.

これらの放射性元素が原子炉炉心や配管に沈着するとガ
ンマ線を長時間にわたって放出するため。
When these radioactive elements are deposited in the reactor core or piping, they emit gamma rays over a long period of time.

原子炉機器の保守点検、修理等の作業における従事者の
安全対策が必要となり、作業性が著しく低下する問題が
あった。
This necessitated safety measures for workers involved in maintenance, inspection, repair, and other work on reactor equipment, resulting in a problem in which work efficiency was significantly reduced.

この問題に対処するため半減期の長いコバ用1〜60低
減を主体床としてオーステナイトステンレス鋼中のコバ
ルト含有量を通常不純物として含まれる0、05〜0.
3wt%稈度から0.05wt%あるいは0.01wt
%以下に制限するなどの対策が採られてきた。
To deal with this problem, the cobalt content in austenitic stainless steel is mainly reduced by 1 to 60% for cobalt, which has a long half-life, and is usually contained as an impurity.
3wt% culm degree to 0.05wt% or 0.01wt
Countermeasures have been taken, such as limiting the amount to below %.

この結果、現在原子炉におけるコバルト60の発生量を
大巾に低減されている。
As a result, the amount of cobalt-60 generated in nuclear reactors has been significantly reduced.

しかし、ニッケルについてはオーステナイト系ステンレ
ス鋼の基本元素であるため低減することははじめから配
慮されていなかった。このため、コバルト58の低減対
策として、冷却材中の鉄イヤン濃度を制御するなどの対
策が採られているが、必ずしも十分でない問題があった
However, since nickel is a basic element of austenitic stainless steel, no consideration was given to reducing it from the beginning. For this reason, measures have been taken to reduce cobalt-58, such as controlling the iron ion concentration in the coolant, but these are not always sufficient.

なお、この種の技術としては、例えば特公昭60−48
717号がある。
In addition, as this type of technology, for example,
There is number 717.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、原子炉炉心機器にニッケルを含まず1
0wt%以上のクロムを主要構成元素とするフェライト
系ステンレス鋼を用いることにより、冷却材中へのニッ
ケルの溶出をなくし、放射化によるコバルト58の発生
を抑制せしめた原子炉炉心用機器に提供するにある。
An object of the present invention is to provide a nuclear reactor core equipment that does not contain nickel.
By using ferritic stainless steel whose main constituent element is 0wt% or more of chromium, it is provided for nuclear reactor core equipment that eliminates nickel elution into the coolant and suppresses the generation of cobalt-58 due to activation. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はニッケルを含有しないフェライト系ステンレス
鋼を用いて原子炉冷却材に接液する原子炉炉心用機器で
ある。本発明の目的は原子炉冷却材中へのニッケルの溶
出を防止してコバルト58の発生を抑制することにある
から、原子炉炉心用機器としては基本的にニッケルを含
まない合金であればよい。原子炉炉心用機器としては低
放射化がはかれるとともに低食性、耐照射脆化性を具備
させる必要がある。耐食性の点から材料をみると、前記
のオーステナイト系ステンレス鋼や、フェライト系ステ
ンレス鋼等のステンレス鋼の他に高ニッケ鋼などのニッ
ケル基合金がある。これらの内、ニッケルを含まない1
0wし%以上のクロムを主要構成元素とするフェライト
系ステンレス鋼を除く以外の合金はいずれもニッケルを
基本元素とするものであって、耐食性は何ら問題はない
がコバルト58の発生抑制に対しては問題を含んでいる
The present invention is a nuclear reactor core device that uses nickel-free ferritic stainless steel and is in contact with a nuclear reactor coolant. Since the purpose of the present invention is to prevent the elution of nickel into the reactor coolant and suppress the generation of cobalt-58, basically any alloy that does not contain nickel may be used as equipment for the reactor core. . As reactor core equipment, it is necessary to have low activation, low corrosion resistance, and resistance to irradiation embrittlement. Looking at materials from the viewpoint of corrosion resistance, there are stainless steels such as the austenitic stainless steel and ferritic stainless steel mentioned above, as well as nickel-based alloys such as high nickel steel. Among these, 1 that does not contain nickel
All alloys other than ferritic stainless steels, which have 0w% or more chromium as their main constituent element, have nickel as their basic element, and although there is no problem with corrosion resistance, it is important to suppress the generation of cobalt-58. contains problems.

また、耐照射脆化性の点から材料をみると、一般的にオ
ーステナイト系材料はフェライト系材料よりも照射によ
る脆化が小さい。現在、原子炉炉心用機器としてオース
テナイトステンレス鋼やニッケル基合金の様なオーステ
ナイト系材料が用いられているのはこの耐食性と耐照射
脆化性を具備させたものとして妥当である。フェライト
系材料は圧力容器に用いられているものの、熱中性子照
射の大きい原子炉炉心部の機器に対しては耐照射脆化性
の観点から使用材料として選定外であった。
Furthermore, when looking at materials from the viewpoint of resistance to irradiation embrittlement, austenitic materials are generally less susceptible to embrittlement due to irradiation than ferritic materials. Currently, austenitic materials such as austenitic stainless steel and nickel-based alloys are being used for nuclear reactor core equipment because of their corrosion resistance and radiation embrittlement resistance. Although ferritic materials are used in pressure vessels, they were not selected as materials for use in equipment in the core of nuclear reactors, which are exposed to large amounts of thermal neutron irradiation, due to their resistance to irradiation embrittlement.

フェライト系ステンレス鋼に関して検討した結果、本合
金においても不純物以上のNを含有させることにより耐
照射脆化性が改善できることがわかった。これから、ニ
ッケルを含まず、かつ不純物以上のNを含有させたクロ
ムを基本元素とするフェライト系ステンレス鋼より構成
される原子炉炉心用機器は、コバルト58の発生抑制、
耐食性及び耐照射脆化性のいずれも満足できる機器であ
る。
As a result of studies on ferritic stainless steels, it was found that the irradiation embrittlement resistance of this alloy can be improved by containing more N than impurities. From now on, nuclear reactor core equipment made of ferritic stainless steel whose basic element is chromium, which does not contain nickel and contains more N than impurities, will suppress the generation of cobalt-58,
The device has satisfactory corrosion resistance and radiation embrittlement resistance.

本発明に含まれる原子炉炉心用機器を例示すると制御棒
被覆管、制御棒シースなどの炉心機器の他、給水加熱器
チューブなどである。
Examples of nuclear reactor core equipment included in the present invention include core equipment such as control rod cladding tubes and control rod sheaths, as well as feed water heater tubes.

Cr量として、11.5〜20wt%のものが好ましく
、その他重量でC0,04〜0.15%、Si2%以下
、Mn2%以下、 NO,04〜0.15%を含み、残
部Fθからなる合金が好ましい。
The amount of Cr is preferably 11.5 to 20 wt%, and other weights include CO, 04 to 0.15%, Si 2% or less, Mn 2% or less, NO, 04 to 0.15%, and the balance consists of Fθ. Alloys are preferred.

以下1本発明の一実施例を図により説明する。An embodiment of the present invention will be described below with reference to the drawings.

図は本発明により制御棒シース及び制御棒被覆管を示す
。従来本機器に用いられている5US304鋼及び本発
明によるフェライト系ステンレス鋼の代表的な組成例を
第1表に示した。
The figure shows a control rod sheath and control rod cladding according to the present invention. Typical composition examples of 5US304 steel conventionally used in this device and ferritic stainless steel according to the present invention are shown in Table 1.

第  1  表 このような本発明による制御棒シース及び制御棒被覆管
は原子炉冷却材との接液部において例え腐食を受けても
ニッケルの溶出はなくコバルト58の発生はほとんど無
視できるほど少なくなる。
Table 1 Even if the control rod sheath and control rod cladding tube according to the present invention are corroded at the parts in contact with the reactor coolant, there will be no leaching of nickel and the generation of cobalt-58 will be so small that it can be ignored. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原子炉冷却材に接する原子炉炉心用機
器から腐食などにより溶出したニッケルを含む腐食生成
物が炉心において熱中性照射を受けることによって発生
するコバルト58の生成量を従来の175〜1/10に
低下できる。
According to the present invention, the amount of cobalt-58 generated when corrosion products containing nickel eluted from reactor core equipment in contact with the reactor coolant due to corrosion etc. is subjected to thermal neutral irradiation in the reactor core has been reduced to 175 It can be reduced to ~1/10.

従って、定期検査時等の原子炉冷却材の被曝低減に著し
く貢献するものである。
Therefore, it significantly contributes to reducing the radiation exposure of the reactor coolant during periodic inspections and the like.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例の原子炉冷却材中における制御棒
シースと制御棒被覆管を示す全体図である。 1・・・制御棒被覆管、2・・・制御棒シース。
The figure is an overall view showing a control rod sheath and a control rod cladding tube in a reactor coolant according to an embodiment of the present invention. 1... Control rod cladding tube, 2... Control rod sheath.

Claims (1)

【特許請求の範囲】[Claims] 1、10wt%以上のクロムを主要基本元素とし、不純
物として含有される以上の窒素を含有し、かつニッケル
を含まないフェライト系ステンレス鋼から構成されてい
ることを特徴とする原子炉炉心用機器。
1. Nuclear reactor core equipment comprising ferritic stainless steel containing 10 wt% or more of chromium as a main basic element, nitrogen in excess of that contained as an impurity, and containing no nickel.
JP61020120A 1986-02-03 1986-02-03 Apparatus for nuclear reactor core Pending JPS62179689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61020120A JPS62179689A (en) 1986-02-03 1986-02-03 Apparatus for nuclear reactor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61020120A JPS62179689A (en) 1986-02-03 1986-02-03 Apparatus for nuclear reactor core

Publications (1)

Publication Number Publication Date
JPS62179689A true JPS62179689A (en) 1987-08-06

Family

ID=12018259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61020120A Pending JPS62179689A (en) 1986-02-03 1986-02-03 Apparatus for nuclear reactor core

Country Status (1)

Country Link
JP (1) JPS62179689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9301635B2 (en) 2008-04-30 2016-04-05 Eugster/Frismag Method of producing a drink, and drinks-preparing device for implementing the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9301635B2 (en) 2008-04-30 2016-04-05 Eugster/Frismag Method of producing a drink, and drinks-preparing device for implementing the method

Similar Documents

Publication Publication Date Title
Scott A review of irradiation assisted stress corrosion cracking
US5254308A (en) Zirconium alloy with improved post-irradiation properties
EP0345531B1 (en) Ductile irradiated zirconium alloy
EP0532830A2 (en) Zirconium alloy with superior ductility
US5278882A (en) Zirconium alloy with superior corrosion resistance
CA1337381C (en) Austenitic stainless steel alloy
ES8406092A1 (en) Austenitic alloys and reactor components made thereof.
RU2325459C2 (en) Chromium low-doped corrosion-resistant and radiation-resistant steel
JPS62179689A (en) Apparatus for nuclear reactor core
LeSurf The corrosion behavior of 2.5 Nb zirconium alloy
Lister et al. Effects of magnesium and zinc additives on corrosion and cobalt contamination of stainless steels in simulated BWR coolant
US3440037A (en) Stainless steel alloy exhibiting resistance to embrittlement by neutron irradiation
Ku et al. Radioactivation characteristics for the tokamak fusion test reactor
US3574612A (en) Nickel-chromium alloy
Medin Literature Survey for Activity Build-up on Reactor Primary System Components
US5539794A (en) Reduction of manganese content of stainless alloys to mitigate corrosion of neighboring in-core zirconium based components
JPS5824889A (en) Bwr plant
Kim et al. Internal hydriding of defected Zircaloy cladding fuel rods: a review
JPS6017058A (en) Alloy for apparatus in high irradiation region
Doran et al. Prospects for reduced activation alloys
Farrell Radiation effects in the stainless steel primary coolant supply adapter
Fabry et al. Improvement of LWR Pressure Vessel Steel Embrittlement Surveillance: 1984–1986 Progress Report on Belgian Activities in Cooperation with USNRC and Other R&D Programs
JP3179500B2 (en) Nuclear power plant and operation method thereof
JPH02175842A (en) Stainless steel for unclear reactor core equipment and its production
Stacey Jr Flux Synthesis Methods in Reactor Physics